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We exhibit a non-hyperelliptic curve C of genus 3 such that the class of the Ceresa cycle

[C] − [C−] in JC modulo algebraic equivalence is torsion.

1 Introduction

Let C be a complex curve of genus g ≥ 2 and p be a point of C. We embed C into its

Jacobian J by the Abel–Jacobi map x �→ [x] − [p]; we denote by C− the image of C under

the involution (−1)J : a �→ −a of J. The Ceresa class is the class z(C) := [C] − [C−] in

the group A1(J) of 1-cycles on J modulo algebraic equivalence (it is independent of the

choice of p). Since (−1)J acts trivially on Hp(J,Z) for p even, z(C) belongs to the Griffiths

group G(J), the kernel of the cycle class map A1(J) → H2g−2(J,Z).

Ceresa classes have played a prominent role in the study of Griffiths groups,

especially in the development of techniques for showing that a given element is non-

zero [9, 11, 17]. In addition they played an important role in showing that G(J) can have

infinite rank [20]. As the conjectures of Bloch and Beilinson were developed and are

studied z(C) appears repeatedly [5, 8], [23, §1.5], always as an element of infinite order.

When C is hyperelliptic, z(C) = 0; in fact, C − C− is zero as a cycle when p is a

Weierstrass point. In this note we will exhibit what we believe to be the 1st example

Communicated by Prof. Enrico Arbarello
Received June 24, 2021; Revised June 24, 2021; Accepted November 3, 2021

© The Author(s) 2021. Published by Oxford University Press. All rights reserved. For permissions,

please e-mail: journals.permission@oup.com.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/advance-article/doi/10.1093/im
rn/rnab344/6462322 by guest on 17 D

ecem
ber 2021

https://doi.org/10.1093/imrn/rnab344


2 A. Beauville and C. Schoen

of a non-hyperelliptic curve C with z(C) = 0 in A1(J) ⊗ Q. The curve C has genus 3, and

admits an automorphism σ of order 9, such that the quotient variety J/〈σ 〉 is uniruled.

This implies that the Griffiths group of a resolution of J/〈σ 〉 is torsion; going back to J

gives the result.

2 Main Result

Theorem. Let C ⊂ P2 be the genus 3 curve defined by X4 +XZ3 +Y3Z = 0. Then z(C) = 0

in A1(J) ⊗ Q.

Proof. Let ζ be a primitive 9th root of unity. We consider the automorphism σ of C

defined by σ(X, Y, Z) = (X, ζ 2Y, ζ 3Z). We use the fixed-point p = (0, 0, 1) to embed C in

its Jacobian J, so that the action of σ on J preserves C and C−. We denote by V the

quotient variety J/〈σ 〉 and by π : J → V the quotient map. Let F ⊂ J be the subset

of elements with nontrivial stabilizer; the singular locus Sing V of V is π(F). We put

Jo := J � F and Vo := V � Sing V.

Lemma 1. Sing V is finite; the points π(x) for x ∈ Ker(1J − σ) are non-canonical

singularities.

Proof. The space T0(J) is canonically identified with H0(C, KC)∗. The elements of

H0(C, KC) are of the form L
XdZ − ZdX

Y2Z
, with L ∈ H0(P2,O

P
(1)) [7, §9.3, Corollary of

Theorem 1]. It follows that the eigenvalues of σ on H0(C, KC) are ζ 5, ζ 7, ζ 8, and those

on T0(J) = H0(C, KC)∗ are ζ , ζ 2, ζ 4. Therefore, Ker(1J − σd) is finite for 0 < d < 9, so F

is finite. Since 1 + 2 + 4 < 9, Reid’s criterion [21, Theorem 3.1] implies that the singular

points π(x) for x ∈ Ker(1J − σ) are not canonical. �

Lemma 2. The variety V is uniruled.

Proof. Let ρ : Ṽ → V be a resolution of singularities; it suffices to prove that Ṽ has

Kodaira dimension −∞ [18]. Suppose this is not the case: there exist an integer r ≥ 1

and a nonzero section ω̃ of Kr
Ṽ

. By restriction to ρ−1(Vo) ∼= Vo, we get a section ω of Kr
Vo ,

whose pull back under π is a nonzero section of Kr
Jo ; therefore, ω is a generator of Kr

Vo ,

hence extends to a generator of the reflexive sheaf K[r]
V (with the notation of [21]). By

construction this generator remains regular on Ṽ, which means that the singularities of

V are canonical [21, Proposition 1.2], contradicting Lemma 1. �
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Lemma 3. Let X be a uniruled smooth projective threefold. The Griffiths group G(X)

is torsion.

Proof. There exists a smooth projective surface S and a dominant rational map

S × P1 ��� X. After blowing up some points and some smooth curves in S × P1, we get

a smooth projective threefold W birational to S × P1 and a generically finite morphism

f : W → X. Since the Griffiths group is a stably birational invariant (see [22, Proposition

2.30]), we have G(W) = G(S) = 0. For z ∈ G(X), we have (deg f )z = f∗f ∗(z) = 0, hence G(X)

is annihilated by deg f . �

Remark. One can actually deduce from [6, Theorem 1 (ii)] that G(X) = 0, but we will

not need this fact.

Proof of the Theorem. We can choose the resolution ρ : Ṽ → V so that E := ρ−1(SingV)

is a normal crossing divisor, whose irreducible components are smooth and rational [13,

Corollary of Theorem 1].

Let C̄ and C̄− be the images in V of C and C−, and let C̃ and C̃− be their proper

transforms in Ṽ. We have [C̄] − [C̄−] = 1
9π∗([C] − [C−]) = 0 in H4(Vo,Q). Now we have an

exact sequence [12, Corollaire 8.2.8]

H2(Ẽ,Q)
i∗−−→ H4(Ṽ,Q) → H4(Vo,Q) ,

where Ẽ is the normalization of E and i the composition Ẽ → E ↪→ Ṽ. Therefore, we have

[C̃] − [C̃−] = i∗z in H4(Ṽ,Q) for some class z ∈ H2(Ẽ,Q). Since the components of Ẽ are

rational, z is the class of an element z of A1(Ẽ) ⊗ Q. Then [C̃] − [C̃−] − i∗z ∈ A1(Ṽ) ⊗ Q

is homologous to zero, hence equal to zero by Lemma 3. Restricting to Ṽ � E ∼= Vo, we

get [C̄] − [C̄−] = 0 in A1(Vo ⊗ Q), hence [C] − [C−] = π∗([C̄] − [C̄−]) = 0 in A1(Jo) ⊗ Q. But

the restriction map A1(J) → A1(Jo) is an isomorphism [14, Example 10.3.4], hence the

theorem. �

3 Complements

Corollary 1. Let � be a Theta divisor on J. We have [C] = [�]2

2
in A1(J) ⊗ Q (Poincaré

formula).

Proof. Indeed for any genus 3 curve C we have [�]2 = [C] + [C−] in A1(J) ⊗Q (if p, q are

two distinct points of C, the intersection of � with its translate by [p] − [q] is the union
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of a translate of C and a translate of C−—see, for instance, [19, Lecture IV]). Thus, the

corollary is equivalent to the theorem. �

Recall that the modified diagonal cycle 	(C, p), first considered in [16], is the

element 	(C, p) of A1(C3) defined as follows. We denote by [x, x, x], [x, x, p], [x, p, p], etc.,

the classes in A1(C × C × C) of the image of C by the maps x �→ (x, x, x), x �→ (x, x, p),

x �→ (x, p, p) etc. Then,

	(C, p) := [x, x, x] − [x, x, p] − [x, p, x] − [p, x, x] + [x, p, p] + [p, x, p] + [p, p, x] .

By [15, Remark 3.4], we have the following:

Corollary 2. 	(C, p) = 0 in A1(C3) ⊗ Q.

Finally, let us mention the result of [3]: the class of [C] − [C−] in the intermediate

Jacobian J1(J) is torsion. It can also be deduced from our theorem, though the proof in

[3] is more direct.

In [4] the authors construct a genus 7 curve with the same property and suggest

that the corresponding Ceresa cycle should be torsion modulo algebraic equivalence

(Remark 1.2).
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