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1 Introduction

Let X be a smooth complex projective variety. We denote by T ∗X its cotangent bundle, and by PT ∗X
its projectivization. In this paper, we are interested in the graded C-algebra

S(X) :=
⊕
p�0

H0(X, SpTX) = O(T ∗X) =
⊕
p�0

H0(PT ∗X,OPT∗X(p)).

(O(T ∗X) is the algebra of regular functions on T ∗X, with the grading defined by the linear action of

C∗.)
Despite its simple definition, this is an intriguing object, which is usually quite complicated, even for a

variety as simple as the quadric (see Proposition 2.4 below). While the algebra
⊕

p�0 H
0(X, SpΩ1

X) has

been extensively studied, starting with Sakai’s work [S], this is not the case of S(X). We describe it in

some particular cases in Sections 2 and 3. Then we give a sharp bound on the Krull dimension of S(X)

in Section 4. Finally in Section 5, we propose a conjectural characterization of non-uniruled projective

manifolds with pseudo-effective tangent bundle, which holds in dimension � 5.

*Corresponding author
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We would like to dedicate this paper to the memory of Gang Xiao. Gang was (informally) a student

of the first author in Orsay at the beginning of the 1980’s, then later his colleague and friend in Nice, till

his untimely death in 2014.

Notations. We work over the complex numbers. If X is a variety endowed with an action of C∗, we
denote by O(X) the C-algebra of regular functions on X, with the grading defined by the C∗-action. By
a vector space we mean a complex, finite-dimensional vector space.

2 Some examples

2.1 Abelian varieties

We start with a trivial case: if X is an abelian variety of dimension n, we have TX
∼= On

X , hence S(X) is

a polynomial algebra in n variables.

2.2 Projective space

Let V be a vector space. We let I ∈ V ⊗ V ∗ be the image of the identity by the isomorphism

End(V ) ∼−→ V ⊗ V ∗.

Proposition 2.1. The graded algebra S(P(V )) is isomorphic to the quotient of
⊕

d�0(S
dV ⊗SdV ∗) by

the ideal generated by I.

Proof. The projective cotangent bundle PT ∗
P(V ) can be identified with the incidence hypersurface Z ⊂

P(V ) × P(V ∗) consisting of pairs (x,H) with x ∈ H; the tautological line bundle OZ(1) is induced by

OP(V )(1)�OP(V ∗)(1). The proposition follows from the exact sequence

0 → OP(V )(d− 1)�OP(V ∗)(d− 1)
×I−−−→ OP(V )(d)�OP(V ∗)(d) → OZ(d) → 0.

2.3 Rational homogeneous manifolds

In this subsection, we use some general facts about nilpotent orbits, which can be found for example in

[Fu].

Let X = G/P , where G is a reductive algebraic group and P a parabolic subgroup. We denote by g

and p their Lie algebras, and by n the nilradical of p. The Killing form of g provides an isomorphism

of G-modules n ∼−→ (g/p)∗; using this we identify the cotangent bundle T ∗(G/P ) to the homogeneous

bundle G ×P n. Associating to a pair (g,N) in G × n, the element Ad(g) · N of g defines a generically

finite, C∗-equivariant map π : T ∗(G/P ) → g, whose image N is the closure of a nilpotent orbit.

We will consider the case where the induced map π̄ : T ∗(G/P ) → N is birational. In this case π̄ is

a resolution of the normalization Ñ of N , and we have S(X) = O(Ñ ). For G = GL(n) all parabolic

subgroups have this property, and N is normal, so S(X) = O(N ). In the other classical cases there is a

precise description of the parabolic subgroups for which π̄ is birational [Fu, 3.3]; we will content ourselves

with the example of quadrics.

2.4 Flag varieties, Grassmannians

Let V be a vector space, and let (0) = V0 ⊂ V1 ⊂ · · · ⊂ Vs+1 = V be a (partial) flag in V . The stabilizer

P of this flag is a parabolic subgroup of GL(V ), and all parabolics are obtained in this way. The variety

G/P is the variety of flags (0) = F0 ⊂ F1 ⊂ · · · ⊂ Fs+1 = V with dimFi = dimVi.

The Lie algebra p is the stabilizer of (Vi) in End(V ), and its nilradical n is the subspace of u ∈ End(V )

satisfying u(Vi+1) ⊂ Vi for 0 � i � s. Therefore N is the subvariety of endomorphisms u ∈ End(V ) for

which there exists a flag (Fi) in G/P with u(Fi+1) ⊂ Fi for 0 � i � s.
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Let us spell out this in the case of the Grassmannian G := G(r, V ) of r-dimensional subspaces of V .

We put n := dimV .

Proposition 2.2. S(G(r, V )) = O(N ), where N ⊂ End(V ) is the subvariety of endomorphisms u

satisfying u2 = 0 and rku � min{r, n− r}.
Proof. Since G(r, V ) ∼= G(n − r, V ), we can assume r � n/2. By the previous discussion, N consists

of endomorphisms u for which there exists an r-dimensional subspace W ⊂ V with u(V ) ⊂ W and

u(W ) = 0, i.e., Imu ⊂ W ⊂ Keru. This implies u2 = 0 and rku � r; conversely, if this is satisfied,

we have Imu ⊂ Keru and dimKeru = n − rku � n − r � r, so any r-dimensional subspace W with

Imu ⊂ W ⊂ Keru does the job.

Remark 2.3. (1) Taking r = 1 we recover Proposition 2.1.

(2) If r = �n
2 �, the condition u2 = 0 implies rku � r, so N is simply the variety of square zero

endomorphisms of V .

2.5 Quadrics

Let V be a vector space, and let q be a non-degenerate quadratic form on V , defining a quadric Q := V (q)

in P(V ).

Proposition 2.4. S(Q) is isomorphic to the quotient of the homogeneous coordinate ring of G(2, V ) ⊂
P(

∧2
V ) by the ideal generated by ∧2q.

Proof. Let � be an isotropic line in V and let P be the stabilizer of �, so that Q = O(V )/P . The Lie

algebra o(V ) consists of endomorphisms of V which are skew-symmetric (with respect to q), and p is the

stabilizer of � in o(V ).

The nilradical n of p consists of skew-symmetric endomorphisms u such that u(�⊥) ⊂ � and u(�) = 0.

Such a map is of the form

x 
→ q(w, x)v − q(v, x)w, where v ∈ � and w ∈ �⊥. (2.1)

Varying �, we see that N consists of the maps of the form (2.1) such that the restriction of q to 〈v, w〉 has
rank � 1. Such maps correspond bijectively to decomposable bivectors v ∧ w ∈ ∧2

V , and the condition

on q can be written as ∧2q(v ∧ w) = 0. This implies the proposition.

2.6 Intersection of two quadrics

The following result is proved in [BEHLV]:

Proposition 2.5. Let X ⊂ Pn+2 be a smooth complete intersection of two quadrics, with n � 2. Then

S(X) is a polynomial algebra in n variables of degree 2.

It is somewhat surprising that the answer is much simpler in this case than that for a single quadric.

2.7 Completely integrable systems

Let V be a graded vector space, endowed with the associated C∗-action. Suppose that we have a

C∗-equivariant morphism Φ : T ∗X → V whose general fiber is of the form Y �Z, where Y is a complete

variety and Z a closed subvariety of codimension � 2. Then the functions on T ∗X are constant on the

fibers of Φ, hence the homomorphism Φ∗ : O(V ) = S•V ∗ → O(T ∗X) = S(X) is an isomorphism of

graded algebras.

A famous example of this situation is given by the Hitchin fibration [Hi]. Let C be a curve of genus

g � 2. We fix coprime integers r, d � 1, and consider the moduli space M of stable vector bundles on

C of rank r and degree d. It is a smooth projective variety. By deformation theory the tangent space

TE(M ) at a point E of M identifies with H1(C,E nd(E)); by Serre duality, its dual T ∗
EM identifies with

Hom(E,E ⊗ KC). Let V be the graded vector space
⊕r

i=1 H
0(C,Ki

C) (with degH0(C,Ki
C) = i). For

u ∈ Hom(E,E⊗KC), we have Tr∧iu ∈ H0(C,Ki
C). Associating to u the vector Tru+ · · ·+Tr∧ru gives

a C∗-equivariant map Φ : T ∗M → V .
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Proposition 2.6. The homomorphism Φ∗ : O(V ) = S•V ∗ → O(T ∗M ) = S(M ) is an isomorphism.

Proof. T ∗M admits an open embedding into the moduli space H of stable Higgs bundles (of rank r

and degree d), and Φ extends to a proper map Φ̄ : H → V [Hi]. The codimension of H � T ∗M is � 2

[Fa, Theorem II.6], hence codim Φ̄−1(v) � Φ−1(v) � 2 for v general in V . By the previous remark this

implies the result.

There are a number of variations on this theme. First of all, one can fix a line bundle L of degree d

on X and consider the subspace ML of M parameterizing the vector bundles E with detE = L; then Φ

maps ML onto the graded subspace V0 :=
⊕r

i=2 H
0(C,Ki

C) of V , and we get as before an isomorphism

of S(ML) with S•V ∗
0 . Note that in the case g = r = 2 ML is a complete intersection of two quadrics in

P5, so we recover the case n = 3 of Proposition 2.5.

We can also consider the moduli space Mpar of stable parabolic vector bundles on C of rank r, degree

d and weights α, with a parabolic structure along a divisor D = p1 + · · · + ps; we refer for example to

[BGL] for the precise definitions. For generic weights Mpar is smooth and projective; the Hitchin map

Φ : T ∗Mpar → Vpar takes its values in the vector space Vpar :=
⊕r

i=1 H
0(C,KC((i − 1)D)). It extends

to a proper map from the moduli space Hpar of parabolic Higgs bundle to Vpar, and Mpar � T ∗Mpar has

codimension � 2 provided g � 4, or g = 3 and r � 3, or g = 2 and r � 5 [BGL, Proposition 5.10]. If this

holds, we get as before an isomorphism S•V ∗
par

∼−→ S(Mpar).

2.8 An example: Ruled surfaces

Contrary to what the previous examples might suggest, S(X) is not invariant under deformation of X;

a typical example is provided by ruled surfaces. Let C be a curve of genus � 2, and E a stable rank 2

vector bundle on C with trivial determinant1). We put X = PC(E).

Proposition 2.7. For general E we have S(X) = C.

Proof. Denote by p : X → C the structure map and by OX(1) the tautological line bundle. The exact

sequence

0 → OX(2) → TX → p∗TC → 0

gives rise to exact sequences

0 → OX(2p) → SpTX → Sp−1TX ⊗ p∗TC → 0. (2.2)

We claim that H0(X, Sp−1TX ⊗ p∗TC) = 0. Indeed we get from (2.2) exact sequences

0 → OX(2q)⊗ p∗T r
C → SqTX ⊗ p∗T r

C → Sq−1TX ⊗ p∗T r+1
C → 0.

We have H0(X,OX(2q) ⊗ p∗T r
C) = H0(C, S2qE ⊗ T r

C) = 0 for r � 1, because S2qE is semi-stable [Ha,

Chapter I, Theorem 10.5] and deg TC < 0. Since H0(C, T q+1
C ) = 0, we get by induction H0(X, SqTX ⊗

p∗TC) = 0, and hence (2.2) gives isomorphisms

H0(X, SpTX) ∼= H0(X,OX(2p)) ∼= H0(C, S2pE). (2.3)

Now for general E the bundles SqE are stable [Ha, loc. cit.], so H0(X, SpTX) = 0 for p > 0.

For special bundles E the algebra S(X) can be quite nontrivial. If E is unstable the tangent bundle

TX is big [Ki], hence S(X) has Krull dimension 4. This does not hold if E is stable, but one can get

interesting algebras of dimension 2. Let V be a 2-dimensional Hermitian space, and let G be a finite

subgroup of SU(V ), acting irreducibly on V . Recall from [Kl] that G is the pull-back by the covering

map SU(2) → SO(3) of a group Ḡ isomorphic to the dihedral group Dn or to A4,S4 or A5.

Given an étale Galois covering π : C̃ → C with group G, the vector bundle Eπ := C̃ ×G V on C is

stable, of rank 2, with trivial determinant. The space H0(C, SpEπ) is canonically isomorphic to the G-

invariant subspace of SpV . Note that this is zero if p is odd, since G contains the element −1V . Therefore

1) Such a bundle is isomorphic to its dual, so we will not bother to distinguish them.
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it follows from (2.3) that S(X) is isomorphic to the graded algebra of invariants (S•V )G, the algebra of

regular functions on the quotient variety V/G.

The determination of (S•V )G goes back to Klein [Kl, Chapter II]. It is generated by 3 homogeneous

elements x, y, z, subject to one weighted homogeneous relation F (x, y, z) = 0. Putting d = (deg x, deg y,

deg z), we have:

• For Ḡ = Dn, d = (2n+ 2, 2n, 4), F = x2 + y2z + zn+1.

• For Ḡ = A4, d = (6, 4, 4), F = x2 + y3 + z3.

• For Ḡ = S4, d = (12, 8, 6), F = x2 + y3 + z4.

• For Ḡ = A5, d = (30, 20, 12), F = x2 + y3 + z5.

3 Cases with S(X)=C

3.1 Varieties with c1(X)=0

The following result, proved in [Ko], is a direct consequence of Yau’s theorem:

Proposition 3.1. Let X be a compact Kähler variety with c1(X) = 0 in H2(X,Q), and π1(X) finite.

Then S(X) = C.

With no assumption on π1(X), we know that X is the quotient of a product A × Y , where A is a

complex torus and Y is simply connected, by a finite group G acting freely [B2]. It follows that S(X) is

isomorphic to the invariant subring (S•T0(A))G.

3.2 Varieties of general type

Proposition 3.2. Let X be a variety of general type. Then S(X) = C.

This is a consequence of the stronger result that TX is not pseudo-effective [HP2, Proposition 4.11].

3.3 Hypersurfaces

The following result is proved in [HLS]:

Proposition 3.3. Let X ⊂ Pn+1 be a smooth hypersurface of degree d � 3 and dimension � 2. Then

S(X) = C.

In fact, the authors [HLS] proved the stronger result H0(X, Sp(TX(d − 3))) = 0, and also that TX is

not pseudo-effective.

4 The Krull dimension of S(X)

A complete description of the ring S(X) is in general intractable, but we can still ask for some of its

properties, for example, its Krull dimension. When S(X) 
= C, it is equal to 1 + κ(OPT∗X(1)), where κ

denotes the Iitaka dimension (see [C, Lemma 7.2]). We have 0 � dimS(X) � 2 dimX, and all cases can

occur. In particular,

dimS(X) = 2 dimX ⇐⇒ OPT∗X(1) big ⇐⇒ TX big.

This property holds for toric varieties [Hs], and also for all rational homogeneous varieties [GW,

Corollary 4.4]. The paper [Li] contains a number of other examples of varieties with a group action

whose tangent bundle is big.

Though the most interesting cases occur when the Kodaira dimension κ(X) is −∞, one may ask what

can be said when κ(X) � 0. The condition S(X) 
= C, or the weaker condition that TX is pseudo-

effective, imposes strong restrictions on X; see [HP2, Proposition 4.11]. The following bound is the main

result of this section:
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Proposition 4.1. dimS(X) � dimX−κ(X). The equality holds if and only if X admits a finite étale

covering of the form A× Y , where A is an abelian variety and Y a variety of general type.

It follows in particular that dimS(X) > dimX implies κ(X) = −∞.

Let us first show that the equality holds when there exists an étale covering A×Y → X with A abelian

and Y of general type. This follows from Subsection 2.1, Proposition 3.2, and the following lemma:

Lemma 4.2. Let X and Y be smooth projective varieties.

(1) We have S(X × Y ) ∼= S(X)⊗ S(Y ).

(2) If π : X → Y is an étale morphism, dimS(X) = dimS(Y ) and κ(X) = κ(Y ).

Proof. (1) Let pX and pY be the projections of X × Y onto X and Y , respectively. We have TX×Y =

p∗XTX ⊕ p∗Y TY , hence S•TX×Y = p∗XS•TX ⊗ p∗Y S
•TY . The result follows from the Künneth formula.

(2) π induces a finite étale morphism T ∗X → T ∗Y , hence S(X) = O(T ∗X) is a finite algebra over S(Y ),

thus dimS(X) = dimS(Y ). The equality of the Kodaira dimensions is proved in [Ue, Theorem 5.13].

For the rest of the proof, we will need some preliminary results.

4.1 Slope and positivity of vector bundles

We fix an ample divisor class H on X. We will say that a vector bundle is stable if it is slope-stable with

respect to H — the same for semi-stability and polystability.

Let E be a torsion free coherent sheaf of rank r onX. Recall that the slope μ(E ) of E is 1
r (c1(E )·Hn−1).

We denote by μmax(E ) the maximum of μ(F ) for F ⊆ E , F 
= 0.

Lemma 4.3. Let E and F be two vector bundles on X.

(1) μmax(E ⊗ F ) = μmax(E) + μmax(F ).

(2) μmax(S
pE) = p μmax(E).

In particular, if E and F are semi-stable, then so are E ⊗ F and SqE for any q � 1.

Proof. (1) is proved in [CP, Corollary 5.5].

(2) Let F be a subsheaf of E with μ(F ) = μmax(E). Then (SpF )∗∗ is a subsheaf of SpE, hence

μmax(S
pE) � μ((SpF )∗∗) � p μ(F ) = p μmax(E). On the other hand, since SpE is a subsheaf of E⊗p,

we have μmax(S
pE) � μmax(E

⊗p) = p μmax(E) by (1), hence (2) holds.

4.2 Symmetric algebra of vector bundles

Let E be a vector bundle of rank r on X. We will denote by S(E) the graded algebra H0(X, S•E).

Lemma 4.4. (1) Assume that E is polystable, and μ(E) = 0. Then dimS(E) � r.

(2) Assume E = F ⊕G, where μmax(F ) � 0 and μmax(G) < 0. Then S(E) = S(F ).

Proof. (1) If E is stable and h0(E) 
= 0, there is an injective homomorphism OX → E, which must

be an isomorphism; hence h0(E) � 1. It follows that h0(E) � r if E is polystable. Now SqE is also

polystable [HL, Theorem 3.2.11], so h0(SqE) � rk SqE =
(
q+r−1
r−1

)
, hence κ(OP(E)(1)) � r − 1 (see, e.g.,

[La, Corollary 2.1.38]) and dimS(E) � r.

(2) By Lemma 4.3 we have, for p, q ∈ N, q > 0:

μmax(S
pF ⊗ SqG) = p μmax(F ) + q μmax(G) < 0, hence H0(SpF ⊗ SqG) = 0.

Therefore H0(SpE) = H0(SpF ), and S(E) = S(F ).

4.3 Proof of Proposition 4.1

Without loss of generality, we may assume κ(X) � 0 and dimS(X) � 1. In particular, the projective

manifold X is not uniruled and TX is pseudo-effective. Moreover, since dimS(X) and κ(X) are invariant

under finite étale covering (see Lemma 4.2), we may replace X by any finite étale covering.

Proposition 4.11 of [HP2] provides a decomposition

TX = F ⊕G, (4.1)
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where F and G are integrable subbundles, c1(F ) = 0, and the restriction of G∗ to a general curve complete

intersection of hypersurfaces in |mH|, for m � 0, is ample. Since a quotient of an ample bundle is ample,

this implies μ(F ) < 0 for any nonzero subsheaf F ⊂ G, hence μmax(G) < 0. Then by Lemma 4.4 the

algebra S(X) is isomorphic to S(F ). By [PT, Lemma 2.1], F is polystable, hence Lemma 4.4 implies

dimS(X) = dimS(F ) � rkF.

By [PT, Proposition 2.6], detF is a torsion line bundle; passing to a finite étale covering we may assume

detF = OX , so that detG∗ ∼= KX . The natural inclusion G∗ ⊂ Ω1
X induces an inclusion detG∗ ⊂ Ωk

X ,

where k = rkG. Then the Bogomolov inequality (see [Bo, Theorem 4]) gives

κ(X) = κ(detG∗) � k = rkG,

hence

dimS(X) = dimS(F ) � rkF = dimX − rkG � dimX − κ(X),

which proves our bound.

Suppose that the equality holds. Then dimS(F ) = rkF and κ(detG∗) = k. By [Bo, Lemma 12.4],

the latter condition implies that there exists a rational map f : X ��� Y to a k-dimensional projective

manifold such that detG∗ ⊂ Ωk
X coincides with the saturation of the subsheaf f∗KY ⊂ Ωk

X . This implies

that the foliation F ⊂ TX is induced by f and thus is a regular algebraically integrable foliation. Since

detF ∼= OX , by the global version of the Reeb stability theorem [D3, Theorem 8.1], after replacing X by

a finite étale covering, we may assume that X is a product Z × Y , with F = pr∗Z TZ and G ∼= pr∗Y TY . In

particular, we obtain

dim(Y ) = κ(X, detG∗) = κ(Y ),

hence Y is of general type.

Finally, we use the first condition dimS(F ) = rkF . Since S(F ) is canonically isomorphic to S(Z), we

get dimS(Z) = dimZ. Since c1(F ) = 0, we have c1(Z) = 0, hence Z admits a finite étale covering of

the form A× T , where A is an abelian variety and T a simply connected smooth projective variety with

c1(T ) = 0 [B1]. By Proposition 3.1 and Lemma 4.2 we have S(Z) ∼= S(A), hence dimZ = dimS(Z) =

dim(A) (see Subsection 2.1), so that X = Z × Y admits a finite étale covering by A× Y .

5 Pseudo-effective tangent bundle

We discuss in this section the structure of non-uniruled projective manifolds X with pseudo-effective

tangent bundle.

Lemma 5.1. (1) Let D be a big divisor on X. A vector bundle E is pseudo-effective if and only if for

any c > 0, there exist positive integers i and j such that i > cj and

H0(X, SiE ⊗OX(jD)) 
= 0.

(2) If E is a pseudo-effective vector bundle, then μmax(E) � 0 for any polarization H.

(3) Let F → E be an injective map of vector bundles. If F is pseudo-effective, E is pseudo-effective.

(4) Let f : Y → X be a surjective morphism between smooth projective varieties, and let E be a vector

bundle on X. Then E is pseudo-effective if and only if f∗E is pseudo-effective.

(5) Let X = Y ×Z be a product of smooth projective varieties. Then TX is pseudo-effective if and only

if one of TX and TZ is pseudo-effective.

Proof. (1) is proved in [HLS, Lemma 2.2].

(2) If H0(X, SiE ⊗OX(jD)) 
= 0, there is an inclusion OX(−jD) ⊂ SiE. By Lemma 4.3, we have

μmax(E) =
1

i
μmax(S

iE) � −1

i
(jD ·Hn−1) > −1

c
(D ·Hn−1).
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As c is arbitrary, we obtain μmax(E) � 0, which proves (2).

(3) follows from (1) and the natural inclusion SiF ⊗OX(jD) ⊂ SiE ⊗OX(jD).

(4) Assume first rkE = 1. We only need to show that if f∗E is pseudo-effective, then so is E itself.

Indeed, assume the opposite. By [BDPP, Theorem 0.2], there exists a covering family {Ct}t∈T of curves

such that (c1(E) · Ct) < 0. Let {Ct′}t′∈T ′ be a covering family of curves on Y such that a general curve

Ct′ is mapped onto some Ct. Then we have (c1(f
∗E) · Ct′) < 0 by the projection formula, so f∗E is not

pseudo-effective by [BDPP, Theorem 0.2].

If rkE > 1, f induces a surjective morphism f̄ : P(f∗E∗) → P(E∗) such that f̄∗OP(E∗)(1) ∼=
OP(f∗E∗)(1); (4) follows from the previous result applied to f̄ .

(5) By (3) and (4), if TY or TZ is pseudo-effective, so is TX . Assume that TX is pseudo-effective. Let

HY and HZ be ample line bundles on Y and Z, respectively. Then H := HY �HZ is ample. By (1), for

any c > 0, there exist positive integers i and j such that i > 2cj and

H0(X, SiTX ⊗Hj) = H0(X, Si(TZ � TY )⊗Hj) 
= 0.

By restricting to Y ×{z} and {y}×Z, for y, z general, it follows that there exist non-negative integers p

and q such that p+ q = i, H0(Y, SpTY ⊗Hj
Y ) 
= 0 and H0(Z, SqTZ ⊗Hj

Z) 
= 0. Moreover, as p+ q > 2cj,

we also have either p > cj or q > cj. Since c is arbitrary and H is ample, it follows from (1) that one of

TZ and TY is pseudo-effective.

Remark 5.2. In general, if the tangent bundle TX of a smooth projective variety X is pseudo-effective

and splits into a direct sum F ⊕ G of vector bundles, it is not clear to us whether one of F or G is

pseudo-effective. Indeed, the splitting of TX in general does not imply the splitting of X itself, as simple

abelian varieties or Hilbert modular varieties show. However, it is conjectured by the first author in [B3]

that this splitting should come from a splitting of the universal cover of X.

Recall that a rank r vector bundle E on X is called unitary flat if it is associated to an irreducible

representation π1(X) → U(r).

Conjecture 5.3. Let X be a non-uniruled projective manifold. Then TX is pseudo-effective if and only

if there exists a finite étale covering X ′ → X such that TX′ contains a nonzero unitary flat subbundle.

Remark 5.4. (1) A unitary flat vector bundle E is semi-stable, hence nef by the Barton-Kleiman

criterion [La, Proposition 6.1.18(i)], hence pseudo-effective. So if TX′ contains a nonzero unitary flat

subbundle, it is pseudo-effective (Lemma 5.1(3)), hence TX is pseudo-effective (Lemma 5.1(4)).

(2) If the tangent bundle TX of a non-uniruled projective X contains a unitary flat subbundle F , then

F is actually a regular foliation with det(F ) torsion by [PT, Lemma 2.1 and Proposition 2.6]. We refer

the readers to [PT] for more discussion on the structure of this kind of foliations.

(3) Very recently, Jia, Lee and Zhong have studied in [JLZ] the non-uniruled smooth projective surfaces

S with pseudo-effective tangent bundle. They prove that up to a finite étale covering, S is either an abelian

surface or a product E×C of an elliptic curve E and a curve C of genus � 2. This solves Conjecture 5.3

in dimension two.

In higher dimensions, it is asked in [JLZ, Question 1.2] whether the pseudo-effectivity of the tangent

bundle of an n-dimensional non-uniruled projective manifold X is equivalent to cn(X) = 0 and q̂(X) > 0,

where q̂(X) is the augmented irregularity of X. The answer is negative in general. For example, let

X = Y × Z be the product of an irreducible simply connected Calabi-Yau variety Y with vanishing top

Chern class2) and a variety Z of general type with q(Z) > 0. The tangent bundles of Y and Z are not

pseudo-effective (see [HP1, Theorem 1.6] and [HP2, Proposition 4.11]). So Lemma 5.1 says that TX itself

is not pseudo-effective.

Because of the decomposition (4.1), Conjecture 5.3 is closely related to the following conjecture

proposed by Pereira and Touzet in [PT, Subsection 6.5]:

Conjecture 5.5. Let X be a non-uniruled projective manifold, and let F � TX be a regular foliation

such that F is stable for some polarization, c1(F ) = 0, and c2(F ) 
= 0. Then F is algebraically integrable.

2) See, for example, [KS, p. 1221] for the construction of threefolds with this property.
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Proposition 5.6. Assume that Conjecture 5.5 holds for dim(X) � n. Then Conjecture 5.3 holds for

dim(X) � n.

Proof. Assume that TX is pseudo-effective. Let TX = F ⊕G be the decomposition (4.1). Then F is a

regular foliation with c1(F ) = 0. By [D1, Theorem 6.9], there exist complex projective manifolds Y and

Z, a finite étale cover π : Y ×Z → X, and a regular foliation H on Y with c1(H) = c2(H) = 0 such that

π∗F = p∗Y H ⊕ p∗ZTZ . Since H is polystable [PT, Lemma 2.1], it is a direct sum of unitary flat bundles

[UY, Corollary 8.1]. Therefore it suffices to prove that H 
= 0.

Since c1(F ) = 0 and c1(H) = 0, we get c1(Z) = 0. Therefore there exists a finite étale covering

A × T → Z, where A is an abelian variety and T is a simply connected smooth projective variety with

c1(T ) = 0 [B1]. Without loss of generality, we may assume that Z = A× T . Moreover, after replacing Y

by A× Y , we may assume in addition that Z is simply connected. In particular, the tangent bundle TZ

is not pseudo-effective [HP1, Theorem 1.6], so TY is pseudo-effective by Lemma 5.1.

Applying [PT, Theorem 2.2] to Y yields a regular foliation J on Y such that TY = H ⊕ J . We have

on one hand π∗TX = π∗F ⊕ π∗G, and on the other hand

π∗TX = p∗Y (H ⊕ J)⊕ p∗ZTZ = π∗F ⊕ p∗Y J ;

this implies p∗Y J ∼= π∗G. Since μmax(G) < 0, J is not pseudo-effective (Lemma 5.1). Therefore H 
= 0

and we are done.

Conjecture 5.5 is wide open in general. It is known in the following cases, proved by Touzet [To] and

Druel [D1].

Proposition 5.7. Conjecture 5.5 holds if rk(F ) � 3 or rk(F ) = dim(X) − 1. In particular, it holds

for dim(X) � 5.

Proof. If rk(F ) � 3, this is proved in [D1, Proposition 6.8]. Assume rk(F ) = dim(X) − 1, and that

F is not algebraically integrable. By [To, Théorème 1.2], there exists an abelian variety A, a smooth

projective variety Y with c1(Y ) = 0, a finite étale covering π : A× Y → X and a linear foliation H on A

such that π∗F = p∗AH ⊕ p∗Y TY . Since F is stable for some polarization, Proposition 8.1 of [D2] implies

that Y is a point. Then π∗F = H is trivial, hence c2(F ) = 0, a contradiction.

Corollary 5.8. Conjecture 5.3 holds for dim(X) � 5.
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HLS Höring A, Liu J, Shao F. Examples of Fano manifolds with non-pseudoeffective tangent bundle. J Lond Math Soc

(2), 2022, 106: 27–59
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