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Abstract

Direct Radiating Arrays (‘DRA’) have been proven to be an
interesting solution for reconfigurable multibeam transmit
antennas, as spreading naturally the RF power to be radiated
over the whole aperture, and avoiding cold redundancies
thanks to graceful degradation. DRA are in general designed
following two main constraints :

- Antenna diameter is determined by directivity and
isolation specifications

- Grid lattice is constrained by grating lobe rejection
outside a given domain (typically outside the Earth, for
geostationary satellite antennas considered here)

As high directivity beams are mostly required, adding these
two constraints leads to a prohibitive number of antenna
elements (so of active chains).

In order to reduce the number of active chains without
affecting antenna pattern characteristics, two solutions are
studied here :

- Array thinning, relies on suppressing part of the
radiating elements in the regular grid lattice,

- Non regular aperture sampling consists in dividing
the radiating aperture into non-regular subarrays.
Industrial constraints lead to gather small identical
elements in rectangular groups with various size.
The basic elements are small enough to avoid any
grating lobe on the Earth disk; as the 2™-step
aperture meshing (by non-regular groups) is non-
periodic, no other grating lobes appear on the
Earth.

Various kinds of mathematical algorithms have been
compared for both these arraying methods. They are
classified in 2 main categories:

a) part I presents so-called “global optimisation algorithms
based on random searching”: ‘genetic’ algorithm and
‘simulated annealing’ are assessed to perform array thinning
and subarray division. As a result, such algorithms are well-
suited to array thinning, but not to gathering elements in non-
regular groups, providing good performances for all

numerous beams; so we went to a new category of much
different methods

b) part Il presents a new analytical method, built especially
for this problem by UPS/MIP. It associates:

- an optimised choice of the cost function, able to
warrant convergence of a gradient-type method

- combining solutions found for each beam in a
single power distribution on the aperture is
performed  using the  “Singular  Value
Decomposition” (SVD) method

- then the obtained distribution is sampled into
amplitude values that can be provided by
gathering elements by 1, 2, 3, or 4. And the best
rectangles arrangement is found in an iterative
process using “topologic gradient” method.

A clever association of these various steps leads to a non-
regular subarrays distribution saving nearly 50% of the initial
elements number, while complying for all beams with typical
requirements on gain and isolation, and using equal-power
feeding, so better efficiency and lower cost for a single
amplifiers class.

Introduction: need for reducing the number of
active chains in large multiple beams arrays

2 categories of recent missions geostationary satellite require
a large number of beams with high directivity:

- fast internet access from/to anywhere, especially in
the zones not covered by wired ADSL

- broadcasting high-definition TV programs dedicated
to specific linguistic zones, numerous within Europe

Well suited transmit antennas are Active Arrays (operating in
Ku-band around 12GHz or K-band around 20GHz), thanks to
following advantages:
- the losses of rather complex beam-formers are
“hidden” by high SSPA’s gain in the front-end
- the power to be radiated in the various beams is
spread over numerous SSPA’s, and may be
“exchanged” among the various beams to match
with instantaneous traffic requirements and mitigate
rain attenuation
- “graceful degradation” allows to avoid amplifiers
redundancy, for satellites which should operate in a




harsh environment for 15 to 18 years without
repairing.

As a counterpart:

- high directivity needs a large antenna diameter (1 to
2m for 0.6 to 1° beams; depending on Ku or K band)

- covering a significant Earth zone means a 6° to 8°
angular domain as seen from the satellite;

- the Array grating lobes must be rejected out of all
terrestrial regions, to comply with frequency
spectrum re-use among several systems

The latter conditions require several hundreds of radiating
elements and associated active chains, when using classical
designs with periodic regular array lattice. This number much
exceeds that of phase-control points required to shape and
point the antenna pattern(s). Furthermore, this implies a
complex Beam Forming Network (analogue or digital). The
cost of such an antenna is prohibitive, even if taking
advantage of the low power per element for using SSPAs'
instead of TWTAs?.

Besides, the DC consumption of the transmit section is very
high for active DRAs, as the DC-to-RF efficiency of SSPAs
is lower than that of TWTAs. This drawback is enhanced if
amplitude taper over the array compels to make SSPAs
operate at numerous different points from one to others.

Previous Alcatel Alenia Space (become Thales Alenia Space
in April 2007) has investigated from several years solutions to
mitigate this drawbacks by:

a) drastically reducing the number of parallel RF paths
in such large multibeam Active Arrays

b) providing the low required side-lobe level via
“spatial tapering” while all SSPAs provide the same
RF power.

For comparing various reduction methods and associated
algorithms, we begun by the most demanding mission: the
‘Ka-band multimedia’ with 44 to 64 beams (depending
whether we choose as test-case a “pure-European coverage”,
or one extended to North Africa and Middle East).

Part I: ‘Random searching’ algorithms for
thinned or non-regular arraying

I-1 Specifications & initial regular array

The DRA to be optimised should cover Europe extended to
North-Africa and near Middle-East by 64 beams with 0.8°
diameter, and a 42dBi minimal directivity at 20GHz. This
coverage has been the topic of several studies led for ESA &
CNES, and this part sums-up results from [1].

! SSPA: Solid State Power Amplifier
2 TWTA/ Travelling-Wave Tube Amplifier

1
Beam 38 \Beam 60

T
Beam 32

Fioure 1: 'Extended Europe’ coverag, and 3 chosen beams
for focusing optimisations

The reference antenna used as a starting point for checking
various ways to reduce the number of active chains comprises
511 radiating elements arranged according to a regular lattice
of equilateral trianbles. The antenna diameter is 1.35m, and
the array spacing 3.8\ centre-to-centre. It complies with gain
specification on all beams, and rejects grating lobes outside of
the Earth.

Figure 2: Initial regular array (511 elements)

The cost function to be optimised includes:

- the minimum directivity on all beams (with a strong
weight)

- the side-loges level to be minimised, with computing
it on 2 different zones: the coverage where it may
interfere with other beams using the same sub-band
(the frequency re-use scheme is the same as for
coverage B: see Figure 4 ); and the rest of the Earth
where regulation restricts the level not to disturb
other systems.

I-2 Various tested algorithms for array thinning
& non-regular subarrays optimisation



In the frame of a trainee work within ex-Alcatel Space, we
chose ‘global optimisation methods’ based on ‘pseudo-
random searching’, though they are known as computation
time consuming, for following reasons:

a) both array thinning and subarray division deal with discrete
variables (for example presence or absence of radiating
element in the lattice), thus lead to non continuous nor
derivable cost function, badly suited to most analytical
‘gradient-type’ optimisation tools.

b) due to the very high number of unknowns, the probability
for local optimisers to stay trapped in local minima appears
high.

c) genetic algorithms and simulated annealing seem well
fitted to take into account heterogeneous data in the cost
function. Instead of dealing with a highly constrained
optimisation — minimizing the number of radiating elements
with given sidelobe level for example- it is rather simple to
manage the trade off between the number of phase-control
points and maximum sidelobe level by tuning the weight of
these constraints in the ‘fitness’ (or ‘cost”) function, e.g.:

QOtal: Qn[tial_l_a. C;irect[ylﬁ_ﬂ' C}nterﬁz)m_‘_}/. tholEarth+77. C:ema[niﬂge.

2.1 Genetic algorithms

They are derived from the way that species evaluate: a set of
parameters representing a potential solution is called a
chromosome. Instead of working on a single candidate
solution at each iteration, a set of possible solutions is
considered, called a population.

At each iteration some solutions are randomly selected among
the current population, based on their fitness. Better solutions
are more likely to be selected, but diversity is guaranteed as
all members of a population have some chances to be used to
generate new candidates. A new set of solution is fathered
from the selected ones, by using process such as mutation and
cross-over, generating the population used in next iteration.

The algorithm stops when the solution is sufficiently close to
the optimum, or when a predetermined number of iterations is
reached.

2.2 Simulated annealing

In a metallurgy process,. a material is heated, then slowly
cooled in order that each atom finds its minimal energy,
leading to a stable state.

To simulate that process, at each iteration, the current solution
is replaced by a neighbouring one. The new solution is rated
using the cost function. If it is better than the previous one,
the transition towards this new state is accepted. If the cost
function is degraded, the transition can however be accepted,
with a certain probability that decreases when iterating. First
iterations then allow exploring the space of all possible
solutions, while last iterations will tend to improve a solution
already not far from the optimum.

The stop criterion is as mentioned for genetic algorithms.

2.3 Simulation results for the reference regular array

Optimisation has been focused on 3 beams among the 64, as
shown on the previous Figure 1:

- n°38 near the centre of the coverage
- n°32 & n°60 at edges of the coverage

First have been computed the performances got with the
reference array fed with uniform amplitude, and linear phase-
slope for pointing successively towards the centre of each
beam.

. SLL® over SLL over Earth,
Directivity
Beam (dBi) coverage out of coverage
(dB/Max) (dB/Max)
38 43.7 -17.5 -33.7
32 42.4 -16.3 -25.6
60 43.5 -16.9 -23.9

2.4 Simulation results for thinned arrays

Here are an example of one reached solution (beam 38,
simulated annealing), and a table summing-up all results:

Spot | Directivity | SLLon | SiLon | RF-paths

n° (dBi) coverage | Farth decrease

38 42.68 -22.5 -24.41

32 41.99 -19.3 -23

60 42.42 -21.28 -22.83

38 42.08 -24.21 -22.63 42%
Simulated |7 42.02 2072 | 2417 28%
Annealing

60 42.02 -22.82 -24.79 42%

As a conclusion, saving from 20 to 40% is achieved, larger
with simulated annealing. We also found that the latter is
easoier to tune; so it has been the only one applied to non-
regular subarraying

% SLL: side-lobes level



2.5 Simulation results for non-regular sub-arraying

Using simulated annealing method leads to following results:

Spot | Directivity | SLLon | SLL on | RF-paths
n° (dBi) coverage Earth decrease
38 42.0 =253 -26.4 53%
32 42.0 -19.1 -24.4 41%
60 42.0 -23.8 -27.3 45%
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Figure 3: Example of non-regular subarraying solution,
reached for beam n°38: all adjacent elements marked with the
same symbol can be gathered, that saves half of the active chains

versus the reference array

2.6 Conclusion from results of “random searching”
methods

Both thinning and non-regular sub-arraying allow significant

decrease of the number of active chains, with “space taper” as
extra-advantage (all feeds or subarrays are connected to
amplifiers delivering the same power feeding all sub).
Comparisons are in favour of non-regular sub-arraying,
optimised by simulated annealing.

However, the following restrictions should be pointed out:

- geometries have been optimised separately for each
beam. At least in the limited time of a trainee period,
“how to reach solutions compliant for all beams
(adding only different phase-slopes) ? ” could not be
assessed. Trying a global “all beams optimisation”
appear to involve a much too high number of criteria
to combine (in a single cost function ?).

- No industrial constraint have been taken into account
for the non-regular subarraying option, i.e. some
restriction on the number of different subarray
contours, and if possible simple shapes such as
square, rectangle (possibly ‘L’ or “T” types).

To overcome these 2 categories of restrictions, we decide to
investigate original analytic methods, able to avoid the “local
minima trapping” problem, in collaboration with the ‘Applied
Mathematics lab in Toulouse Academy, led by Pr Masmoudi.

Part I1: Analytic algorithms
for non-regular arraying

I1-1  Generic test- case, requirements and
initial regular array solution

A “generic” multi-beam coverage (called ‘B’) has been
chosen, slightly different from the ‘A’ one in part I:

- same 0.8° spot size, same 4-subband frequency re-
use in the same band.

- Buy some reduced extension (44 spot-beams instead
of 64), and included in a quasi-elliptical contour, to
be more generic:

2.0
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Ficure 4: Europe-only coverage by 44 beams with 0.8°
diameter (called ‘B’)

The main requirements concerning antenna beams are
illustrated (also in a generic way) in the following figure, and
associated figures for the text-case are given in the table:

D, > 42dBi on D, <17dBion
useful spot interfering spots

D, < 22dBi on
Earth /out-of-
coverage

Figure 5: 3 requirements concerning the radiating patterns:
the INT(erfering) zone is restricted to the pink spots, using the same sub-
band, and not to their envelope contour drawn in green




>42 dBi="UTI’
<17 dBi=INT’
<22 dBi=‘ISO’

Direc'™™ over the useful spot “coc*” Dy

Direc™" over the interfering spots D,

Direc™® over Earth, out of the coverage D,

Table A: Quantitative requirements for the chosen
test-case

Notice that to ease the optimisation, we don’t specify the
“C/I”, which is the final requirement in terms of “nominal
signal C to interferers (I=Xi) ratio”.

Indeed, the C/I computation is quite complicate (and different
from one program to another). From our experience,
complying with the i/C<-25dB worst-
case requirement for ‘INT” warrants an overall //C<-15 dB,
whatever is the formula retained to compute the latter, after
adding a +£0.05° antenna pointing error (reached only with a
closed-loop antenna self-pointing system towards beacon(s)
on ground.

Initial regular array antenna

It is composed of square radiating elements (abbreviated
further as “R.E’s”) with (3.2 A)? area in the radiating plane.
Within a 1.3m diameter known from experience as well-fitted
to comply with the requirements, there are 529 R.E.

The array lattice is square to allow easy gathering of R.E’s. in
groups (alias ‘subarrays’), keeping for them a rectangular
shape compliant with industrial constraints for manufacturing:
either it could be short horns, or patch-type subarrays (in the
latter case drawn here-after, the basic element is a (4 x 4.)
subarray with a classical 0.8A spacing between individual
patches.

In a similar way, we deliberately had in mind to keep at most
5 different types of element groups.

] Small horn or 4x4
patch array

Basic R.E.
(Radiating
Element)

'1 1st level (2 RE)
gathering)

Figure 6: Initial array (529 elements in a regular lattice)

The (d=3.2 1)* array lattice allows a generic design in the
following sense:

4 Eoc: edge-of-coverage (more precisely: minimum over the
coverage)

- As sin'(Ad) = 18.2°
wherever is the pointing of the antenna boresight on
the Earth, there will be no “underlaying” grating
lobe falling within the Earth disk (which diameter is
17.4°), even if taking into account a half-width of the
main lobe at its basis:

- “underlaying” grating lobes ? because we start with a
regular lattice; so even if a pseudo-random gathering
may spread any other nearer grating lobe (which
could come from a periodicity with a larger spacing),
the grating lobes coming from the basic periodic
lattice is still present;

- as the concerned multi-beam coverages used in Ka-
systems are of limited extension (mostly a continent,
here Europe), the “beam scan” (if a beam is assumed
to be put successively at the place of each fixed
beam) will be much less than the full Earth. So this
basic 3.2 A spacing lets some margin for further
gathering R.E. in larger groups.

The next § II-2 presents the basics of the analytical
optimisation method; then § II-3 will describe the main
results obtained on the test case.

11-2  Non- regular Array option: basics of the
optimisation method

2.1 Choosing the best parameters and cost-function

The antenna is made of n feeds (each connected to an active
path including a specific phase-control for each beam), and
we denote by g; the complex excitation of feed i. The several
constraints on the array antenna ‘complex excitations’ vector

a=(a)i-.n and the radiated power over the
various zones defined in Figure 5 are
o |af’=1/m for all radiating elements, as all feeds shall

radiate the same power (we normalise the total antenna power
is equal to 1);

«|E(ax)]’>g, for all points x in the covered spot, in order
to comply with the minimal directivity requirement D,>UTI

* |E(a,x)]’ < g, for all points x in the other spots, in order to
minimize interferences in the same sub-band (D;<UTI
requirement)

* |E(a,x)]’ <g, for all points x in the isolation zone, i.e. on the
Earth, outside the UTI & INT zones (D,<ISO requirement).

As the final goal is to reduce the number of antenna feeds by
gathering some radiating elements, the idea is to relax the first
constraint on the excitation power, and to gather feeds with
small excitation modulus. The non-convex first constraint is
then replaced by a convex constraint:

lall” < 1/n for all radiating elements.

The radiated power |E(a,x)|” is a (quadratic) convex function
of the excitation vector a = (@;) , and all the constraints are
now convex, except the second one. So we replace this
inequality by an equality constraint (which is convex);



instead of maximizing the energy inside the spot coverage,
the electrical field should be equal to a given value at the
centre of the spot:

* E(a,x)) = gy + 0y, where x, is the centre of the desired spot,
and & a parameter to be tuned.

This will ensure that the radiated power is greater than g if d,
is large enough. This works because the solid angle of the
spot is small.

Normally the solution a to the original problem is defined up
to a constant phase change. Thanks to the last modification,
the phase is fixed by imposing gyt to be a real number
(i.e. ‘reference phase 0° at the spot centre’). By reducing the
set of possible solutions, we improve the quality of our
optimisation problem.

Notice that we don’t use decibels for aperture field and
radiating one evaluations. It destroys the so important
quadratic property of the power, appearing in most
constraining equations .

All the constraints are convex: we are sure to reach an
optimal solution using a descent method, without being
trapped in a local minimum.

In order to find an excitation vector satisfying all these
constraints, we define a vector function F, in which each
component is related to the compliance with one of these
constraints (the component is null if and only if the constraint
is satisfied). We finally define the following cost function

Ja) =% a)*|. (D) ,
where X" means ‘positive part of a real number X’.

The excitation vector satisfies all constraints if and only if
J(a)=0 . The idea is then to minimize the functional J with
respect to the real and imaginary parts of a, and not to the
modulus and phase for linearity purpose. This unconstrained
minimization is performed with a Levenberg-Marquardt
algorithm [1,3], and provides an optimal excitation vector a
for each spot.

2.2 Data reduction technique:
Decomposition (SVD)

the Singular Value

We have seen in the previous paragraph how to find an
optimal excitation vector a for each spot on the Earth. If we
denote by s the number of spots, we can define a nxs
matrix A, in which the ™ column (7 <k<s) contains the
modulus of the optimal excitation vector a corresponding to
spot k, provided by the previous minimization with the
convex inequality constraint on the modulus of a.

In order to easily extract the maximum of information from
all these excitations, we will apply the Singular Value
Decomposition (SVD) method to this matrix [2,4]. The main
result of this theory states that the matrix A has a factorization
of the form

A=UZV* )

where U is a nxn unitary matrix (i.e. UU* = U*U =1,
identity matrix), ¥ is a sXs unitary matrix, V* is the

conjugate transpose of V, and X' is a nXxs real matrix with
non-negative numbers on the diagonal and zeros off the
diagonal. The 2’ matrix contains the singular values (g;) of 4,
which can be thought of as scalar "gain controls" by which
each corresponding input is multiplied to give a
corresponding output. A common convention is to arrange the
singular values in decreasing order. In this case, the diagonal
matrix X is uniquely determined.

Some practical applications need to solve the problem of
approximating a matrix 4 with another matrix 4 which has a
smaller rank r . In the case where this is based on minimizing
the Frobenius norm of the difference between 4 and A under
the constraint that rank(A)=r , it turns out that the solution
is given by the SVD of A4, namely

A=Ux"V* 3)

where 2 is the same matrix as X except that it contains only
the » largest singular values (the other singular values are
replaced by zero). The Frobenius square norm of the
difference between 4 and A4 is the sum of the square singular
values that have not been kept:

(4)

2 2 2
o4 to.4 + ... tog

and decreases when 7 is increased [2,4].
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Figure 7: Singular values of optimal excitaions matrix
(obtained for our test-case)

Usually, in most applications (as shown on Figure 7, for the
present text-case described in §ll-1), the decrease of the
singular values is such that the greatest one ¢, is much larger
than the others, and they quickly decrease to 0. If one only
keeps the first singular value (i.e. the rank of A is » = 1), the
approximation is still very accurate and becomes

A=O'1ll] V1*

)
where u; is the first column of U and v;* is the first row of
V*. Then, the most part of the information contained in 4 can
be expressed with only u;. In other words, all modulus of the
s excitation vectors are proportional to the vector u;. We
have finally reduced s excitation vectors to only one.



2.3 Topological optimization of the antenna

Some neighbouring feeds will be merged in order to minimize
the number of antenna feeds and hence of phase control
points. In such case, the number n of radiating elements will
decrease, and as the total power does not change, the
constraints on each feed modulus will change. For example, if
we merge 2 feeds, we have the following configuration
change:

« before gathering in n feeds, with |a,|° = 1/.

« after merging: n-1 feeds, with |a,|° = 1/(n-1) for all feeds,
except for the two merged ones: |a;|° =0.5/(n-1).

In case some neighbouring feeds have comparable excitation
modulus, they will be merged according to several predefined
geometries. In the following, we will only consider only
merging of 2, 3 or 4 feeds together, according to a rectangular
contcs)ur (which includes the square cases: 1x1 or 2x2 initial
R.E.).

For a given antenna with » radiating elements, we denote for
each radiating element i by

e r;, 1 <r; <4 : the number of R.E. possibly merged into the
feed to which the concerned R.E. belongs;

¢/ = 1/(rixn)"? the theoretical excitation modulus imposed
by the constraint of fixed total power, equally shared among
all groups;

* m; the /" component of the first vector u; of the singular
value decomposition of the excitation matrix 4 (see previous
subsection).

We can now define a cost function measuring the difference
between the theoretical and computed excitation modulus:

L= alc’ - mz)g-_ (6) >

where k suffix is the concerned iteration number. Be careful
that this ‘cost function’ is different from the initial one J,
which led to optimised excitations separately for each spot.

The geometry of the antenna is optimized by minimising J; at
each k iteration .

- find the radiating element i, maximizing the error
(¢ - my)

- gather all possible feeds involving this element,
according to the predefined geometries, consider
these few new geometries and find the one
minimizing the error between the theoretical and
computed excitation modulus (see equation (6) );

- if this error is smaller than [, then validate the
corresponding gathering, and set k=k+1 ;
otherwise stop (i.e. the algorithm has converged).

As a final validation, we check then that the optimised array
geometry complies with all initial criteria (g, g/, g2)-

° R.E.: Radiating Element, as defined in the initial antenna before
any gathering

2.4 Optimisation summary, applied to the chosen test-case

With a more intuitive wording, we sum-up here-under the
mathematical procedure described in paragraphs 2.1 to 2.3,
and illustrate with intermediate results for the antenna
requirements given in § II-1 as follows:

- in §2.1, the excitation vector a is optimised with
continuous possible amplitudes (alias |a;] modula),
and separately (with a different solution) for each
spot

module optimale n® 1/ 44
T

600 -

200+

-200

-600 -

0.01

Fioure 8: Excitation amplitudes optimised versus (¢0,g1,22)
criteria for spot 1 (at bottom-left of the coverage)

phase (deg) optimale n° 1/ 44
T T T

600

4001

2001

200

400+

600~

Figure 9 Optimised excitation phases for spot 1

- in  §2.2, the best “average” & (for all spots)was
found thanks to the SVD, and keeping only the
highest singular value. It is still a vector with
‘continuous’ excitations modulus
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600

0.09

400+

0.04

-600 -
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Figure 10: Optimum amplitudes for all spots (from ‘SVD’)

- in §2.3, we find the best geometrical gathering to fit
the excitation modula with the “quantified” values [
|lai*=1/(r° x n) ] best-approaching Figure 10.
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Figure 11:Gathered elements, fed with equal power (I to 4
elements + only square/rectangular contour)

3 Non-regular Array option: results obtained
for the European multi-beam coverage

When looking at the antenna geometry issued of the
optimisation procedure, as shown in §2.4, one can see that
there is a significant number of elements not gathered at the
edges. It’s because groups have been created around them,
when gathering elements located a little further, nearer to the
centre of the array

® i is the grouprank, i.e. the number of initial R.E. gathered in it

For antenna people, a so high power density increase at the
edge is not optimal. So a complementary step is added:
reducing the ‘single’ edge elements (‘single’ means ‘not
gathered with others, kept with the minimal R.E. size’):

- starting from the solution found in §2.4, the
algorithm is then compelled to try all possible
gathering including single edge elements.

- this leads to a further decrease of the overall feeds
number (from 295 to 283), and to much fewer
‘single edge elements’.
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133434135436 137 438J4394400141 4420443 444

41141241341

38

200

33

-200

I L I I
-600 -400 -200 0 200 400 600

Figure 12: Final non-regular array: 283 feeds instead of
529 initially, thanks to gathering in groups (I to 4
elements, with square or rectangular contour)

With this solution (array amplitude issued from the optimises
groups topology + phases for each spot included in the
complex found g; ), we compute all the array performances.
They are all compliant with requirements, and even with
some margin on the 3 specifications:

- UTI (minimum directivity on the concerned spot: red
circle in Figure 13 )

- INT (Max directivity on the interfering spots: blue
circles)

- ISO (Max directivity on the Earth, out of the
coverage: green circles):
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Figure 13: Fully compliant performances of the final solution
(upper part); pattern example for spot 1 (lower part)

Conclusion

We assessed 2 basically different methods, and 3 kinds of
optimisation algorithms, for reducing the number of phase-
control points in large arrays with multiple beams. The main
conclusions are:

:- “random searching” type algorithms are well-suited to find
good solutions for array thinning, as it deals simply with “0 or
1” binary parameters (an element is present or not). Among
them, the “simulated annealing” reaches higher active chains
reduction, provided some experience for well tuning has been
got. From 20 to 30% elements may be saved without
significant performance reduction, and keeping the same
overall array diameter; however performances for all beams
with a fixed optimised thinning have not been fully computed.

- algorithms based on_well-chosen analytic optimisation
(“Single Value Decomposition” + “topologic gradient™)
appeared compulsory to reach safely solutions for elements
gathering, with all beams compliant with the chosen typical
requirements: up to 50% number of phase-control have
been saved in a non-regular array comprising only 4 kinds of

rectangular “subarrays”: this induces a low cost increase,
compared to the large one coming from decreasing the
number of active chains

Both methods present another advantage for industrial
implementation: the taper which is compulsory for low side-
lobes is provided by the non-regular density of elements
feeding points. So in a transmit antenna, all amplifiers would
provide the same power, working at the same well-optimised
operating point.
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