Ulrich bundles : to be or not to be

Arnaud Beauville

Université Côte d'Azur

Beijing, October 2017

A classical problem

 $X \subset \mathbb{P}$ hypersurface of degree d, defined by F = 0. Can we write $F = \det(L_{ij})$ for a $d \times d$ -matrix (L_{ij}) of linear forms? Yes for cubic surfaces (Schröter, 1863: used to find the 27 lines), for special quartic surfaces (Jessop, Dickson)... **But** $\Rightarrow X$ singular for dim $(X) \ge 3$. Let us settle for a weaker property: can we write $F^r = \det(L_{ij})$,

that is, $X = V(\det(L_{ij}))$ as sets?

Proposition (almost tautological)

 $X \subset \mathbb{P}$ smooth hypersurface of degree d, defined by F = 0; L (rd × rd)-matrix of linear forms.

$$\begin{array}{c}
1) \ F^{r} = \det L; \\
2) \ \exists \ E \ rank \ r \ vector \ bundle \ on \ X \ with \ a \ resolution \\
0 \ \rightarrow \ \mathcal{O}_{\mathbb{P}}(-1)^{rd} \xrightarrow{L} \ \mathcal{O}_{\mathbb{P}}^{rd} \ \rightarrow \ E \ \rightarrow \ 0.
\end{array}$$

So the problem is reduced to find such a vector bundle E.

Proposition

X smooth hypersurface of degree d in \mathbb{P}^{n+1} , E rank r vector bundle on X.

$$\begin{array}{c}
1) \exists resolution \ 0 \to \mathcal{O}_{\mathbb{P}}(-1)^{rd} \xrightarrow{L} \mathcal{O}_{\mathbb{P}}^{rd} \to E \to 0; \\
2) \ H^{\bullet}(X, E(-1)) = \ldots = H^{\bullet}(X, E(-n)) = 0; \\
3) \ If \ \pi : X \to \mathbb{P}^{n} \text{ projection from } p \notin X, \ \pi_{*}E = \mathcal{O}_{\mathbb{P}^{n}}^{rd}.
\end{array}$$

It turns out that this is a particular case of a general result for any smooth projective variety:

Theorem (Eisenbud-Schreyer, 2003)

 $X^{n} \subset \mathbb{P}^{n+c} \text{ smooth, } E \text{ rank } r \text{ vector bundle on } X.$ 1) E admits a linear resolution $0 \to \mathcal{O}_{\mathbb{P}}(-c)^{\bullet} \to \cdots \to \mathcal{O}_{\mathbb{P}}(-1)^{\bullet} \to \mathcal{O}_{\mathbb{P}}^{\bullet} \to E \to 0;$ $2) H^{\bullet}(X, E(-1)) = \ldots = H^{\bullet}(X, E(-n)) = 0;$ $3) If \pi : X \to \mathbb{P}^{n} \text{ projection, } \pi_{*}E = \mathcal{O}_{\mathbb{P}^{n}}^{rd}.$ If this holds, we say that E is an Ulrich bundle.

We'll say also that E is an Ulrich bundle for $(X, \mathcal{O}_X(1))$.

Sketch of proof

To be proved: equivalence of

$$0 \to \mathcal{O}_{\mathbb{P}^{n+c}}(-c)^{\bullet} \to \cdots \to \mathcal{O}_{\mathbb{P}^{n+c}}(-1)^{\bullet} \to \mathcal{O}_{\mathbb{P}^{n+c}}^{\bullet} \to E \to 0;$$

Solution If
$$\pi: X \to \mathbb{P}^n$$
 projection, $\pi_* E = \mathcal{O}_{\mathbb{P}^n}^{rd}$

1)
$$\Rightarrow$$
 2) : $\mathcal{O}_{\mathbb{P}}(-1), \ldots, \mathcal{O}_{\mathbb{P}}(-n-c)$ have zero cohomology.
3) \Rightarrow 2) : $H^{i}(X, E(-p)) = H^{i}(\mathbb{P}^{n}, (\pi_{*}E)(-p))$.
Assume 2). Then $H^{i}(X, E(-i)) = 0$ for $i > 0 \Rightarrow E$ is 0-regular
(Mumford) $\Rightarrow E$ globally generated and $H^{i}(X, E) = 0$ for $i > 0$.
 $\chi(E(t)) = 0$ for $t = -1, \ldots, -n \Rightarrow \chi(E(t)) = \frac{rd}{n!}(t+1) \ldots (t+n)$
 $\Rightarrow h^{0}(E) = \chi(E) = rd$.

Proof of 3) : $F = \pi_* E$ satisfies 2) $\Rightarrow \mathcal{O}_{\mathbb{P}^n}^{rd} \longrightarrow F \Rightarrow \mathcal{O}_{\mathbb{P}^n}^{rd} \xrightarrow{\sim} F.$

Proof of 1) : $0 \to K_0 \to \mathcal{O}_X^{\bullet} \to E \to 0$; then $K_0(-1)$ is 0-regular, hence $0 \to K_1 \to \mathcal{O}_X(-1)^{\bullet} \to \mathcal{O}_X^{\bullet} \to E \to 0$ with $K_1(-2)$ 0-regular, then 1) by induction.

Some consequences of the proof : E Ulrich \Rightarrow

• E globally generated, $h^0(E) = rd$, $h^0(E(-1)) = 0$;

•
$$\chi(E(t)) = rd\chi(\mathcal{O}_{\mathbb{P}^n}(t)) = \frac{rd}{n!}(t+1)\dots(t+n)$$
.

• E semi-stable (by 3)).

Main problem: Does every smooth $X \subset \mathbb{P}$ carry an Ulrich bundle?

- Introduced and studied in 1985-95 in commutative algebra (Ulrich, Herzog, ...) under the name "maximally generated maximal Cohen-Macaulay modules".
- Revived geometrically by Eisenbud-Schreyer (2003), then Casanellas-Hartshorne (2011), and many others.

Examples

- On \mathbb{P} , Ulrich bundle = $\mathcal{O}_{\mathbb{P}}^{r}$.
- Curves: *E* general vector bundle of slope $g 1 \Rightarrow E(1)$ Ulrich.
- Grassmannians (Costa-Miró-Roig), some flag varieties.

Theorem (Herzog-Ulrich-Backelin (1991))

Any smooth complete intersection $X \subset \mathbb{P}$ carries an Ulrich bundle.

Proof involves matrix factorization and generalized Clifford algebra. **Example :** for a smooth quadric $Q \subset \mathbb{P}^{n+1}$, the indecomposable Ulrich bundles are:

- for n = 2k + 1, the *spinor bundle*, of rank 2^k ;
- for n = 2k, the two half-spinor bundles, of rank 2^{k-1} .
- If $(X, \mathcal{O}_X(1))$ admits an Ulrich bundle, so does $(X, \mathcal{O}_X(d))$.

Ulrich line bundles

In some (rare) cases, there exist Ulrich line bundles:

• $S \subset \mathbb{P}$ del Pezzo surface, $L \in \operatorname{Pic}(S)$, $L' := K_S \otimes L$. Then

L Ulrich $\iff L' \cdot K = 0$ and $(L')^2 = -2$.

(always exists if $deg(S) \leq 7$.)

- For $X \subset \mathbb{P}$ scroll (i.e. $X \xrightarrow{p} C$, fibers are linear subspaces): if $M \in \text{Pic}(C)$ with $H^{\bullet}(C, M) = 0$, $p^*M(1)$ is Ulrich.
- Many Enriques surfaces (Borisov-Nuer).

But : for $X \subset \mathbb{P}$ with $\operatorname{Pic}(X) = \mathbb{Z}[\mathcal{O}_X(1)]$ and $\operatorname{deg}(X) > 1$, no Ulrich line bundle. (must be $\mathcal{O}_X \Rightarrow d = h^0(\mathcal{O}_X) = 1$.) In particular: a general surface of degree $d \ge 4$ cannot be defined by a $(d \times d)$ linear determinant. We want *E* of rank 2 with $H^{\bullet}(E(-1)) = H^{\bullet}(E(-2)) = 0$. Easy case: E(-1) and E(-2) are Serre dual, i.e. det $E = K_S(3)$. Definition : *E* special if det $E = K_S(3)$.

(\Rightarrow the Chow form of $S \subset \mathbb{P}$ can be written as a pfaffian.)

Theorem (Aprodu-Farkas-Ortega)

Most K3 surfaces admit a special rank 2 Ulrich bundle.

"Most" := for each g, the possible exceptions $\subset Z \subsetneq \mathcal{F}_g$.

The construction uses the Lazarsfeld-Mukai bundle.

Note : For g = 3, *every* smooth quartic surface admits a special rank 2 Ulrich bundle (Coskun-Kulkarni-Mustopa).

Theorem (AB)

Every minimal surface $S \subset \mathbb{P}$ of Kodaira dimension 0 which is not a K3 admits a special rank 2 Ulrich bundle.

Remaining surfaces with $\kappa = 0$: Enriques, abelian, bielliptic.

Proof (essentially) uniform, using Serre's construction. Recall:

 $Z \subset S \subset \mathbb{P}$ has the **Cayley-Bacharach property** if

$$H\supset Z\smallsetminus \{pt\} \implies H\supset Z \ .$$

 $\Rightarrow \text{ extension } 0 \rightarrow K_S \rightarrow E \rightarrow \mathcal{I}_Z(1) \rightarrow 0 \text{ with } E \text{ rank } 2 \text{ vector}$ bundle, det $E = K_S(1)$.

Lemma

E rank 2 bundle on $S \subset \mathbb{P}$, det $E = K_S(1)$, $h^0(E) = \chi(E) = 0 \implies E(1)$ is a special Ulrich bundle.

Proof:
$$K_S \otimes E^* \cong E(-1) \Rightarrow h^2(E) = h^0(E(-1)) = 0$$
, hence
 $H^{\bullet}(E) = 0$. Then $H^{\bullet}(E(-1)) = H^{\bullet}(K_S \otimes E^*) = 0$.

For Enriques surfaces, existence follows from:

Proposition (Casnati)

 $S \subset \mathbb{P}^n$ with $q = p_g = 0$ and $H^1(S, \mathcal{O}_S(1)) = 0 \implies S$ admits a special rank 2 Ulrich bundle.

Proposition (Casnati)

 $S \subset \mathbb{P}^n$ with $q = p_g = 0$ and $H^1(S, \mathcal{O}_S(1)) = 0 \implies S$ admits a special rank 2 Ulrich bundle.

Proof: Choose $Z \subset S$ general with #Z = n + 2. C-B holds \rightsquigarrow $0 \rightarrow K_S \rightarrow E \rightarrow \mathcal{I}_Z(1) \rightarrow 0$ with det $E = K_S(1)$. Then $h^0(E) = 0$, $\chi(E) = \chi(K_S) + \chi(\mathcal{I}_Z(1))$ $= 1 + \chi(\mathcal{O}_S(1)) - (n+2) = 0$,

hence E(1) special Ulrich bundle by the Lemma.

For the other cases, choose C smooth hyperplane section of S and $Z \subset C$ general, #Z = n + 1; twist by a 2-torsion line bundle.

Fano threefolds of index 2

X Fano threefold, $K_X^{-1} = L^2$. Assume $d := (L^3) \ge 3$. Then |L| embeds X in \mathbb{P}^{d+1} ; 7 families, with $3 \le d \le 8$: $V_3 \subset \mathbb{P}^4$, $V_{2,2} \subset \mathbb{P}^5$, etc.

Proposition

 $X \subset \mathbb{P}^{d+1}$ admits a special rank 2 Ulrich bundle E.

("special" := det $E = K_X(4)$.)

Serre's construction: $Z \subset X$ smooth codimension 2. Suppose:

 $L \in \operatorname{Pic}(X)$ with $K_Z = (K_X \otimes L)_{|Z}$, and $H^2(X, L^{-1}) = 0$. Then \exists

 $0 \rightarrow \mathcal{O}_X \rightarrow E \rightarrow \mathcal{I}_Z L \rightarrow 0$ with *E* rank 2 vector bundle.

Lemma

X contains a normal elliptic curve $\Gamma \subset X \subset \mathbb{P}^{d+1}$ (of degree d+2).

Idea of proof of the Lemma : A smooth hyperplane section $S_d \subset \mathbb{P}^d$ of X contains a normal elliptic curve $\Gamma_0 \subset \mathbb{P}^d$. Take a line $\ell \subset X$ such that $\Gamma_0 \pitchfork \ell = \{p\}$, and deform $\Gamma_0 \cup \ell$ in X.

Proof of the Proposition :

$$\begin{split} L &= \mathcal{O}_X(2) \text{ satisfies } (K_X \otimes L)_{|\Gamma} = K_{\Gamma} \text{ and } H^2(X, L^{-1}) = 0 \\ & \longrightarrow \quad 0 \to \mathcal{O}_X \to E \to \mathcal{I}_{\Gamma}(2) \to 0 \text{ with } \det E = \mathcal{O}_X(2) = K_X(4). \end{split}$$
Claim : E is Ulrich.

Proof: $E(-2) \cong K_X \otimes E(-2)^*$ and $E(-3) \cong K_X \otimes E(-1)^* \Rightarrow$ suffices to prove $H^{\bullet}(E(-1)) = 0$ and $H^i(E(-2)) = 0$ for i = 0, 1.

- $H^{\bullet}(\mathcal{O}_X(-1)) = H^{\bullet}(\mathcal{I}_{\Gamma}(1)) = 0 \implies H^{\bullet}(E(-1)) = 0;$
- For i = 0, 1, $H^{i}(\mathcal{O}_{X}(-2)) = H^{i}(\mathcal{I}_{\Gamma}) = 0 \implies H^{i}(E(-2)) = 0$.

Proposition

The moduli space \mathcal{M} of rank 2 special Ulrich bundles on X is smooth of dimension 5.

Sketch of proof : $\Gamma \iff E + [s] \subset \mathbb{P}(H^0(E))$ with Z(s) smooth. \mathcal{H} := Hilbert scheme of $\Gamma \subset X$; $p : \mathcal{H} \to \mathcal{M}$, $p(\Gamma) = E$. For $E \in \mathcal{M}$, $p^{-1}(E)$ open in $\mathbb{P}(H^0(E))$, has dimension 2d - 1. Using $N_{\Gamma/X} \cong E_{|\Gamma}$, get $H^1(N_{\Gamma/X}) = 0$, $h^0 = 2d + 4 \Rightarrow$ \mathcal{H} smooth of dimension $2d + 4 \Rightarrow \mathcal{M}$ smooth of dimension 5.

Examples

(1) The rank 2 Ulrich bundles on $X_3 \subset \mathbb{P}^4$ have been studied by Iliev-Markushevich-Tikhomirov and Druel. The 2nd Chern class defines an isomorphism of \mathcal{M} onto an (explicit) open subset of JX.

(2) $X_{2,2} \subset \mathbb{P}^5 \iff$ genus 2 curve *C*, such that $JX \cong JC$. Then \mathcal{M} is isomorphic to an open subspace of the moduli space of stable bundles on *C* of rank 2 and degree 0 (Cho-Kim-Lee, 2017).

③ For d = 8, $X = \mathbb{P}^3$ embedded in \mathbb{P}^9 by $|\mathcal{O}_{\mathbb{P}}(2)|$. Any rank 2 Ulrich bundle *E* on *X* appears in an exact sequence

$$0 \to E \to T_{\mathbb{P}^3}(1) \xrightarrow{\eta} \mathcal{O}_{\mathbb{P}^3}(3) \to 0$$

for a contact form $\eta \in H^0(\mathbb{P}^3, \Omega^1(2))$.

Thus $\mathcal{M} =$ open subset of contact forms in $\mathbb{P}(H^0(\mathbb{P}^3, \Omega^1(2)))$ = {bilinear symplectic forms on \mathbb{C}^4 }/ \mathbb{C}^* .

Proposition

 $S \subset \mathbb{P}$ surface with $\operatorname{rk} \operatorname{NS}(S) = 1$, E Ulrich bundle of rank r. Then $\deg(S) \ge \operatorname{sign}(S)$, with $\operatorname{sign}(S) = K_S^2 - 8\chi(\mathcal{O}_S) = \frac{1}{3}(c_1^2 - 2c_2)$.

Proof: Put H := hyperplane class in $H^2(S, \mathbb{Q})$. Recall $\chi(E(t)) = \frac{rd}{2}(t+1)(t+2)$. Comparing with Riemann-Roch gives $c_1(E) \cdot H = \frac{r}{2}(K+3H) \cdot H$, $ch_2(E) = \frac{1}{2}K \cdot c_1(E)) + r(H^2 - \chi(\mathcal{O}_S))$. Since $rk \operatorname{NS}(S) = 1$, $c_1(E) = \frac{r}{2}(K+3H)$. We compute the discriminant $\Delta_E := 2rc_2(E) - (r-1)c_1(E)^2 = c_1(E)^2 - 2r \operatorname{ch}_2(E)$: $\Delta_E = \frac{r^2}{4} \Big((K+3H)^2 - 2K \cdot (K+3H) - 8(H^2 - \chi(\mathcal{O}_S)) \Big)$

$$\Delta_{E} = \frac{r^{2}}{4} \Big((K + 3H)^{2} - 2K \cdot (K + 3H) - 8(H^{2} - \chi(\mathcal{O}_{S})) \Big)$$

= $\frac{r^{2}}{4} (H^{2} - (K^{2} - 8\chi(\mathcal{O}_{S}))) = \frac{r^{2}}{4} (\deg(S) - \operatorname{sign}(S)).$

Surfaces without Ulrich bundles?

Thus we get
$$\Delta_E = \frac{r^2}{4} (\deg(S) - \operatorname{sign}(S))$$
.

Since *E* is semi-stable, $\Delta_E \ge 0$ (Bogomolov) $\Rightarrow \square$.

Corollary

A surface $S \subset \mathbb{P}$ with $\operatorname{rk} NS(S) = 1$ and $\deg(S) < \operatorname{sign}(S)$ does not carry any Ulrich bundle.

Question : Does such a surface exist?

There are many examples of surfaces with sign(S) > 0, but most of them have rk NS(S) > 1. The only exceptions I know are the Blasius-Rogawski surfaces, with $K_S^2 = 9\chi(\mathcal{O}_S)$ (see below).

Question : Does there exist a surface S with rk NS(S) = 1 and $8\chi(\mathcal{O}_S) < K_S^2 < 9\chi(\mathcal{O}_S)$?

 $S = \mathbb{B}/\Gamma$, \mathbb{B} unit ball in \mathbb{C}^2 , Γ arithmetic subgroup of PU(2,1) associated to a degree 3 division algebra satisfying particular arithmetic conditions.

Then rk Pic(S) = 1; if Γ lifts to SU(2, 1), K = 3L. $K^2 = 9\chi(\mathcal{O}_S) \implies L^2 = \chi(\mathcal{O}_S) = \operatorname{sign}(S).$

According to the experts, *L* should be very ample for Γ small enough, so $S \subset \mathbb{P}$ would satisfy $\deg(S) = \operatorname{sign}(S)$.

Since $\pi_1(SU(2,1)) = \mathbb{Z}$, there exists subgroups Γ for which L = kL' with k > 1; if L' were very ample, this would give the required example. Unfortunately this seems out of reach at the moment.

Conclusion

Conclusion : It seems hard to get a counter-example out of this. On the other hand, proving existence in general looks even worse: we understand very poorly vector bundles on projective varieties, even on \mathbb{P}^n (recall : for $n \ge 6$, no indecomposable E known on \mathbb{P}^n with $2 \le \operatorname{rk}(E) \le n-2$). The problem remains wide open...

