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Introduction

The title is somewhat paradoxical: we know that a linear group can only
act trivially on an abelian variety. However we also know that there are not
enough morphisms in algebraic geometry, a problem which may be fixed
sometimes by considering correspondences between two varieties – that is,
algebraic cycles on their product, modulo rational equivalence. Our main
result is the construction of a natural morphism of the algebraic group SL2
into the group Corr(A)∗ of (invertible) self-correspondences of any polarized
abelian variety A. As a consequence the group SL2 acts on the Q-vector space
CH(A) parametrizing algebraic cycles (with rational coefficients) modulo
rational equivalence, in such a way that this space decomposes as the direct
sum of irreducible finite-dimensional representations. This gives various
results of Lefschetz type for the Chow group.

This action of SL2 on CH(A) is already known: it appears implicitely in the
work of Künnemann [8], and explicitely in the unpublished thesis [16]. But
though it has been repeatedly used in recent work on the subject ([17], [18],
[10]), a detailed exposition does not seem to be available in the literature. The
aim of this paper is to fill this gap, and also to explain the link with the action
of SL2(Z) on the derived category D(A) found by Mukai [11]. This point of
view also appears in [9], in a much more general setting.

In section 1 we recall some classical facts on correspondences, mainly to
fix our notations and conventions. In section 2 we explain how to deduce
from Mukai’s results a homomorphism of SL2(Z) into Corr(A)∗, hence an
action of SL2(Z) onto CH(A). In sections 3 and 4 we show that these extend
to SL2, using a description of this algebraic group by generators and rela-
tions due to Demazure. In section 5 we deduce some applications; the most
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interesting perhaps is a twisted version of the hard Lefschetz theorem for
CH(A): if θ ∈ CH1(A) is an ample symmetric class, the multiplication
map × θ g−2p+s : CHp

s (A) → CHg−p+s
s (A) is an isomorphism (the subscript

s refers to the decomposition of CH(A) into eigensubspaces for the operators
n∗

A, n ∈ Z, see (1.5) below).

1. Correspondences

1.1. We fix an algebraically closed field k. We denote by A a smooth pro-
jective variety over k; from (1.4) on A will be an abelian variety.

As mentioned in the introduction, we will denote by CH(A) the Chow
group of algebraic cycles with rational coefficients on A modulo rational
equivalence1. We briefly recall some basic facts about correspondences, refer-
ring to [6] for a detailed treatment.

A correspondence of A is an element of CH(A×A). If α, β are two corres-
pondences, we define their composition by β ◦ α = (p13)∗(p∗

12α · p∗
23β),

where pi j : A×A×A → A×A is the projection on the i-th and j -th factors.
This defines an (associative) Q-algebra structure on CH(A × A); this algebra
is denoted Corr(A), and its subgroup of invertible elements by Corr(A)∗. The
unit element is the class [�A] of the diagonal in A × A.

To a class α in Corr(A) we associate a Q-linear map

α∗ : CH(A) → CH(A) defined by α∗z = q∗(α · p∗z),

where p and q are the two projections from A×A to A. This gives a Q-algebra
homomorphism Corr(A) → EndQ(CH(A)), hence a group homomorphism
Corr(A)∗ → AutQ(CH(A)).

1.2. We will need a few formulas satisfied by correspondences; they can be
found in (or follow easily from) [6], §16.

1.2.a. Let � : A ↪→ A × A be the diagonal morphism. We have

�∗z ◦ α = α · q∗z α ◦ �∗z = α · p∗z for α ∈ Corr(A), z ∈ CH(A);
taking α = �∗x we see that the map �∗ : CH(A) → Corr(A) is a Q-algebra
homomorphism.

1.2.b. Let u be an endomorphism of A, �u the class of its graph, and �′
u its

transpose (= (u, 1A)∗�A). For α ∈ Corr(A), we have

�u ◦α = (1, u)∗α, �′
u ◦α = (1, u)∗α, α◦�u = (u, 1)∗α, α◦�′

u = (u, 1)∗α.

1We could replace rational equivalence by any adequate equivalence relation,
see [19].
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1.3. The above constructions work almost word for word replacing CH(A)

by the derived category D(A) of bounded complexes of coherent sheaves
on A. A derived correspondence of A is an object of D(A × A). Using the
notations of (1.1), we define the composition of two such objects K, L as
L ◦ K := (p13)∗(p∗

12K ⊗ p∗
23L). This defines an associative multiplication on

the set of isomorphism classes of objects of D(A × A); we will denote this
monoid by Dcorr(A), and by Dcorr(A)∗ the subgroup of invertible elements.
Their unit is the sheaf O�A.

As above we associate to K ∈ Dcorr(A) the Fourier–Mukai transform �K :
D(A) → D(A), defined by �K(	) = q∗(p∗(	) ⊗ K). This defines a group
homomorphism

� : Dcorr(A)∗ → Aut(D(A))

where Aut(D(A)) is the group of isomorphism classes of auto-equivalences
of the triangulated category D(A). By a celebrated theorem of Orlov [14], this
map is bijective.

1.4. From now on we assume that A is an abelian variety. In that case the
constructions of (1.1) and (1.3) are linked by the Chern character, which is a
monoid homomorphism ch : Dcorr(A) → Corr(A). We have a commutative
diagram

Dcorr(A)∗

ch
��

� �� Aut(D(A))

κ
��

Corr(A)∗
∗ �� AutQ(CH(A))

where the map κ is defined as follows: an automorphism of D(A) induces an
automorphism of the K-theory group K(A), hence a Q-linear automorphism
of K(A) ⊗ Q, hence a Q-linear automorphism of CH(A) via the isomorphism
ch : K(A) ⊗ Q

∼−−→ CH(A).

1.5. For an abelian variety A, the unit element [�A] of Corr(A) has a canoni-
cal decomposition as a sum of orthogonal idempotents ([5], Theorem 3.1)

[�A] =
2g∑

i=0

πi

characterized by the property (1, k)∗πi = kiπi . This decomposition induces
a grading CH(A) = ⊕

s
CHs(A), with

CHp
s (A) = (π2p−s)∗(CHp(A))

= {x ∈ CHp(A)|n∗
Ax = n2p−s x for all n ∈ Z}

(see [2]).
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1.6. Suppose now that A has a polarization θ , which we will view as a
symmetric (ample) element of CH1(A). The polarization defines an isogeny
ϕ : A → Â. The Poincaré bundle P on A × A is by definition the pull back
by (1, ϕ) of the Poincaré bundle on A × Â; it will play an important role in
what follows.

Now there is a sign ambiguity in the definition of ϕ, hence of P . Most
authors, following Mumford in [12], use the formula ϕ(a) = OA(
 − 
a),
where 
 is a divisor defining the polarization and 
a = 
 + a denotes its
translate by a ∈ A. This convention has some serious drawbacks. One of them
is that if A is the Jacobian of a curve C, the natural map Â = Pic0(A) →
A = Pic0(C) deduced from the embedding of C in A (defined up to transla-
tion) is the opposite of ϕ−1. More important for us, it leads to sign problems
in the definition of the action of (a covering of) SL2(Z) on D(A). Because
of these difficulties we will use the isomorphism ϕ : A → Â defined by
ϕ(a) = OA(
a − 
). With this convention, by the see-saw theorem the
class in CH1(A × A) of the Poincaré bundle is p∗θ + q∗θ − m∗θ , where
m : A × A → A is the addition map (a, b) 
→ a + b.

2. The homomorphism SL2(Z) → Corr(A)∗SL2(Z) → Corr(A)∗SL2(Z) → Corr(A)∗

2.1. In [11] Mukai observes that the derived category D(A) of a principally
polarized abelian variety (A, θ) carries an action of SL2(Z) “up to shift”. This
is nicely elaborated in [15] as an action of a central extension of SL2(Z) by Z,
the trefoil group S̃L2(Z) (also known as the braid group on three strands).
We will need only to describe this action in a naı̈ve sense, that is, as a group
homomorphism of S̃L2(Z) in the group Aut(D(A)) (1.3).

Recall that the group SL2(Z) is generated by the elements

w =
(

0 −1
1 0

)
u =

(
1 1
0 1

)

with the relations w2 = (uw)3, w4 = 1. The group S̃L2(Z) is generated by
two elements ũ, w̃ with the relation w̃2 = (ũw̃)3; the covering S̃L2(Z) →
SL2(Z) is obtained by mapping ũ to u and w̃ to w.

2.2. Let P be the Poincaré line bundle on A × A (1.6). The functor �P is
an autoequivalence of the category D(A) – this is the original Fourier–Mukai
functor [11]. We choose a symmetric line bundle L on A with class θ and
define an action of S̃L2(Z) on D(A) by mapping ũ to the functor ⊗L and w̃
to �P . Theorem 3.13 of [11] gives2 (�P)2 = (⊗L ◦ �P)3 = (−1A)∗[−g],
so that we have indeed an action of S̃L2(Z) on D(A), with the central element
z = w̃2 = (ũw̃)3 acting as (−1A)∗[−g]; thus z2 acts as the shift [−2g].

2Note that our functor �P is Mukai’s RS composed with (−1A)∗.



The action of SL2 on abelian varieties 257

2.3. Observe that the functor ⊗L can be written ��∗L. By (1.3) it follows
that the homomorphism S̃L2(Z) → Aut(D(A)) factors through a group
homomorphism

S̃L2(Z) → Dcorr(A)∗

mapping ũ to �∗L and w̃ to P .

2.4. We now consider the composition SL2(Z) → Dcorr(A)∗ ch−→
Corr(A)∗, where ch is the Chern character (1.4). Since ch E[p] = (−1)p ch E,
this homomorphism maps z2 to the unit element, hence factors as a homo-
morphism

SL2(Z) → Corr(A)∗

which maps u to �∗eθ , and w to e℘ , where ℘ is the class of P in CH1(A).

2.5. The argument extends with little change to the case of an arbitrary
polarization. Let A be a polarized abelian variety, of dimension g; we denote
by θ the unique symmetric element in CH1(A) representing the polarization,
and by ℘ = p∗θ +q∗θ −m∗θ the class in CH1(A×A) of the Poincaré bundle
(1.6). The degree of θ is d = θg

g! .

Proposition 2.6. There is a (unique) group homomorphism SL2(Z) →
Corr(A)∗ mapping u to �∗eθ and w to d−1e℘ .

Proof. We choose an isogeny π of A onto an abelian variety A0 with a princi-
pal polarization θ0 such that θ = π∗θ0 ([12], §23, Cor. 1 of Thm. 4). One
checks readily that the Q-linear isomorphism d−1(π, π)∗ : CH(A0 × A0) →
CH(A × A) is compatible with the composition of correspondences, thus
induces an isomorphism of algebras Corr(A0)

∼−−→ Corr(A). Let �0 denote
the diagonal morphism of A0. We have (π, π)◦� = �0 ◦π and f ◦ (π, π) =
π ◦ f if f = p, q or m. From this one easily gets

(π, π)∗�∗eθ0 = d�∗eθ and (π, π)∗e p∗θ0+q∗θ0−m∗θ0 = e p∗θ+q∗θ−m∗θ ,

hence the result. �

3. Extension to SL2

We will now show that the homomorphism SL2(Z) → Corr(A)∗ extends
to the algebraic group SL2 over Q. The essential tool is the description of
SL2 by generators and relations given (in a much more general set-up) in [4],
Theorem 6.2.

We denote by B the upper triangular Borel subgroup of SL2. We still denote
by w and u the elements

(
0 −1
1 0

)
and

(
1 0
1 1

)
of SL2(Q). By a Q-group we mean

a sheaf of groups over Spec(Q) for the fppf topology.
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Proposition 3.1. Let H be a Q-group. Suppose given a morphism of
Q-groups β : B → H and an element h ∈ H(Q). Assume that:

(i) hβ(t)h−1 = β(t−1) for t in the maximal torus of B;
(ii) h2 = (β(u)h)3 = β(−I ) in H(Q).

Then there is a (unique) morphism of Q-groups ϕ : SL2 → H extending β

and mapping w to h.

Proof. This is [4], Theorem 6.2, in the case S = Spec(Q), G = SL2 (note
that our element w is the opposite of the one in loc. cit.). �

Observe that (ii) can be rephrased by saying that there is a homomorphism
SL2(Z) → H(Q) which maps w to h and coincides with β on B(Z).

3.2. If C is a Q-algebra, the functor R 
→ (C ⊗Q R)∗ is a Q-group; its Lie
algebra is C, endowed with the bracket [x, y] = xy − yx . We will denote by
Corr∗(A) the Q-group obtained from the Q-algebra Corr(A) in this way.

Let δ : A × A → A be the difference map (a, b) 
→ b − a. For n ∈ Z we
denote by �n ∈ Corr(A) the graph of the multiplication by n, and by �′

n its
transpose.

Theorem 3.3. Let A be an abelian variety, of dimension g, with a polariza-
tion θ of degree d. There is a morphism of Q-groups ϕ : SL2 → Corr∗(A)

such that, for n ∈ Z {0}, a ∈ Q:

ϕ

((
n 0
0 n−1

))
= n−g�′

n, ϕ

((
0 −1
1 0

))
= d−1e℘,

ϕ

((
1 a
0 1

))
= �∗eaθ , ϕ

((
1 0
a 1

))
= d−1ageδ∗θ/a .

The corresponding Lie algebra homomorphism Lϕ : sl2(Q) → Corr(A) is
given, in the standard basis (X, Y, H) of sl2(Q), by:

Lϕ(X) = �∗θ, Lϕ(Y) = δ∗θ g−1

d(g − 1)!
, Lϕ(H) =

∑
i

(i − g)πi .

Proof. We apply Proposition 3.1 with H = Corr∗(A). To define β we write
B as a semi-direct product Ga � Gm . We define α : Ga → Corr∗(A) by
a 
→ �∗eaθ ; this is a morphism of Q-groups by (1.2.a).

We define τ : Gm → Corr∗(A) by τ (t) = t−g ∑
i t iπi , where (πi) is the

family of orthogonal idempotents considered in (1.5). This is a morphism of
Q-groups; for t ∈ Z we have τ (t) = t−g(1, t)∗�A = t−g�′

t and τ (t−1) =
tg(�′

t )
−1 = t−g�t .
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To ensure that β = (α, τ ) : Ga � Gm → Corr∗(A) is a morphism of
groups, we must check the commutation relation τ (t)α(a)τ (t)−1 = α(t2a).
This relation is polynomial in t , so it suffices to check it for t = s−1 with
s ∈ Z. In that case we have by (1.2.b):

τ (t)α(a)τ (t)−1 = s−2g�s ◦�∗eaθ ◦�′
s = s−2g(s, s)∗�∗eaθ = s−2g�∗s∗eaθ ;

since s∗θ p = s2g−2pθ p, this gives τ (t)α(a)τ (t)−1 = �∗et2aθ = α(t2a) as
required.

We take for h the element d−1e℘ of Corr(A)∗. Condition (ii) is then satis-
fied because h and β(u) are the images of w and u by the homomorphism
SL2(Z) → Corr(A)∗ (Prop. 2.6).

Condition (i) can be written τ (t)hτ (t) = h. Again it suffices to check the
equality �′

t ◦ e℘ ◦ �′
t = t2ge℘ for t ∈ Z. The Poincaré bundle P satisfies

(t, 1)∗P = (1, t)∗P = P t for every t ∈ Z. Therefore (t, 1)∗℘ = (1, t)∗℘,
and

�′
t ◦ e℘ ◦ �′

t = (t, 1)∗(t, 1)∗e℘ = t2ge℘.

This proves the existence of ϕ satisfying the three first formulas stated.
To prove the fourth one, put v = (

1 0
1 1

)
; we have v = uwu. Thus, using

(1.2.a),
ϕ(v) = �∗eθ ◦ e℘ ◦ �∗eθ = e℘+p∗θ+q∗θ .

Since ℘ = p∗θ + q∗θ − m∗θ and m∗θ + δ∗θ = 2p∗θ + 2q∗θ by the seesaw
theorem, this gives ϕ(v) = eδ∗θ .

Now we use the equality
( t 0

0 t−1

)(
1 0
1 1

)(
t−1 0
0 t

) = ( 1 0
t−2 1

)
to get, for

t ∈ Z,

ϕ

((
1 0

t−2 1

))
= t−2g �′

t ◦ eδ∗θ ◦ �t

We have by (1.2.b)

�′
t ◦ eδ∗θ ◦ �t = (t, t)∗eδ∗θ = eδ∗t∗θ = et2δ∗θ ;

putting a = t−2 gives ϕ
((

1 0
a 1

)) = d−1ageδ∗θ/a for a = t−2 with t ∈ Z,
hence as usual for all a.

The value of Lϕ follows from these formulas by differentiation. �

4. The action of SL2 on CH(A)

4.1. Let V be a Q-vector space; the functor R 
→ GL(V⊗R) on the category
of (commutative) Q-algebras is a Q-group, that we will denote by GL(V).
If G is an algebraic group over Q, we define a representation of G on V as a
morphism of Q-groups G → GL(V).
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Recall that the Pontryagin product of two elements α, β of CH(A) is
defined by α ∗ β := m∗(p∗α · q∗β).

We will denote by F the Q-linear automorphism d−1(e℘)∗ of CH(A); this
is the Fourier transform for Chow groups, see [1] and [2].

Theorem 4.2. Let A be an abelian variety, with a polarization θ of degree d.
There is a representation of SL2 on CH(A), which is a direct sum of finite-
dimensional representations, such that, for n ∈ Z {0}, a ∈ Q, z ∈ CH(A) :(

n 0
0 n−1

)
· z = n−gn∗z,

(
0 −1
1 0

)
· z = F(z),(

1 a
0 1

)
· z = eaθ z,

(
1 0
a 1

)
· z = d−1ageθ/a ∗ z.

The corresponding action of the Lie algebra sl2(Q) is given by:

Xz = θ z, Yz = d−1 θ g−1

(g − 1)!
∗ z,

Hz = (2p − g − s)z for z ∈ CHp
s (A).

Proof. The homomorphism Corr(A) → EndQ(CH(A)) (1.1) defines a mor-
phism of Q-groups Corr∗(A) → GL(CH(A)), hence by composition with ϕ

a representation of SL2 on CH(A). By definition, g · z = ϕ(g)∗z for g ∈ SL2,
z ∈ CH(A). Thus(

n 0
0 n−1

)
· z = n−g(�n)∗z = n−gn∗z,

(
0 −1
1 0

)
· z = d−1(e℘)∗z

def= F(z),

(
1 a
0 1

)
· z = (�∗eaθ z)∗ = eaθ z,

(
1 0
a 1

)
· z = d−1ag(eδ∗θ/a)∗z.

Let σ be the automorphism of A×A defined by σ(a, b) = (b, a+b). We have
q ◦ σ = m, p ◦ σ = q, δ ◦ σ = p, hence

(eδ∗θ/a)∗z = q∗σ∗σ ∗(eδ∗θ/a · p∗z) = m∗(p∗eθ/a · q∗z) = eθ/a ∗ z.

In particular, H is diagonalizable and X, Y are nilpotent; this is enough to
imply that V is a direct sum of finite-dimensional representations ([3], ch. 8,
§1, exerc. 4). �

5. Application to Lefschetz type results

5.1. In this section we will apply the well-known structure of finite-
dimensional representations of SL2. We say that an element z ∈ CHp

s (A)

is primitive if θ g−1 ∗ z = 0. The primitive elements are exactly the lowest
weight elements for the action of SL2 on CH(A).
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Let z ∈ CHp
s (A) be a primitive element. The subspace of CH(A) spanned

(over Q) by the θq z is an irreducible representation of SL2; it is identified
with the space of polynomials in one variable of degree ≤ g + s − 2p (with
the standard action) by the map P 
→ P(θ)z. This gives an explicit description
of the action of SL2; in particular:

Proposition 5.2. If z ∈ CHp
s (A) is primitive, we have g + s − 2p ≥ 0,

and (z, θ z, . . . , θ g+s−2pz) is a basis of an irreducible subrepresentation of
CH(A). The vector space CH(A) is a direct sum of subrepresentations of this
type.

Corollary 5.3. Let Pp
s ⊂ CHp

s (A) be the subspace of primitive elements.
Then CHp

s (A) = ⊕q≤pθ
p−qPq

s .

Since the Fourier automorphism F of CH(A) is given by the action of w,
we have:

Corollary 5.4. Let z ∈ CHp
s (A) be a primitive element, and let q ≤ g +

s − 2p. Then F(
θq

q! z
) = (−θ)r

r! z, with r = g + s − 2p − q.

Proposition 5.5. The multiplication map × θq−p : CHp
s (A) → CHq

s (A)

(q ≥ p) is injective for p + q ≤ g + s and surjective for p + q ≥ g + s.
In particular, it is bijective for p + q = g + s.

Proof. Assume p + q ≤ g + s; let z ∈ CHp
s (A) with θq−pz = 0. Using

Cor. 5.3 we write z = ∑
r≤p θ p−r zr , with zr ∈ Pr

s ; we have θq−r zr = 0 for
each r . Since q − r ≤ g + s − 2r this implies zr = 0 for each r , hence z = 0.

Assume p + q ≥ g + s. To prove the surjectivity of × θq−p it suffices,
by Cor. 5.3, to prove that each nonzero element θq−r zr , with zr ∈ Pr

s , lies
in the image. But since θq−r zr �= 0 we have q − r ≤ g + s − 2r , hence
q +r ≤ g + s ≤ p +q and finally r ≤ p. Therefore θq−r zr = θq−p(θ p−r zr ).

�

5.6. In what follows we consider the filtration of CH(A) associated to the
grading (1.5), that is, FsCHp(A) := ⊕

t≥s
CHp

t (A). Conjecturally this is the

Bloch–Beilinson filtration of CH(A), see [13].

Corollary 5.7. Let h ∈ CH1(A) be an ample class. The multiplication map

× hq−p : Fp+q−gCHp(A) → Fp+q−gCHq(A)

is injective.
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Proof. Let θ be the component of h in CH1
0(A); it is ample and symmetric.

The map induced by × hq−p on the associated graded spaces is

× θq−p : ⊕
s≥p+q−g

CHp
s (A) −→ ⊕

s≥p+q−g
CHq

s (A),

which is injective by Proposition 5.5; therefore × hq−p is injective. �

Corollary 5.8. Let D be an ample divisor in A. The restriction map
F2p+1−gCHp(A) → CHp(D) is injective.

Here CHp(D) is the Chow group as defined in [6], chap. 2: CHp(D) =
Ag−1−p(D) in the notation of [6].

Proof. Let i be the natural injection of D in A, and let h be the class of D in
CH1(A). Let z ∈ F2p+1−gCHp(A) such that i∗z = 0. Then h · z = i∗i∗z = 0,
so z = 0 by Cor. 5.7. �

5.9. At this point we recall the vanishing conjecture of [2]:

CHs(A) = 0 for s < 0. (5.9)

This implies F0CH(A) = CH(A), hence:

Proposition 5.10. Assume that CHs(A) = 0 for s < 0. Then:

(a) If h ∈ CH1(A) is an ample class, the multiplication map × hq−p :
CHp(A) → CHq(A) is injective provided p + q ≤ g.

(b) If D is an ample divisor in A, the restriction map CHp(A) → CHp(D) is
injective for p ≤ 1

2 (g − 1).

We have actually a more precise result, which has been shown to me by
B. Fu (with a different proof, see [7]):

Proposition 5.11. Let h ∈ CH1(A) be an ample class. The multiplication
map ×hg−2p : CHp(A) → CHg−p(A) is injective for all p ≤ g

2 if and only if
conjecture (5.9) holds.

Proof. It remains to prove that if CHs(A) is nonzero for some s < 0, all multi-
plication maps cannot be injective. Let θ be the component of h in CH1

0(A).
By Cor. 5.3 there exists a nonzero primitive class z ∈ CHp

s (A) for some
integer p ≤ 1

2(g+s); we have g−2p > g+s−2p and therefore θ g−2pz = 0.
The class h is equal to T∗

aθ for some element a ∈ A, where Ta denotes the
translation x 
→ x + a. We have T∗

az ≡ z mod. Fs+1CHp(A), hence T∗
az �= 0,

and hg−2p(T∗
az) = 0, which proves our assertion. �

An interesting feature of Proposition 5.10 is that it makes sense for
any smooth projective variety A; the same is true of Cor. 5.7, taking for
(FsCH(A))s≥0 the (conjectural) Bloch–Beilinson filtration of CH(A). These
conjectures are thoroughly discussed in [7], where it is shown that they would
follow from a weak version of the Beilinson conjectures.
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