An ampleness criterion for rank 2 vector bundles on surfaces

Arnaud Beauville

Université Côte d'Azur

Cetraro, September 2018

Arnaud Beauville An ampleness criterion for rank 2 vector bundles on surfaces

Main result

S smooth projective complex surface. $N^1(S) = \text{Div}(S) / \sim_{num} = \text{NS}(S) / \text{torsion} = \mathbb{Z}^{\rho}.$

Proposition

E globally generated rank 2 vector bundle on S.

Assume
$$h^0(E) \ge 4$$
, and $N^1(S) = \mathbb{Z} \cdot c_1(E)$. Then :

E is ample or $E = \mathcal{O}_S \oplus L$.

- The two cases are distinguished by $c_2(E) > 0$ or = 0.
- Recall: E is ample iff O_{P(E)}(1) is ample.
 For E globally generated, φ_E : P(E) → P(H⁰(E)) is a morphism (induced by H⁰(E) ⊗ O_S → E); then : E ample ⇔ φ_E finite.
- In particular, $h^0(E) \ge 4$ necessary. But $N^1(S) = \mathbb{Z} c_1(E)$ strong. $\exists E \text{ on } \mathbb{P}^2$ globally generated not ample, $\det(E) = \mathcal{O}_{\mathbb{P}^2}(2)$.

Recall: $C \subset S$, $L \in Pic(C)$ globally generated by $V \subset H^0(C, L)$. The Lazarsfeld-Mukai bundle $E_{C,V}$ is defined by the exact sequence

$$0 \to E_{C,V}^* \longrightarrow V \otimes_{\mathbb{C}} \mathcal{O}_S \xrightarrow{e_V} L \to 0, \quad \text{or dually:}$$
$$0 \to V^* \otimes_{\mathbb{C}} \mathcal{O}_S \longrightarrow E_{C,V} \longrightarrow N_C \otimes L^{-1} \to 0, \text{ with } N_C := \mathcal{O}_S(C)_{|C} \cdot E_{C,V} \text{ has rank dim } V, c_1 = [C], c_2 = \deg(L).$$

Proposition

Assume: dim V = 2, $H^1(S, \mathcal{O}_S) = 0$, $N^1(S) = \mathbb{Z} \cdot [C]$, *L* and $N_C \otimes L^{-1}$ globally generated and $\ncong \mathcal{O}_C$. Then:

 $E_{C,V}$ is globally generated and ample.

Proof :

 $0 \to V^* \otimes_{\mathbb{C}} \mathcal{O}_S \to E_{C,V} \to N_C \otimes L^{-1} \to 0$ gives an exact sequence on H^0 , hence a commutative diagram:

 $\implies E \text{ globally generated.}$ $c_1(E_{C,V}) = [C], c_2 = \deg(L) > 0, h^0(E) \ge 4 \implies E \text{ ample.}$

Example : *S* K3 with $Pic(S) = \mathbb{Z} \cdot [C]$, |L| "primitive" linear series – i.e. |L| and $|K_C \otimes L^{-1}|$ base point free.

Question : Does the result extend (say, for K3) for dim $(V) \ge 3$?

Application II: congruences of lines

Let $\mathbb{G} := \mathbb{G}(2,4) \subset \mathbb{P}^5$. A surface $S \subset \mathbb{G}$ gives rise to a 2-dimensional family of lines in \mathbb{P}^3 , called a congruence.

The **fundamental locus** \mathcal{F}_S of the congruence is the set of points in \mathbb{P}^3 through which pass ∞ lines of the congruence.

Proposition

If
$$N^1(S) = \mathbb{Z} \cdot [\mathcal{O}_S(1)]$$
 and deg $(S) \ge 2$, $\mathcal{F}_S = \emptyset$.

Proof: E := restriction to S of the universal quotient bundle on \mathbb{G} .

E globally generated, $h^0(E) \ge 4$ (otherwise *S* is a plane),

 $\det(E) = \mathcal{O}_{\mathcal{S}}(1), \ c_2(E) > 0 \implies E \text{ ample.}$

But $\mathbb{P}(E) = \{(x, \ell) \in \mathbb{P}^3 \times S \mid x \in \ell\}$. The projection $p : \mathbb{P}(E) \to \mathbb{P}^3$ satisfies $p^* \mathcal{O}_{\mathbb{P}^3}(1) = \mathcal{O}_{\mathbb{P}(E)}(1)$, hence p finite $\iff \mathcal{F}_S = \emptyset$.

Corollary

$$\begin{split} S &= \mathbb{G} \cap H_{d_1} \cap H_{d_2}, \ H_{d_i} \ \text{very general hypersurface of degree} \ d_i, \\ \text{with} \ (d_1, d_2) \neq (1, 1) \ \text{or} \ (1, 2) \implies \mathcal{F}_{\mathcal{S}} = \varnothing. \end{split}$$

Proof : $Pic(S) = \mathbb{Z} \cdot [\mathcal{O}_S(1)]$ by Noether-Lefschetz.

Example. – Perhaps the simplest nontrivial example of congruence is the family of bisecants to a twisted cubic $T \subset \mathbb{P}^3$. Then $S = \text{Sym}^2 T = \mathbb{P}^2$ embedded in \mathbb{P}^5 as a Veronese surface. The vector bundle E on \mathbb{P}^2 is globally generated but not ample since $\mathcal{F}_S = T$. It has $h^0(E) = 4$, det $(E) = \mathcal{O}_{\mathbb{P}^2}(2)$, $c_2 = 3$. My original motivation was to find new examples of surfaces with ample cotangent bundle. These surfaces have very interesting properties, but few concrete examples are known.

Applying the Proposition to Ω^1_S gives:

Corollary

Assume that Ω_{S}^{1} is globally generated, $q(S) \ge 4$ and $N^{1}(S) = \mathbb{Z} \cdot [K_{S}]$. Then Ω_{S}^{1} is ample.

Unfortunately I do not know any example of such a surface. The problem is that the condition $N^1(S) = \mathbb{Z} \cdot [K_S]$ is very difficult to check. Help appreciated!

The proof uses the method of Bogomolov to prove that the restriction of a stable bundle to a sufficiently ample curve is stable.

The starting point is the following easy observation:

Gieseker's lemma

E globally generated vector bundle on X projective irreducible.

E not ample $\iff \exists C \subset X$ irreducible and $u : E \twoheadrightarrow \mathcal{O}_C \cdot$

 $\begin{array}{l} \longleftarrow: \ E \ \text{ample} \Rightarrow \ E_{|C} \ \text{is ample} \Rightarrow \text{any quotient of } E_{|C} \ \text{ample.} \\ \implies: \ \exists \ C' \subset \mathbb{P}(E) \ \text{with} \ \varphi_E(C') = \{ \text{pt} \}, \ \text{i.e.} \ \ \mathcal{O}_{\mathbb{P}(E)}(1)_{|C'} = \mathcal{O}_{C'}. \\ \text{Let} \ p : \mathbb{P}(E) \rightarrow S. \ \varphi_E : \mathbb{P}(E_s) \hookrightarrow \mathbb{P}(H^0(E)) \Rightarrow \ p : C' \xrightarrow{\sim} C. \\ \rightsquigarrow \text{section} \ s : \ C \xrightarrow{\sim} C' \subset \mathbb{P}(E); \ \text{under} \ s, \ p^*E \twoheadrightarrow \mathcal{O}_{\mathbb{P}(E)}(1) \ \text{pulls} \\ \text{back to } E_{|C} \twoheadrightarrow \mathcal{O}_C. \end{array}$

Proof of the Proposition :

E globally generated rank 2 vector bundle on *S*, $h^0(E) \ge 4$, $N^1(S) = \mathbb{Z} \cdot [c_1(E)]$. We assume that *E* is **not** ample. Gieseker's lemma: $\exists C \subset S$ and $u : E \twoheadrightarrow \mathcal{O}_C \cdot$ Define:

 $0 \to F \longrightarrow E \xrightarrow{u} \mathcal{O}_C \to 0 \quad (\star) \quad F \text{ rank 2 bundle on } S \, .$

Strategy: We want to show that the **discriminant** $\Delta_F := 4c_2(F) - c_1^2(F)$ is < 0, so that *F* is **unstable** (Bogomolov); more precisely, *F*, hence also *E*, contains a positive line bundle. This will imply that *E*^{*} has a nonzero section, which splits a trivial factor out of *E*.

From (*) we get $c(F) = c(E) \cdot c(\mathcal{O}_C)^{-1} = c(E) \cdot (1 - [C]).$ Put $c_i := c_i(E): c_1(F) = c_1 - [C], c_2(F) = c_2 - c_1 \cdot [C] - [C]^2$ hence $\Delta_F = \Delta_E - 2c_1 \cdot [C] - [C]^2.$

Proof (continued)

$$0 \to F \longrightarrow E \xrightarrow{u} \mathcal{O}_C \to 0. \quad (\star)$$

We have found: $c_1(F) = c_1 - [C]$, $\Delta_F = \Delta_E - 2c_1 \cdot [C] - [C]^2$.
Now $N^1(S) = \mathbb{Z} \cdot c_1 \implies C \sim_{num} rc_1$ for some $r \ge 1$. Then
 $c_1(F) = (1-r)c_1$, $\Delta_F = \Delta_E - (r^2+2r)c_1^2 = 4(c_2-c_1^2) - (r^2+2r-3)c_1^2$,
therefore $\Delta_F \le 4(c_2 - c_1^2) - (r^2 - 1)c_1^2 < -(r^2 - 1)c_1^2$ by

..

Lemma

G globally generated rank 2 on a surface, $h^0(G) \ge 4$ and $H^1(\det(G)^{-1}) = 0 \implies c_1^2(G) > c_2(G).$

End of the proof

 $\begin{array}{l} \Delta_F < 0 & \stackrel{(\text{Bogomolov})}{\longrightarrow} \quad \exists \quad 0 \to L \to F \to \mathcal{I}_Z M \to 0 \quad (\star\star), \\ Z \subset S \text{ finite, } c_1(L) = ac_1, \ c_1(M) = bc_1 \text{ in } N^1(S), \text{ with } a > b. \\ (\star\star) \text{ gives } c_1(F) = (a+b)c_1, \ c_2(F) = ab \ c_1^2 + \deg(Z), \text{ hence} \\ \Delta_F = -(a-b)^2 c_1^2 + \deg(Z). \quad \text{Recall } \Delta_F < -(r^2-1)c_1^2. \\ \text{Therefore } (a-b)^2 c_1^2 \ge -\Delta_F > (r^2-1)c_1^2 \Rightarrow a-b \ge r. \\ \text{Comparing } c_1(F) \text{ gives } a+b=1-r, \text{ hence } a \ge 1. \end{array}$

Thus:
$$E \supset L$$
 with $c_1(L) = ac_1$, $a \ge 1$.
 $0 \ne H^0(E \otimes L^{-1}) = H^0(E^* \otimes \det(E) \otimes L^{-1})$ and $E^* \hookrightarrow H^0(E)^* \otimes \mathcal{O}_S$
 $\implies H^0(\det(E) \otimes L^{-1}) \ne 0 \implies L = \det(E) \implies H^0(E^*) \ne 0$
 $\implies E = \mathcal{O}_S \oplus \det(E)$.

Proof of the lemma

Lemma

G globally generated rank 2 on a surface, $h^0(G) \ge 4$ and $H^1(\det(G)^{-1}) = 0 \implies c_1^2(G) > c_2(G).$

Proof : Choosing 4 general sections of G gives

$$0 \to N \longrightarrow \mathcal{O}_S^4 \longrightarrow G \to 0 \,. \qquad (\star)$$

Then $c_1^2(G) - c_2(G) = c_2(N) = c_2(N^*)$.

Since N^* is globally generated, a general section $s \in H^0(N^*)$ vanishes at $c_2(N^*)$ points. Assume $c_2(N^*) = 0$; then

$$0 \to \mathcal{O}_S \xrightarrow{s} N^* \longrightarrow L \to 0 \quad \text{with } L = \det(N^*) = \det(G) \,.$$

Since $H^1(\det(G)^{-1}) = 0$, the extension splits, so that $N \cong \mathcal{O}_S \oplus \det(G)^{-1}$. Then (*) becomes

$$0 \to \det(G)^{-1} \to \mathcal{O}_S^3 \to G \to 0\,,$$

which implies $h^0(G) = 3$, a contradiction.

