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Abstract 
Direct Radiating Arrays (‘DRA’) have been proven to be an 
interesting solution for reconfigurable multibeam transmit 
antennas, as spreading naturally the RF power to be radiated 
over the whole aperture, and avoiding cold redundancies 
thanks to graceful degradation. DRA are in general designed 
following two main constraints : 

- Antenna diameter is determined by directivity and 
isolation specifications 

- Grid lattice is constrained by grating lobe rejection 
outside a given domain (typically outside the Earth, for 
geostationary satellite antennas considered here) 

As high directivity beams are mostly required, adding these 
two constraints leads to a prohibitive number of antenna 
elements (so of active chains). 

In order to reduce the number of active chains without 
affecting antenna pattern characteristics, two solutions are 
studied here : 

- Array thinning, relies on suppressing part of the 
radiating elements in the regular grid lattice, 

- Non regular aperture sampling consists in dividing 
the radiating aperture into non-regular subarrays. 
Industrial constraints lead to gather small identical 
elements in rectangular groups with various size. 
The basic elements are small enough to avoid any 
grating lobe on the Earth disk; as the 2nd-step 
aperture meshing (by non-regular groups) is non-
periodic, no other grating lobes appear on the 
Earth.  

 

Various kinds of mathematical algorithms have been 
compared for both these arraying methods. They are 
classified in 2 main categories: 

a) part I presents so-called “global optimisation algorithms 
based on random searching”: ‘genetic’ algorithm and 
‘simulated annealing’ are assessed to perform array thinning 
and subarray division. As a result, such algorithms are well-
suited to array thinning, but not to gathering elements in non-
regular groups, providing good performances for all 

numerous beams; so we went to a new category of much 
different methods  

 b) part II presents a new analytical method, built especially 
for this problem by UPS/MIP. It associates: 

- an optimised choice of the cost function, able to 
warrant convergence of a gradient-type method 

- combining solutions found for each beam in a 
single power distribution on the aperture is 
performed using the “Singular Value 
Decomposition” (SVD) method 

- then the obtained distribution is sampled into 
amplitude values that can be provided by 
gathering elements by 1, 2, 3, or 4. And the best 
rectangles arrangement is found in an iterative 
process using “topologic gradient” method. 

A clever association of these various steps leads to a non-
regular subarrays distribution saving nearly 50% of the initial 
elements number, while complying for all beams with typical 
requirements on gain and isolation, and using equal-power 
feeding, so better efficiency and lower cost for a single 
amplifiers class. 

Introduction: need for reducing the number of 
active chains in large multiple beams arrays 
2 categories of recent missions geostationary satellite require 
a large number of beams with high directivity: 

- fast internet access from/to anywhere, especially in 
the zones not covered by wired ADSL 

- broadcasting high-definition TV programs dedicated 
to specific linguistic zones, numerous within Europe 

Well suited transmit antennas are Active Arrays (operating in 
Ku-band around 12GHz or K-band around 20GHz), thanks to 
following advantages: 

- the losses of rather complex beam-formers are 
“hidden” by high SSPA’s gain in the front-end 

- the power to be radiated in the various beams is 
spread over numerous SSPA’s, and may be 
“exchanged” among the various beams to match 
with instantaneous traffic requirements and mitigate 
rain attenuation 

- “graceful degradation” allows to avoid amplifiers 
redundancy, for satellites which should operate in a 



harsh environment for 15 to 18 years without 
repairing. 

 

As a counterpart: 
- high directivity needs a large antenna diameter (1 to 

2m for 0.6 to 1° beams; depending on Ku or K band) 
- covering a significant Earth zone means a 6° to 8° 

angular domain as seen from the satellite;  
- the Array grating lobes must be rejected out of all 

terrestrial regions, to comply with frequency 
spectrum re-use among several systems 

 

The latter conditions require several hundreds of radiating 
elements and associated active chains, when using classical 
designs with periodic regular array lattice. This number much 
exceeds that of phase-control points required to shape and 
point the antenna pattern(s). Furthermore, this implies a 
complex Beam Forming Network (analogue or digital). The 
cost of such an antenna is prohibitive, even if taking 
advantage of the low power per element for using SSPAs1 
instead of TWTAs2. 

Besides, the DC consumption of the transmit section is very 
high for active DRAs, as the DC-to-RF efficiency of SSPAs 
is lower than that of TWTAs. This drawback is enhanced if 
amplitude taper over the array compels to make SSPAs 
operate at numerous different points from one to others. 

Previous Alcatel Alenia Space (become Thales Alenia Space 
in April 2007) has investigated from several years solutions to 
mitigate this drawbacks by: 

a) drastically reducing the number of parallel RF paths 
in such large multibeam Active Arrays 

b) providing the low required side-lobe level via 
“spatial tapering” while all SSPAs provide the same 
RF power. 

For comparing various reduction methods and associated 
algorithms, we begun by the most demanding mission: the 
‘Ka-band multimedia’ with 44 to 64 beams (depending 
whether we choose as test-case a “pure-European coverage”, 
or one extended to North Africa and Middle East). 
 

Part I: ‘Random searching’ algorithms for 
thinned or non-regular arraying 

I-1 Specifications & initial regular array 
The DRA to be optimised should cover Europe extended to 
North-Africa and near Middle-East by 64 beams with 0.8° 
diameter, and a 42dBi minimal directivity at 20GHz. This 
coverage has been the topic of several studies led for ESA & 
CNES, and this part sums-up results from [1]. 

                                                           
1  SSPA: Solid State Power Amplifier 
2  TWTA/ Travelling-Wave Tube Amplifier 

 

 

Figure 1: ’Extended Europe’ coverag, and 3 chosen beams 
for focusing optimisations  

 

The reference antenna used as a starting point for checking 
various ways to reduce the number of active chains comprises 
511 radiating elements arranged according to a regular lattice 
of equilateral trianbles. The antenna diameter is 1.35m, and 
the array spacing 3.8λ centre-to-centre. It complies with gain 
specification on all beams, and rejects grating lobes outside of 
the Earth. 

 

Figure 2: Initial regular array (511 elements) 
 

The cost function to be optimised includes: 

- the minimum directivity on all beams (with a strong 
weight) 

- the side-loges level to be minimised, with computing 
it on 2 different zones: the coverage where it may 
interfere with other beams using the same sub-band 
(the frequency re-use scheme is the same as for 
coverage B: see Figure 4 ); and the rest of the Earth 
where regulation restricts the level not to disturb 
other systems. 

I-2 Various tested algorithms for array thinning 
& non-regular subarrays optimisation 

1 32 4 5 6

7 98 10 11 12 13

14 1615 17 18 19 20 21

30 3122 2423 25 26 27 28 29

32 3433 35 36 37 38 39

44 45 4643 47 48 49

40 4241

50 51 52 53 54

55 5756 58 59

63 6460 61 62

Beam 38 Beam 32 Beam 60 



In the frame of a trainee work within ex-Alcatel Space, we 
chose ‘global optimisation methods’ based on ‘pseudo-
random searching’, though they are known as computation 
time consuming, for following reasons: 

a) both array thinning and subarray division deal with discrete 
variables (for example presence or absence of radiating 
element in the lattice), thus lead to non continuous nor 
derivable cost function, badly suited to most analytical 
‘gradient-type’ optimisation tools. 

b) due to the very high number of unknowns, the probability 
for local optimisers to stay trapped in local minima appears 
high. 

c) genetic algorithms and simulated annealing seem well 
fitted to take into account heterogeneous data in the cost 
function. Instead of dealing with a highly constrained 
optimisation – minimizing the number of radiating elements 
with given sidelobe level for example- it is rather simple to 
manage the trade off between the number of phase-control 
points and maximum sidelobe level by tuning the weight of 
these constraints in the ‘fitness’ (or ‘cost’) function, e.g.: 

2.1  Genetic algorithms 
They are derived from the way that species evaluate: a set of 
parameters representing a potential solution is called a 
chromosome. Instead of working on a single candidate 
solution at each iteration, a set of possible solutions is 
considered, called a population. 

At each iteration some solutions are randomly selected among 
the current population, based on their fitness. Better solutions 
are more likely to be selected, but diversity is guaranteed as 
all members of a population have some chances to be used to 
generate new candidates. A new set of solution is fathered 
from the selected ones, by using process such as mutation and 
cross-over, generating the population used in next iteration. 

The algorithm stops when the solution is sufficiently close to 
the optimum, or when a predetermined number of iterations is 
reached. 

2.2  Simulated annealing 
In a metallurgy process,. a material is heated, then slowly 
cooled in order that each atom finds its minimal energy, 
leading to a stable state. 

To simulate that process, at each iteration, the current solution 
is replaced by a neighbouring one. The new solution is rated 
using the cost function. If it is better than the previous one, 
the transition towards this new state is accepted. If the cost 
function is degraded, the transition can however be accepted, 
with a certain probability that decreases when iterating. First 
iterations then allow exploring the space of all possible 
solutions, while last iterations will tend to improve a solution 
already not far from the optimum. 

The stop criterion is as mentioned for genetic algorithms. 

2.3  Simulation results for the reference regular array 
Optimisation has been focused on 3 beams among the 64, as 
shown on the previous Figure 1: 

- n°38 near the centre of the coverage 

- n°32 & n°60 at edges of the coverage  

First have been computed the performances got with the 
reference array fed with uniform amplitude, and linear phase-
slope for pointing successively towards the centre of each 
beam. 

Beam Directivity 
(dBi) 

SLL3 over 
coverage 

 (dB/Max) 

SLL over Earth, 
 out of coverage 

 (dB/Max) 

38 43.7 -17.5 -33.7 

32 42.4 -16.3 -25.6 

60 43.5 -16.9 -23.9 
 

2.4  Simulation results for thinned arrays 

.. erremainingEarthWholeceInterferenyDirectivitInitialtotal CCCCCC ⋅+⋅+⋅+⋅+= ηγβα Here are an example of one reached solution (beam 38, 
simulated annealing), and a table summing-up all results: 

 

 Spot
 n° 

Directivity 
(dBi) 

SLL on 
 coverage 

SLL on 
Earth 

RF-paths
decrease 

38 42.68 -22.5 -24.41 26% 

32 41.99 -19.3 -23 19% Genetic 
Algorithm

60 42.42 -21.28 -22.83 25% 
38 42.08 -24.21 -22.63 42% 

32 42.02 -20.72 -24.17 28% Simulated 
Annealing

60 42.02 -22.82 -24.79 42% 
 

As a conclusion, saving from 20 to 40% is achieved, larger 
with simulated annealing. We also found that the latter is 
easoier to tune; so it has been the only one applied to non-
regular subarraying 

                                                           
3  SLL: side-lobes level 



2.5  Simulation results for non-regular sub-arraying 
Using simulated annealing method leads to following results: 
 

Spot 
 n° 

Directivity 
(dBi) 

SLL on 
 coverage 

SLL on  
Earth 

RF-paths
decrease 

38 42.0 -25.3 -26.4 53% 
32 42.0 -19.1 -24.4 41% 
60 42.0 -23.8 -27.3 45% 

 

 
Figure 3: Example of non-regular subarraying solution, 
reached for beam n°38: all adjacent elements marked with the 
same symbol can be gathered, that saves half of the active chains 

versus the reference array 

2.6  Conclusion from results of “random searching” 
methods 
Both thinning and non-regular sub-arraying allow significant 
decrease of the number of active chains, with “space taper” as 
extra-advantage (all feeds or subarrays are connected to 
amplifiers delivering  the same power feeding all sub). 
Comparisons are in favour of non-regular sub-arraying, 
optimised by simulated annealing. 

However, the following restrictions should be pointed out: 

- geometries have been optimised separately for each 
beam. At least in the limited time of a trainee period, 
“how to reach solutions compliant for all beams 
(adding only different phase-slopes) ? ” could not be 
assessed. Trying a global “all beams optimisation” 
appear to involve a much too high number of criteria 
to combine (in a single cost function ?). 

- No industrial constraint have been taken into account 
for the non-regular subarraying option, i.e. some 
restriction on the number of different subarray 
contours, and if possible simple shapes such as 
square, rectangle (possibly ‘L’ or ‘T’ types). 

To overcome these 2 categories of restrictions, we decide to 
investigate original analytic methods, able to avoid the “local 
minima trapping” problem, in collaboration with the ‘Applied 
Mathematics lab in Toulouse Academy, led by Pr Masmoudi. 
 

Part II: Analytic algorithms 
for non-regular arraying 

II-1 Generic test- case, requirements and 
initial regular array solution 
A “generic” multi-beam coverage (called ‘B’) has been 
chosen, slightly different from the ‘A’ one in part I: 

- same 0.8° spot size, same 4-subband frequency re-
use in the same band. 

- Buy some reduced extension (44 spot-beams instead 
of 64), and included in a quasi-elliptical contour, to 
be more generic: 
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Figure 4: Europe-only coverage by 44 beams with 0.8° 

diameter (called ‘B’) 
 

The main requirements concerning antenna beams are 
illustrated (also in a generic way) in the following figure, and 
associated figures for the text-case are given in the table: 

D0 > 42dBi on 
useful spot

D1 < 17dBi on 
interfering spots

D2 < 22dBi on 
Earth /out-of-

coverage

- 8.7°

+ 8.7°

0°

D0 > 42dBi on 
useful spot

D1 < 17dBi on 
interfering spots

D2 < 22dBi on 
Earth /out-of-

coverage

- 8.7°

+ 8.7°

0°

D0 > 42dBi on 
useful spot

D1 < 17dBi on 
interfering spots

D2 < 22dBi on 
Earth /out-of-

coverage

- 8.7°

+ 8.7°

0°
 

Figure 5: 3 requirements concerning the radiating patterns: 
the INT(erfering) zone is restricted to the pink spots, using the same sub-

band, and not to their envelope contour drawn in green 



 

Directivity over the useful spot “eoc4” D0 >42 dBi=’UTI’

Directivity over the interfering spots D1 <17 dBi=‘INT’

Directivity over Earth, out of the coverage D2 <22 dBi=‘ISO’
 

Table A: Quantitative requirements for the chosen 
 test-case 

Notice that to ease the optimisation, we don’t specify the 
“C/I”, which is the final requirement in terms of “nominal 
signal C to interferers (I=Σi) ratio”.  

Indeed, the C/I computation is quite complicate (and different 
from one program to another). From our experience, 
complying with the     i/C<-25dB   worst-
case requirement for ‘INT’ warrants an overall I/C<-15 dB, 
whatever is the formula retained to compute the latter, after 
adding a ±0.05° antenna pointing error (reached only with a 
closed-loop antenna self-pointing system towards beacon(s) 
on ground. 

Initial regular array antenna 
It is composed of square radiating elements (abbreviated 
further as “R.E’s”) with (3.2 λ)² area in the radiating plane. 
Within a 1.3m diameter known from experience as well-fitted 
to comply with the requirements, there are 529 R.E. 

The array lattice is square to allow easy gathering of R.E’s. in 
groups (alias ‘subarrays’), keeping for them a rectangular 
shape compliant with industrial constraints for manufacturing: 
either it could be short horns, or patch-type subarrays (in the 
latter case drawn here-after, the basic element is a (4 x 4.) 
subarray with a classical 0.8λ spacing between individual 
patches.  

In a similar way, we deliberately had in mind to keep at most 
5 different types of element groups. 

1st level (2 RE) 
gathering)

Basic R.E. 
(Radiating 
Element)

Small horn or 4x4 
patch array

1st level (2 RE) 
gathering)

Basic R.E. 
(Radiating 
Element)

Small horn or 4x4 
patch array

 
Figure 6: Initial array (529 elements in a regular lattice) 

 

The (d=3.2 λ)² array lattice allows a generic design in the 
following sense: 

                                                           
4 Eoc: edge-of-coverage (more precisely: minimum over the 
coverage) 

- As  sin-1(λ/d) = 18.2°  
wherever is the pointing of the antenna boresight on 
the Earth, there will be no “underlaying” grating 
lobe falling within the Earth disk (which diameter is 
17.4°), even if taking into account a half-width of the 
main lobe at its basis: 

- “underlaying” grating lobes ? because we start with a 
regular lattice; so even if a pseudo-random gathering 
may spread any other nearer grating lobe (which 
could come from a periodicity with a larger spacing), 
the grating lobes coming from the basic periodic 
lattice is still present; 

- as the concerned multi-beam coverages used in Ka-
systems are of limited extension (mostly a continent, 
here Europe), the “beam scan” (if a beam is assumed 
to be put successively at the place of each fixed 
beam) will be much less than the full Earth. So this 
basic 3.2 λ spacing lets some margin for further 
gathering R.E. in larger groups. 

The next § II-2 presents the basics of the analytical 
optimisation method; then § II-3 will describe the main 
results obtained on the test case. 

II-2 Non- regular Array option: basics of the 
optimisation method 

2.1  Choosing the best parameters and cost-function 
The antenna is made of n feeds (each connected to an active 
path including a specific phase-control for each beam), and 
we denote by ai the complex excitation of feed i. The several 
constraints on the array antenna ‘complex excitations’ vector
  a = (aj)i=1..n  and the radiated power over the 
various zones defined in Figure 5 are 

• |ai|2=1/n  for all radiating elements, as all feeds shall 
radiate the same power (we normalise the total antenna power 
is equal to 1); 

• |E(a,x)|2 ≥ g0  for all points x in the covered spot, in order 
to comply with the minimal directivity requirement D0>UTI 

• |E(a,x)|2 ≤ g1  for all points x in the other spots, in order to 
minimize interferences in the same sub-band (D1<UTI 
requirement) 

• |E(a,x)|2 ≤ g2  for all points x in the isolation zone, i.e. on the 
Earth, outside the UTI & INT zones (D2<ISO requirement). 

As the final goal is to reduce the number of antenna feeds by 
gathering some radiating elements, the idea is to relax the first 
constraint on the excitation power, and to gather feeds with 
small excitation modulus. The non-convex first constraint is 
then replaced by a convex constraint:  
 |ai|2 ≤ 1/n  for all radiating elements. 
 

The radiated power  |E(a,x)|2  is a (quadratic) convex function 
of the excitation vector  a = (ai) , and all the constraints are 
now convex, except the second one. So we replace this 
inequality by an equality constraint (which is convex);  



instead of maximizing the energy inside the spot coverage, 
the electrical field should be equal to a given value at the 
centre of the spot: 

• E(a,x0) = g0 + δ0,  where x0 is the centre of the desired spot, 
and δ0  a parameter to be tuned. 

This will ensure that the radiated power is greater than g0 if δ0 
is large enough. This works because the solid angle of the 
spot is small.  

Normally the solution a to the original problem is defined up 
to a constant phase change. Thanks to the last modification, 
the phase is fixed by imposing  g0+δ0   to be a real number 
(i.e. ‘reference phase 0° at the spot centre’). By reducing the 
set of possible solutions, we improve the quality of our 
optimisation problem.  

Notice that we don’t use decibels for aperture field and 
radiating one evaluations. It destroys the so important 
quadratic property of the power, appearing in most 
constraining equations .  

All the constraints are convex: we are sure to reach an 
optimal solution using a descent method, without being 
trapped in a local minimum. 
 

In order to find an excitation vector satisfying all these 
constraints, we define a vector function F, in which each 
component is related to the compliance with one of these 
constraints (the component is null if and only if the constraint 
is satisfied). We finally define the following cost function 

  J(a) = ½ ||(F(a))+||2. (1) , 

where X+ means ‘positive part of a real number X’. 

The excitation vector satisfies all constraints if and only if 
J(a)=0 . The idea is then to minimize the functional J with 
respect to the real and imaginary parts of a, and not to the 
modulus and phase for linearity purpose. This unconstrained 
minimization is performed with a Levenberg-Marquardt 
algorithm [1,3], and provides an optimal excitation vector a 
for each spot. 

2.2 Data reduction technique: the Singular Value 
Decomposition (SVD) 
We have seen in the previous paragraph how to find an 
optimal excitation vector a for each spot on the Earth. If we 
denote by  s  the number of spots, we can define a  n×s  
matrix A, in which the kth column (1 ≤ k ≤ s) contains the 
modulus of the optimal excitation vector a corresponding to 
spot k, provided by the previous minimization with the 
convex inequality constraint on the modulus of a. 

In order to easily extract the maximum of information from 
all these excitations, we will apply the Singular Value 
Decomposition (SVD) method to this matrix [2,4]. The main 
result of this theory states that the matrix A has a factorization 
of the form 

       A = U Σ V*    (2) 

where U is a  n×n  unitary matrix (i.e. UU* = U*U = I, 
identity matrix), V is a  s×s  unitary matrix, V* is the 

conjugate transpose of V, and Σ is a  n×s  real matrix with 
non-negative numbers on the diagonal and zeros off the 
diagonal. The Σ matrix contains the singular values (σi) of A, 
which can be thought of as scalar "gain controls" by which 
each corresponding input is multiplied to give a 
corresponding output. A common convention is to arrange the 
singular values in decreasing order. In this case, the diagonal 
matrix Σ is uniquely determined. 

Some practical applications need to solve the problem of 
approximating a matrix A with another matrix Ã which has a 
smaller rank  r . In the case where this is based on minimizing 
the Frobenius norm of the difference between A and Ã under 
the constraint that  rank(Ã) = r , it turns out that the solution 
is given by the SVD of A, namely 

       Ã = U Σ’ V*    (3) 

where Σ’ is the same matrix as Σ except that it contains only 
the r largest singular values (the other singular values are 
replaced by zero). The Frobenius square norm of the 
difference between A and Ã is the sum of the square singular 
values that have not been kept: 

  σr+1
2 + σr+2

2 + … + σs
2  (4) 

and decreases when r is increased [2,4]. 
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Figure 7: Singular values of optimal excitaions matrix 

(obtained for our test-case)  

Usually, in most applications (as shown on Figure 7, for the 
present text-case described in §II-1), the decrease of the 
singular values is such that the greatest one σ1 is much larger 
than the others, and they quickly decrease to 0. If one only 
keeps the first singular value (i.e. the rank of Ã is r = 1), the 
approximation is still very accurate and becomes 

       Ã = σ1 u1 v1*    (5) 

where u1 is the first column of U and v1* is the first row of 
V*. Then, the most part of the information contained in A can 
be expressed with only u1. In other words, all modulus of the 
s  excitation vectors are proportional to the vector u1. We 
have finally reduced s excitation vectors to only one. 



2.3  Topological optimization of the antenna 
Some neighbouring feeds will be merged in order to minimize 
the number of antenna feeds and hence of phase control 
points. In such case, the number n of radiating elements will 
decrease, and as the total power does not change, the 
constraints on each feed modulus will change. For example, if 
we merge 2 feeds, we have the following configuration 
change: 

• before gathering in n feeds, with  |ai|2 = 1/n. 

• after merging: n-1 feeds, with  |ai|2 = 1/(n-1)  for all feeds, 
except for the two merged ones:  |ai|2 =0.5/(n-1). 

In case some neighbouring feeds have comparable excitation 
modulus, they will be merged according to several predefined 
geometries. In the following, we will only consider only 
merging of 2, 3 or 4 feeds together, according to a rectangular 
contour (which includes the square cases: 1x1 or 2x2 initial 
R.E.5).  

For a given antenna with n radiating elements, we denote for 
each radiating element i by 

• ri , 1 ≤ ri ≤ 4 : the number of R.E. possibly merged into the 
feed to which the concerned R.E. belongs; 

• ci
n = 1/(ri×n)1/2  the theoretical excitation modulus imposed 

by the constraint of fixed total power, equally shared among 
all groups; 

• mi the ith component of the first vector u1 of the singular 
value decomposition of the excitation matrix A (see previous 
subsection). 

We can now define a cost function measuring the difference 
between the theoretical and computed excitation modulus: 

  Ik = ∑i=1..n (ci
n - mi)2. (6) , 

where  k  suffix is the concerned iteration number. Be careful 
that this ‘cost function’ is different from the initial one J, 
which led to optimised excitations separately for each spot. 

The geometry of the antenna is optimized by minimising Ik at 
each  k  iteration . 

- find the radiating element i0 maximizing the error 
(ci

n - mi) 

- gather all possible feeds involving this element, 
according to the predefined geometries, consider 
these few new geometries and find the one 
minimizing the error between the theoretical and 
computed excitation modulus (see equation (6) ); 

- if this error is smaller than Ik, then validate the 
corresponding gathering, and set  k = k+1 ; 
otherwise stop (i.e. the algorithm has converged). 

As a final validation, we check then that the optimised array 
geometry complies with all initial criteria (g0,, g1 , g2 ). 

                                                           
5  R.E.: Radiating Element, as defined in the initial antenna before 
any gathering 

2.4  Optimisation summary, applied to the chosen test-case 
With a more intuitive wording, we sum-up here-under the 
mathematical procedure described in paragraphs 2.1 to 2.3, 
and illustrate with intermediate results for the antenna 
requirements given in § II-1 as follows: 

- in §2.1, the excitation vector a is optimised with 
continuous possible amplitudes (alias |ai| modula), 
and separately (with a different solution) for each 
spot  
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Figure 8: Excitation amplitudes optimised versus (g0,g1,g2) 
criteria for spot 1 (at bottom-left of the coverage) 
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Figure 9 Optimised excitation phases for spot 1 
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- in  §2.2, the best “average” â (for all spots)was 
found thanks to the SVD, and keeping only the 
highest singular value. It is still a vector with 
‘continuous’ excitations modulus 
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Figure 10: Optimum amplitudes for all spots (from ‘SVD’) 

 
 

- in §2.3, we find the best geometrical gathering to fit 
the excitation modula with the “quantified” values [ 
|ai|2=1/(ri

6
 x n) ] best-approaching . Figure 10
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Figure 11:Gathered elements, fed with equal power (1 to 4 

elements + only square/rectangular contour) 
 

3 Non-regular Array option: results obtained 
for the European multi-beam coverage 
When looking at the antenna geometry issued of the 
optimisation procedure, as shown in §2.4, one can see that 
there is a significant number of elements not gathered at the 
edges. It’s because groups have been created around them, 
when gathering elements located a little further, nearer to the 
centre of the array 

                                                           
6  ri  is the group rank, i.e. the number of initial R.E. gathered in it 

For antenna people, a so high power density increase at the 
edge is not optimal. So a complementary step is added: 
reducing the ‘single’ edge elements (‘single’ means ‘not 
gathered with others, kept with the minimal R.E. size’): 

- starting from the solution found in §2.4, the 
algorithm is then compelled to try all possible 
gathering including single edge elements. 

- this leads to a further decrease of the overall feeds 
number (from 295 to 283), and to much fewer 
‘single edge elements’.  
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Figure 12: Final non-regular array: 283 feeds instead of 

529 initially, thanks to gathering  in groups (1 to 4 
elements, with square or rectangular contour) 

 

With this solution (array amplitude issued from the optimises 
groups topology + phases for each spot included in the 
complex found ai ), we compute all the array performances. 
They are all compliant with requirements, and even with 
some margin on the 3 specifications: 

- UTI (minimum directivity on the concerned spot: red 
circle in Figure 13 ) 

- INT (Max directivity on the interfering spots: blue 
circles) 

- ISO (Max directivity on the Earth, out of the 
coverage: green circles): 

 



 

1 2 3 4 5 6 7 8 9 1011121314151617181920212223242526272829303132333435363738394041424344
15

17

20

22

25

30

35

40

42

45

UTI

INT

ISO

ou minimum (si zone de minimisation) sur chaque spot

spots uti
spots int
spots iso

 
 

 

 
Figure 13: Fully compliant performances of the final solution 

(upper part); pattern example for spot 1 (lower part) 
 

Conclusion 
We assessed 2 basically different methods, and 3 kinds of 
optimisation algorithms, for reducing the number of phase-
control points in large arrays with multiple beams. The main 
conclusions are: 

:- “random searching” type algorithms are well-suited to find 
good solutions for array thinning, as it deals simply with “0 or 
1” binary parameters (an element is present or not). Among 
them, the “simulated annealing” reaches higher active chains 
reduction, provided some experience for well tuning has been 
got. From 20 to 30% elements may be saved without 
significant performance reduction, and keeping the same 
overall array diameter; however performances for all beams 
with a fixed optimised thinning have not been fully computed. 

 - algorithms based on well-chosen analytic optimisation 
(“Single Value Decomposition” + “topologic gradient”) 
appeared compulsory to reach safely solutions for elements 
gathering, with all beams compliant with the chosen typical 
requirements: up to 50% number of phase-control have 
been saved in a non-regular array comprising only 4 kinds of 

rectangular “subarrays”: this induces a low cost increase, 
compared to the large one coming from decreasing the 
number of active chains 

Both methods present another advantage for industrial 
implementation: the taper which is compulsory for low side-
lobes is provided by the non-regular density of elements 
feeding points. So in a transmit antenna, all amplifiers would 
provide the same power, working at the same well-optimised 
operating point.
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