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O. Introduction 

The Schottky problem is the problem of characterizing Jacobian varieties among 
all abelian varieties. 

More precisely, let: 

stg = HJSp(Z,  2g) 

be the moduli space of principally polarized abelian varieties of dimension g, 
Jg c ~q/g the locus of Jacobians. The problem is to find explicit equations for Jg 
(or rather its closure Jg) in s/g. 

In their beautiful paper [A-M], Andreotti and Mayer prove that Jg is an 
irreducible component of the locus N~_ 4 of principally polarized abelian varieties 
(A, O) with dim Sing O > g - 4 .  Then they give a procedure to write "explicit" 
equations for N~_ 4. 

There is no hope that Jg be equal to Ng_ 4: already in genus 4, there is at least 
one other component, namely the divisor 0,un of principally polarized abelian 
varieties with one vanishing theta-null (i.e. such that Sing O contains a point 
of order 2). Our aim is to prove the following: 

Theorem. a) No = J4 w 0null. 

b) The divisor 0nu n is irreducible. 

In genus 5, the locus N1 c ~'5 has already many components. However, we 
prove that J5 is the only component of N1 not contained in 0ha H. 

The proofs use the fact that a generic principally polarized abelian variety of 
dimension 4 or 5 is a Prym variety. In [M 2], Mumford gives a complete list of 
all Prym varieties with dim Sing ~ ~ g -  4. If every principally polarized abelian 
variety (of dimension 4 or 5) were a Prym variety, the results would follow at 
once; however we see immediately from Mumford's list that the product of an 
elliptic curve and a non-hyperelliptic Jacobian-for  instance-is not a Prym 
variety in the classical sense. 
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Thus the main ingredient of the proofs is the construction of the generalized 
Prym varieties which appear in the closure of the locus of ordinary Prym varieties 
in ~r It turns out that the whole theory of Prym varieties, as developped in 
[M 1] and [M 2], extends to certain coverings of curves with ordinary double 
points. These generalized Prym varieties were known in the case of one ordinary 
double point (see [M 2] and (3.6) below); in general, they naturally appear as 
intermediate Jacobians of certain non-singular varieties, for instance the inter- 
section of three quadrics in P:"  (n > 2). 

After some preliminary results (w 1 and 2), we define the generalized Prym 
varieties in w 3. In w 4, we give a list of all the generalized Prym varieties with dim 
Sing O > g -  4. The method is that of [M 2], but there are some technical difficulties 
due to reducible curves. It should be noted that the proof  of the result for Prym 
varieties of dimension 4 and 5 (the only one to be used in this paper) is considerably 
simpler; in particular, the hardest part of Lemma 4.9. (from (4.9.4) on) is not needed. 
However, we have insisted on giving a general proof  because of the application to 
intermediate Jacobians: thus Theorem 4.10 implies for instance that every smooth 
intersection of three quadrics in p6 is non-rational. 

In w 5 and 6, we prove that the locus of generalized Prym varieties is closed 
in ~r this follows from the work of Deligne and Mumford on compactification 
of the moduli space of curves. In w 7 and 8 we apply these results to principally 
polarized abelian varieties of dimension 4 and 5. 

Most of our results are actually valid over an algebraically closed field of any 
characteristic different from two. In particular, we obtain as a consequence the 
irreducibility of the moduli space of principally polarized abelian varieties of 
dimension 4 or 5, over a field of characteristic p ~ 2 ~ 

I am heavily indebted to H. Clemens for his continual encouragement. I wish to thank Columbia 
University for its hospitality during the preparation of this paper. 

Terminology and Notation 

Throughout  this paper we fix an algebraically closed field k of characteristic 4: 2; 
all varieties considered are defined over k. By a point of a variety we mean a point 
rational over k. 

A curve is a one-dimensional variety over k (that is, a one-dimensional reduced 
scheme of finite type over k). The genus Pa (C) of a curve C is defined by: 

p,,(C)=l-X(Oc). 

Let C1 . . . . .  C, be the irreducible components of C. For  any vector bundle E 
on C, the multidegree deg(E)=(rl  ... re) is defined by r~=deg Eic ̀ and the degree 
of E by deg(E)= ~ r~. For any coherent sheaf F on C, we write: 

dim n~ F)=h~ F) 

(or h ~ (F) if there is no ambiguity on C). 

1 I am grateful to F. Oort for pointing out to me that this fact was not known, and that it should be 
a consequence of the results contained in this paper 
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1. Theta-Characterist ics  on a Singular Curve 

In this section we indicate how to modify the proofs in [M 1] to get the corre- 
sponding results for curves with arbitrary singularities. 

(1.1) Theorem. Let 

(i) ~: ~ ~ S be a proper, f lat  family of curves. 

(ii) ~ a coherent (p~c-Module, f lat  over S, such that for all s eS  the induced 
sheaf ~s is torsion-free of rank r. 

(iii) Q: r  o)~c/s a non-degenerate quadratic form. 

Then the function s~--~dimH~ mod2 is constant on connected compo- 
nents of S. 

Here co~c/s is the relative dualizing sheaf f t  (ps ([H]), that is, a sheaf whose 
restriction to each fibre ~ is the dualizing sheaf e)~rs. By (iii), we mean that Q 
induces an isomorphism ~, ~, Hom~rs (g~, e)j:,) for each s. 

N 

1) Define a =  ~ P~ where the Pi are non-singular points of :~s. Since E=~fs 
i=1 

is locally free outside the singular locus, one gets as in [M1]:F(E)=F(E(a) )  
c~ F(E/E( - a)) in F(E(o)/E( - o)). 

2) Use Grothendieck duality instead of Serre duality: since Ext~r (E, ~o~)= 0 
by local duality, one still gets dim W 1 =d im W 2 = Nr, dim V= 2Nr. 

3) Replace ordinary residue by generalized residue ([A-K]). The function on 
N 

E (a) /E(-  a) given by q (2)= ~ Resp, Q (ai) still defines a non-degenerate quadratic 
form on V. i= 1 

The theorem follows as in [M 1]. 

Before stating the following corollary, we fix some notation: we denote by 
J2 the set of line bundles L on C such that L 2 - (9c; we define the pairing e 2 on 
J2 by: 

e2(~, f l )=e2 . s ( f*  ~z, f *  ~) 

where f :  N--, C is the normalization of C, and ez. N : (JN)2 ~ { ----- 1} is the pairing 
induced on the group of points of order 2 by the Riemann form of J N  ([M 3]); 
we could as well define e 2 directly as for abelian varieties, or by the cup product 
on H 1 (C, Z/(2)). 

(1.2) Corollary, Let C be a curve, L o a " theta-characteristic " on C (a torsion free, 
rank one (pc-module such that L o ~-Horn (Lo, O)c) ). Then the map from J2 to Z/(2) 
defined by 

Lv-- ,h~174176 (mod 2) 

is a quadratic form on J2 whose associated bilinear form is e 2 . 

Proof. Let L, M be two line bundles on C such that L 2 _-_ M2---(pc. We want to 
prove: 

h ~ 1 7 6 1 7 4 1 7 6 1 7 4 1 7 6 1 7 4 1 7 4  (mod 2) 
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where In( l )=0,  l n ( - 1 ) = l .  One defines a quaternion algebra structure on 
A = O c + L + M + L |  as in [M1].  Then A is isomorphic to Hom(E ,E)  for 
some rank 2 vector bundle E on C: and since f * A  ~ H0m ( f*  E, f *  E), Lemma 2 
in [M 1] gives: 

d e g E = l n e 2 ( L , M )  mod2. 

Now by Lemma 1.3 below the set of vector bundles of given rank and multi- 
degree is connected, hence by the theorem: 

h ~ (Lo| A) = h ~ (Lo |  (E', E')) mod 2 

for any rank 2 vector bundle E' with deg E' =deg  E. We pick a line bundle F on C 
with deg F = d e g  E, and take E ' =  OcOF. Then: 

h ~ (L o @Hom (E', E')) = 2 h ~ (Lo) + h ~ (L o | F) + h ~ (L o | F -  ~) 

= h ~ 1 7 4 1 7 6 1 7 4  -1) mod2  

= z ( L o |  by Grothendieck duality 

= deg F by Riemann-Roch 

= In e2 (L, M). 

(1.3) Lemma. Given integers r>>_ 1; d~, ..., d c, there exists an irreducible variety 
S and a vector bundle ~ on C x S of  rank r and multidegree (d 1 . . . . .  de) such that any 
vector bundle of  rank r and multidegree (dl, ..., dc) on C is isomorphic to glc• 
for some seS. 

Proof. The lemma is well-known if C is non-singular (IS]). If C is singular, define 
the skyscraper sheaf ~ by the exact sequence: 

0 --~ ~c-- , f ,  ON --~ 6 ~, 0. 

Let E be a rank r vector bundle on C. Choosing an isomorphism E _v~ r near 
the singular points, we get: 

O - - ~ E - - ~ f , f * E ~ 6 r  ~O.  

Thus any vector bundle E on C can be given by a vector bundle F = f * E  on N, 
plus a "descent data"  morphism h: f ,  F ~  ~" which must be surjective with locally 
free kernel. 

Now let T be an irreducible variety parametrizing all vector bundles of rank 
r and multidegree (dl, ..., de) on N, o ~ the corresponding vector bundle on N • T, 
p, q the projections from C x T onto C, T. 

N x T  I~ ~ C x T  

C T. 
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The sheaf H = q,  Hom (fr,  8, p* 6 ~) is locally free on T (since locally over T 
we may replace r by (gb• then H becomes isomorphic to q,p*G, with G =  
H o m c ( f ,  C~r 6~), but q,p*G=(gr |  ~ (C, G) is a free d~r-module ). We denote 
by Sl the associated vector bundle (S 1 --V(/-)) in EGA notation), by k: C x S 1 --~ 
C x T the projection; on C x $1 there is a canonical morphism: 

h: k* fT.g--~ k* p* 6 ~ 

such that a point s in S 1 is given by a point te  T, together with a morphism hlc• 
f .  (8IN • m)--~ 6'. We take the open set S in S~ consisting of points seS  such that 
hlc • ~ is surjective with locally free kernel. S is irreducible, and by what we have 
seen, S together with the vector bundle Ker h on C x S give a complete family of 
vector bundles on C. 

2. Theta Divisor of a Generalized Jacobian 

We consider a connected curve C of genus g, with only ordinary double points. 
We denote by JC the generalized Jacobian of C; recall that JC is a smooth commu- 
tative algebraic group, and the points of JC can be naturally identified with 
isomorphism classes of line bundles on C of mu.ltidegree (0 . . . . .  0). The normaliza- 
tion f:N---~C induces an epimorphism f*:JC---~JN, whose kernel is a torus 
(i.e. a multiplicative group (G J ) .  For any line bundle L of degree g - i  on C, we 
define 0 L as the locus of line bundles M in JC such that: h ~ ( L |  1. We denote 
by O' the theta divisor on JN  (defined up to translation). 

Our aim is to prove that OL is a divisor, algebraically equivalent to ( f . ) - i  (O'). 
However, if C is reducible, this will be true only for a good choice of deg (L). To 
deal with this case, we associate to the curve C a graph F: 

The set of vertices of F is the set {C1 . . . . .  Co} of irreducible components of C; 
an edge between two vertices Ci, Cj corresponds to a point of C, c~ Cj. 

(2.1) Lemma. Let d=(d~, . . . ,dc)  be a multidegree such that ~ d g = g - 1 .  The 
following conditions are equivalent: 

(i) There exists a line bundle L on C, of multidegree d, with h~ 
(ii) Given line bundles L o on C, and L 1 on N such that: 
deg(Lo)=_d; deg(L1)=�89 there exists an irreducible non-singular 

variety S, a coherent sheaf ~ on C x S, fiat over S, and two points So, s~ GS such that: 

- L~~ =SalC• is torsion-free of rank one, for each s in S; 
- ~ o  ~ L o ;  
- ~ 1  ~-f , (LO.  

(iii) The graph F can be oriented in such a way that, if k i denotes the number 
of edges starting from Ci, one has: 

d i = P a ( C i ) - l + k  ~ (i=1, ..., c). 

Assume moreover that the restriction of to c to C~ has even degree for each i; 
then the multidegree _d =�89 deg (COc) satisfies conditions (i) to (iii). 
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Proof. (iii)=~(ii). We use the same construction (and notation) as in Lemma 1.3. 
Here we take for T the variety of line bundles L on N with degL=_d, and for 

a Poincar6 line bundle on N x T; we define S 1 as in Lemma 1.3 and denote by 
S O the open set in S I consisting of points s such that hlc• is surjective; so a 
point s of S O corresponds to a line bundle L on N (of multidegree d), together with 
a surjective morphism on C: hs: f .  L ~  6. Let z be a singular point, f - 1  ({z}) = {x,y}, 
U a neighborhood of z in C which contains no other singular points and such that 
L - O  N on f - x  (U). Choosing a generator of L on f - 1  (U), one checks easily that 
hs is given by: 

h~( t )=~ t ( x )+  fl t(y) with ~,f l~k.  

If e and f l . 0 ,  Ker h~ is an invertible sheaf on U; if for instance e * 0 ,  f l=0,  then 
Ker h~ is isomorphic on U to f .  ((9 N ( - x)). 

Define ~ = Ker  h on So. Since k* ~ and k* p* 5 are flat on So and h is surjective, 
~r is fiat on So. Let s be a'point in So. Ifhs is such that a and f14:0 at each singular 
point, then ~ = L~'lc • (sl is an invertible sheaf of multidegree _d, and all the invertible 
sheaves of multidegree d are obtained that way. On the other hand, if we choose s 
such that a. fl = 0 at every singular point, then 

~<tas = f ,  (L( - ~ x,)) 
i 

where {f(x0,  . . . ,  f(xm)} is the set of singular points in C. 
To achieve the proof that (iii) implies (ii), we must show that we can choose 

one point x i ~ N  above each double point z i of C in such a way that: 2 deg L ( -  ~xi )  
i 

=deg ~o N. If z i belongs to only one component of C, we choose xi arbitrarily 
(among the two points of f - l ( z i )  ). Suppose that z i belongs to two components. 
We consider the graph F; we assume it is oriented so that property (iii) holds. 
The point z~ corresponds to an edge of F, and we choose the point x i ~ f  -1 (zi) 
which lies in the component corresponding to the starting point of the edge. 

For  1 =<j < c, let l~ be the number of double points of C which belong to C~ 
and not to C k for k #:j. Then: 

deg L( - ~ xi) Ic~ = d j -  k j -  lj = p, (C j) - I t - 1 = p~ (Nj) - 1, where Nj is the co m- 
i 

ponent of N which dominates Cj. Hence, 2 deg L ( - ~  xl)=deg coN, so we have 
proved that (iii) implies (ii). i 

(ii) =~ (i): Assume that property (ii) holds. We can choose L 1 such that h ~ (N, LI) 
= 0 ;  then there is a neighbourhood U~ of s~ in S such that h~ ~ , ) = 0  for se  Ut. 
On the other hand there is a neighbourhood U o ofs o in S such that ~ is an invertible 
sheaf of multidegree d when t e U o. If u~ Uo c~ U~, the invertible sheaf L =L~, 
satisfies condition (i). 

(i)=~ (iii): We prove this by induction on the number m of edges of F. If m=0,  
there is nothing to prove. If m > 0, let us choose an edge of F, i.e. a point s of Ci c~ C~ 
(i 4:j). Let f,: N~ ~ C be the normalization of C at the point s. We get as before an 
exact sequence: 

O--*L--*(f~), f~*L h~ , 5 - ~ 0 ,  with f=k(s ) .  
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Since h ~ (L)= 0 by hypothesis and h I (L)= 0 by Riemann-Roch, the mapping: 

h~: n ~ (N~, fs* L) -* 6 

is an isomorphism. Therefore H~ f~* L) is generated by a section t such that: 
h s (t) # 0. If f -  1 (s) = {si, s j}, we have seen that: h~ (t) = ~ t (si) + fl t (s j), with a and f l .  0. 
It follows that t cannot vanish identically both on C~ and Cj. Suppose that t does 
not vanish identically on C~; then ifx is a generic point of C~, the sheafE = f *  L ( -  x) 
on N~ verifies h ~ (E) = 0. If N~ is connected, one has deg (E) = Pa (Ns) - -  1, SO that one 
can apply the induction hypothesis to E; if N~ has two connected components 
N 1, N2, one checks that: degE iN=p , (N i ) - I  ( i= 1, 2), so that we can apply the 
induction hypothesis to EIN ~ and EIN 2. In both cases, if e s denotes the edge of F 
corresponding to s, we can find an orientation of F-{e~} such that (iii) holds 
(with respect to deg (E)); then we orient the edge e, from C~ to Cj. It is immediate 
that the orientation obtained for F satisfies (iii). 

The last assertion of the lemma follows from Euler's graph theorem: a graph F, 
such that the number of edges passing through each vertex is even, can be oriented 
in such a way that at each vertex p, the number of edges starting from p equals 
the number of edges abutting to p. 

Recall that we denote by O' a theta divisor on JN, and by 0 z the locus of 
line bundles M in JC such that h ~  1. 

(2.2) Proposition. Let L be a line bundle on C whose multidegree satisfies the 
equivalent conditions of Lemma2.1 (for instance 2 deg(L)=deg(mc)  ). Then OL 
is a divisor, algebraically equivalent to ( f , ) - x  (0'). 

Proof. Choose S, s So, s 1 as in condition (ii) of the lemma, with L = L o. We want 
to construct a divisor Z in JC • S, flat over S, such that for each s in S, Z s is the 
locus of line bundles L in JC with h ~ (L~as| 1. We use Kempf's construction 
(see [Sz]). Let ~ be a Poincar6 bundle on C x JC, p, q, r, m the projections from 
C x J C x S  onto C x S ,  J C x S ,  C•  C. We put ~ = r * ~ |  Let s~S, 
cteJC (corresponding to a line bundle L~ on C); one has by definition: 

~ c  • ~ • ~s~ = ~ s |  L~ �9 

Let us choose g non-singular points xl, ..., x~ on C such that if D = ~ xi, one has 
deg Dic~>dj for each j. Since L~ a is invertible around {xi} • S, we get an exact 
sequence: 

0--, ~ |  (gc(-D)--~ ~r. ___~ ~ @ m *  (gO---~ O. 

Apply q.  to this exact sequence; we claim that: 

- -  q, ( ~ |  (9o) is locally free of rank g. 

- R lq . (~ |  

- R 1 q.  (~- |  (9c ( - D ) )  is locally free of rank g. 
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TO prove these assertions, it is enough (using [EGA 1II.7]) to show that for 
each seS, oc~JC: 

h ~ (C, ~q~s|174162 = g, 

h 1 (C, ~s|174 , 

hl ( C,~q~s| D))=g. 

The first and the second equality are clear; the third one follows from the choice 
of the x i and Riemann-Roch formula. 

Therefore we obtain an exact sequence: 

E1 --~ E 2 ~ R 1 q,  (~ )  --~ 0 

where E~, E: are locally free sheaves of rank g on JC x S. 
Let p =(~t, s) be a poitlt in JC • S. Since the formation of R ~ q,  (,~) commutes 

with base change, we get an exact sequence" 

El(p) "(') , E : ( p ) - ,  H' (C, ~ |  O. 

Since h 1 (~s|  = h ~ (.L~ | L~) by Riemann-Roch, we conclude that h ~ 1 7 4  
1 if and only if det (u (p)) = 0. 
We define the divisor Z on J C x S by the equation det (u)= 0. Then, by con- 

struction, for each s in S, Z~ is the locus of line bundles M in JC with h ~ (Ae~QM) 
> 1. Since by 2.1(ii), for each s in S one has Z ~ , J C ,  Z is flat on S. Since: 

f ,  (LO| M ~- f ,  (L~ | f *  M), 

one has Z~I = ( f , ) - x  (6),), where 0 ' =  {M~JN, h ~ (LtQM)>__ 1}; and also Z~o= 6) L. 
So 0 L is algebraically equivalent to ( f*) -1  (6)'). 

Fix an L as in the Proposition, and put 6)L = 6). The divisor 6) on J C  defines a 
group homomorphism: 

2" ~ JC(k)--~" Pic(JC) 

"( a~sc(6)o-O) 

([L, p. 75]); here dC(k) denotes the group of rational points of JC. Similarly the 
divisor 6)' on JN defines a morphism of algebraic groups: 

/,, 
p: JN--} Pic~ JN. 

(2.3) Corollary. The diagram: 

JC(k) z ,P ic (2C)  

JN(k) z , JN(k) 

is commutative. 
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The corollary is an immediate consequence of Proposition 2.2 and Proposition 
4 in [L, p. 75]. 

(2.4) Remark. Let C ~  S be a flat family of curves of genus g, with at most ordinary 
double points, and let JC-*S be the corresponding flat family of Jacobian 
varieties (JC is an algebraic space: see [A]). Locally over S for the 6tale topology, 
one can find a line bundle L on C such that d e g ( L ~ ) = g - 1  and h~ 
for each s in S. Then, for each s in S, the multidegree of L, satisfies condition (i) 
of Lemma 2.1. One sees as in the proof  of Proposition 2.2 that the divisors OL, 
on JC~ fit together to define a divisor 0 on JC, flat over S, such that Olsc= OL~ 
for each s. 

3. Generalized Prym Varieties: Definition 

Throughout  the rest of this paper, C is a connected curve with only ordinary 
double points, f :  N - *  C its normalization, t: C--~ C an involution 02=Id) .  

(3.1) Lemma. The quotient curve C/O) has only ordinary double points. 

Proof. We have only to check what happens at a singular point s of C fixed under 
the involution. Let 6s be the local ring of C at s; the completion (~s can be identified 
with k [[u, v]]/(u v). If the involution exchanges the two branches of C at s, one 
can choose u, v so that i* u=  v, z*v =u ;  then the subring of invariants in O~ is 
the ring of formal power series in u + v, which is regular. If the branches at s are 
not exchanged, one can choose u, v so that z* u = - u, z* v = - v; hence the subring 
of invariants is k [[u 2, v2]], which is isomorphic to k [[x, y]]/(x y). 

We now assume: 

(.) The fixed points of ~ are exactly the singular points, and at a singular point 
the two branches are not exchanged under L 

We note C = C / 0 )  the quotient curve, n : C - ~ C  the projection, f :N- - .C  
the normalization of C, rc ' :N-~ N the morphism deduced from g (so that fo~ '  
=nor): 

I 

N : , C  

n' is a two-sheeted covering, ramified at the points x~, Yi of N which lie over singular 
points z i of ~. 

(3.2) Lemma. n* co c -  co e. 

Proof. o) e is the sheaf of forms (5 on/q?, regular except for simples poles at the x~ 
and yj, with Resx, (~5)+ Resy, (~5)=0. Since n is etale outside the singular points, 
and Resx, n*tn=2Res~x,o~ for a form ~o~COc, one gets div(Tt*o))=n*div(o)), 

�9 hence n* co c ~- co e . 
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One should notice that n is not a two-sheeted covering in the usual sense; 
in fact, n is not flat at the singular points. From Lemma 3.2 we obtain: pa(C) 
= 2 p o ( C ) -  1. 

We shall need some facts about Cartier divisors on C and C. L e t / (  (resp. K) 
be the ring of rational functions on C (resp. C), that is the product of the fields 
of functions of the components. The group of Cartier divisors on C is: 

K~/r Div(C')= ~ Z . x  + ~)  -* * 
x E e r e g  $ s i n g u l a r  

Let s be a singular point of C, s~, s2 the two points of N lying over s, vt, v2 the 
corresponding valuations of / ( .  One has an exact sequence: 

~ *  * U1, l)2 O-'k*-~K~/C~s ) Z@Z-~O 

f (sO 
the kernel is identified with k* by I ~ - ~  ] �9 

It is convenient to split this exact sequence by choosing uniformizing param- 
eters t~ and t 2 at s~ and s2, thus getting an isomorphism: ~* * ~ k* K ~ / ~  , x Z x Z .  
With this identification, assuming l*tl~---tl, l*t2=--t2, the action of t on 

~ ,  , 
K s/r is simply: 

t* (z, m, n)~ = ( ( -  1) m+" z, m, n)s. 

The norm of R,/K maps (9r into (9c, thus gives a diagram of exact sequences: 

/(* , Div(C) , Pic(C)---, 0 

i N~/r ~, i n~ 

K* , Div(C) , Pic(C)--~ 0 

where: 

- n .  is the direct image under n: n . ( ~  x l ) = ~  nxi  for xie Creg, 
i i 

it, ((z, m, n)s)=((-  1) m+n z a, m, n)= s (follows from the formula for l*). 

- Nm: Pic(C)--~Pic(C) is the usual norm for line bundles ([EGAII.6.5]), 
which induces a morphism of algebraic groups Nm: JC--~ JC. 

(3.3) Lemma. I f  L is a line bundle on C such that Nm L -~ (9c, then L _~ M |  t* M -  1 
for some line bundle M on C'. Moreover M can be chosen of  multidegree (0 . . . .  , O) 
or(1,O . . . .  ,0). 

Proof. As in [M 1], Lemma 1, we get L=t~(D) where n . (D)=0.  Writing D = ~  x i 
i 

+ ~ (Zs, rn~, ns) , we get that D is a linear combination of divisors x - i x ,  
s singular 

for x ~ ('~r,g, and ( -  1, 0, 0)s at singular points s; but ( -  1, 0, 0)= (1, 0, 1 ) -  t*(1, 0, 1), 
hence D = E - I * E  for some divisor E and L ~ M |  -1 with M = 6 ( E ) .  We 
may replace M by M |  for any line bundle N on C, hence assume deg(M) 
=(e 1, ..., ec) where ei=0 or 1. Since ( I d - 0 " ( 1 ,  1 , -  1)=0 and (~ is connected, 
we can further normalize M as in the statement of the lemma. 
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We denote by P (resp. P1) the variety of line bundles in Ker (Nm) of the form 
M | t* M-1 with deg (M)= (0, ..., 0) (resp. (1, 0 . . . . .  0)). Note that P is a connected 
algebraic subgroup of JC. 

(3.4) Proposition. Fix a line bundle L o on C with L2o _~ o9 c. The function: 

L~--~ h ~ (L| Lo) 

is constant mod 2 on P and on P1, and takes opposite parity on P and P1. 

Notice that such an L o always exists, since the hypothesis (,) insures that 
deg COClc, is even for all i. 

Proof. We first prove that h ~ ( L |  Lo) = h ~ ( L o |  , L) is constant mod 2 when L 
varies in a connected algebraic family; for this we exhibit a non-degenerate 
quadratic form S z ( L o |  , L)-- ,  o) c (or, what amounts to the same, S 2 n ,  L-* (9c) 
and apply Theorem 1.1. The norm induces a quadratic form: 

S 2 n ,  L--~ Nm(L)~-  (9 c 

which can be identified locally with: 

SS 2 n ,  (9~ --, Cc Q 
h ~ N m  (h) 

and Q is easily seen to be non-degenerate by local computation. The proof in 
[M l] that h ~ (L|  Lo) takes opposite parity on P and PI applies in a straight- 
forward manner to our case (use Lemma 3.2 in Step II). 

(3.5) Proposition. P is an abelian variety o f  dimension Pa ( C ) -  1. 

Proof. We look at the diagram: 

0--,~ , s~  ,sR ~ 0  

1 Nm Nm 

�9 . ,  4 "  

O---~ T ~ J C  ~ JN--~O 

where T and T are the groups of classes of divisor of multidegree (0, ..., 0) with 
singular support; n* induces an isomorphism of T onto T, hence, since N m  o n* = 2, 
Nml~ is surjective and Ker Nml~ = T2 = {points of order 2 in T}. 

Thus one gets an exact sequence: 

0--~ T2--* P x Z/2 g ~ R--~0 

where R =  KerNmls ~ is a complete subvariety of j~r;  therefore P is complete, 
reduced and connected, hence an abelian variety. 

(3.6) Remark. R is an abelian variety, called in [M 2] the Prym variety associated 
to the ramified two-sheeted covering N ~ N. Notice that g: P---, R is an isogeny, 
but not an isomorphism if the dimension t of T is greater than 2: in fact #ker(g) 
= 2  t-1. 
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Using the line bundle n*L  o we define a divisor O on JC  (w 

(3.7) Theorem. O induces twice a principal polarization on P. 

The statement of the theorem means that O ' =  Oiv is algebraically equivalent 
to 28,  where ~ is an ample divisor with h ~ ((9 (8))= 1; or, equivalently, that the 
morphism 

~ P ~ P  
P: ( a ~ ( g p ( O ~ - O ' )  

is twice an isomorphism. By Corollary 2.3, we have a commutative diagram: 

p . ) p  

R r )JIY u ) J N  )R  

We first need the following lemma: 

(3.8) Lemma. Let h: A --~ B be an isogeny of abelian varieties, fl: B --, B a principal 
polarization on B, 0~=~ofloh the pullback of fl on A. 

Assume: 

(i) Ker h c A2, the set of  points of  order two in A; 
(ii) h(A2) is totally isotropic maximal with respect to the symmetric pairing 

defined by fl on B 2 . 
Then Ker ~ = A2. 

Proof of the Lemma. Let us consider A 2 and B 2 as vector spaces over F 2 , and denote 
by A* and B* the dual spaces. Cartier duality provides us with a commutative 
diagram: 

0---~ A2 ~- )A 2 ) A - * 0  

h2 h ih 

0--~B 2 ~- ) B 2 , B - * 0  

0--,A~ , ~  ~ ,A--,0 

where the horizontal rows are exact. 
It follows from (i) that K e r h c ( ~ ) 2  , hence: f l-l(Ker~)=[t-~l(Kerth2)= 

~-  1 ((Ira h2)*) = (Ira h2) 1, where the sign J_ means orthogonality with respect to the 
pairing on B 2 defined by ft. 



Prym Varieties and the Schottky Problem 161 

Now, (ii) implies that (Im h2)  "l" = Im h 2 ,  s o  that: Ker ~t = h-1 (Im h2)  = A 2 q- Ker h 
~ A  2 . 

Proof of Theorem (3.7). We apply the lemma to the isogeny h: P x JN--~J~I and 
the principal polarization on JN. We check the conditions (i) and (ii): 

(i) An element of Ker(h) is a pair (L, M) with LeP, M~JN and f * L |  
(P~. Write M = f *  M' for some M'~JC; then L| M'~ker  f * =  T, hence since 

T=n*(T) ,  L~-n*M '' for some M"eJC. Using Nm(L)~(P c one gets M"2=(Pc, 
hence L 2 = (P~ and M 2 =  (_9 N . 

(ii) Let e2, ~ (resp. e2, N) the pairing defined on JN2 (resp. JN2) by the polar- 
ization. Nm and n'* are dual with respect to the polarizations on J N  and JN, 
therefore: 

e2.yv(~z'* a, b)=e2,N(a, Nm(b)) for aEJN2, b~JN 2. 

In particular, n'*JN 2 is orthogonal to both itself and f ' P 2 .  Now if L, M~P2, 
Corollary 1.2 gives: 

In e2.~(f* L, f *  M)=h~ Lo)+h~ LoQL)+h ~ (n* LoQM) 
+h ~ (n* LoQLQM) (mod 2) 

- 4 h  ~ (n*Lo) mod 2 by Proposition 3.6, 

hence the subspace h(P 2 x JN2) is totally isotropic in JN2. To prove that it is 
maximal, we have only to check that: 

dimF 2 (h(P2 • JN2)) = 1  dimF 2 (JN2)- 

Since dimF2 (P2 • JN2)=dimr2 (Jb~2), it is equivalent to show that: 

dimF2 (Ker h)=�89 dimF2 (J~r2). 

We have shown in the proof of (i) that: 
Ker h={(n* a, f ' a )  where a~JC 2 is such that n*a~P}. 
Since n* (resp. f*)  is injective when C is singular (resp. non-singular), we 

conclude that Ker h is isomorphic to the group of points a ~ J C 2 such that n*a ~ P; 
this group is the kernel of the linear form given by the composition: 

q~: JC 2 ~*, Ker(Nm) , Ker(Nm)/P ~ , F2 

(where the last isomorphism is given by Lemma 3.3). 
We now prove that r 4=0. If C has a singular point s, let D~ be the divisor 

( -  1, 0, 0)2 and d the class of(Pc(D ) in JC; then deJC2 and since n* D ~ = ( -  1, 0, 0)~, 
one has n*d~P1, hence ~o(d)= 1. If C is non-singular, it follows from [M2]  (or 
directly from Corollary 1.2) that: 

~o(a)=(e. a) for each aEJC2, 

where e is the only non-zero element of Ker (n*); in particular tp 4=0. Therefore, 
in any case, if we put t = dim (T)= dim (T), we obtain: 

dimr2 (Ker h) = dim~2 (J C2) - 1 = 2 g - t - 1 

while dim~2(J]V2)=2dim(J~1)=2(2g-l-t), which achieves the proof of (ii). 
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Therefore the lemma applies and gives: 

Ker (~ o # o h)= P2 x J N  2 . 

But the polarization ~ = h o/~ o h can be written as a sum of four morphisms: 

p:P--~P;  a :P- -~JN;  z :JN- -~P;  v : J N - - * J N .  

Since n'* and Nm are dual to each other with respect to the principal polarizations 
of J N  and J N  ([M2]), we find that a = 0 ;  then from ~ = a  we deduce that z = b = 0 .  
We conclude that Ker(p)=P2, which proves the proposition. 

(3.9) Definition. The abelian variety P, together with the principal polarization 
defined by 22  =-6)le in NS(P), is the (generalized) Prym variety associated to (C, O. 

Actually, as in the non-singular case, the relation between O and ~ can be 
made much more precise: 

(3.10) Proposition. Choose L o such that h~ is even (and L2 ~o9c). Then, 
with the preceding notation: Ole=2S,  where ~ c P  is a divisor in the class of the 
principal polarization on P. 

Notice that one can always find such an Lo: ifs is a singular point of C, D the 
divisor ( -  1, 0, 0) s, then h~ * (Lo(D))) = h~ * Lo) + 1 (rood 2), by Lemma 3.3 and 
Proposition 3.4. 

To prove the proposition, we need Riemann's singularity theorem for singular 
curves. We state a ,more general result: 

(3.11) Proposition. Let C be a curve, J C* the variety of line bundles L on C such 
that 2degL=degcoc ,  6) the divisor of line bundles M in JC* such that h~ 1, 

L e O ,  tp the pairing: 

H~174176174 -1) --. H~ 

Choose a basis (s o of H~ a basis (tj) of H~174 identify H~ to the dual 
of the tangent space T to JC* at L. Assume the function det(~o(si| ) is not 
identically zero on T; then it defines a hypersurface in T which is equal to the 
tangent cone to 6) at L. In particular the multiplicity of 6) at L is h~ 

Proof of Proposition (3.11). The proposition is proved in Kempfs  thesis (see [Sz]) 
when C is irreducible; the argument can be adapted to the general case as follows: 
let ~' be a Poincar6 bundle' on C x JC*, q: C x JC*  ~ J C *  the projection. Put 
h~ choosing m non-singular points xl . . . . .  XI such that H~ L ( - ~ x i ) )  
=(0), we get as in Proposition 2.1 an exact sequence in a neighborhood U of L 
in JC*: 

dg~ - ~  (9~ , R ~ q , (~ )  --~ 0 

and a local equation for 0 is det (u)= O. 
Since h~ the coefficients uij of u are zero at L; the tangent cone to 0 

at L is given by the determinant of the first-order terms of the u o -  unless this 
determinant is identically zero. In other words, let t be a tangent vector to JC* 
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at L; t corresponds to a morphism Speck [e]---, J C* (e2= 0), or equivalently to 
a line bundle L~ on C, = C x Spec k [e]; and t is tangent to O at L if dim k Ker(t* u) 
> m + l .  Now by construction, Ker(t*u)_~H~ the tangent vector t, 
viewed as an element of Hi(C, (9c)-~ Ext~c(L, L), corresponds to an extension of 
sheaves: 

O--~ L--~ L ~---~ L--~ O 

which gives: 

0--* H~ --~ H~ --~ n~ A~ H'(L). 

Thus t belongs to the tangent cone if and only if the map H~ HI(L) defined 
by cup-product with t is not an isomorphism. By choosing a basis for H~ and 
H~174 -1) one finds the statement of the proposition. 

Proof of Proposition (3.10). We must check that for line bundles L in JC* satis- 
fying l*L~-o~c| -1, the determinant given in Proposition 3.11 is not identically 
zero. But the vanishing of det(q~(si| implies that there is a s~H~ L) such 
that q~(s|  for all t~H~ cod| since q~(s| is non-zero, this is 
impossible. Thus we can use Riemann's singularity theorem, and the argument 
in [M2, p. 342] applies identically. 

(3.12) Remark. To avoid the choice of a theta-characteristic L o as in Proposi- 
tion 3.10, it is often convenient to look at the Prym variety in JC*, after transla- 
tion by n* L0: thus the Prym variety becomes the variety of line bundles L in JC* 
such that Nm(L)-'2o) c and h~ is even, ~ is the divisor of effective line bundles 
in P, and Ole=2~ .  

4. Dimension of Sing .~ 

Keeping the notation of w 3, we denote by C a connected curve of genus 2 g -  1 
with ordinary double points, z an involution of C satisfying condition (.), C the 
quotient curve (of genus g). Our aim is to extend Mumford's description of Sing 
([M2]) to the Prym variety and its polarization defined in w 3. According to 
Remark 3.12, we look at the situation in JC*;  we denote: 

P={l ine  bundles L on C, Nm(L)~-e)c, h~ even}, 

~ - -{L  in P, h~ 2}. 

(4.1) Lemma. A line bundle L in P belongs to S ings  if and only if: 
(i) either h~ 

(ii) or h~ and for a basis {s, t} of H~ L) one has: 

l*s|174 in H~174176 ooe). 

Proof. By Proposition 3.10, a point L in P belongs to Sing~ either if it is of multi- 
plicity > 3, or if it is of multiplicity 2 and the tangent space to P is contained in 
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the tangent cone to O at L. The first case gives (i); in the second case, we can apply 
the analysis in [M 2, p. 343], using Proposition 3.t I, and find condition (ii). 

We first get rid of case (i) following [M 2]. 

(4.2) Proposition. Let Z be an irreducible component of Singe with dim Z > g -  5. 
Then, a generic line bundle L in Z has the property: 

(P) There exist two linearly independent sections s, t in H~ L) such that 
l* S|  = S| t. 

Proof The proof in [-M 2, p. 345] applies identically once one knows the following 
lemma: 

(4.3) Lemma. Let X be a curve of genus g. Let us denote by G~ the variety of  line 
bundles L on X with d e g L = d ,  h~ + 1. Let Z be an irreducible subvariety 
of  G~a, L a line bundle in Z with h~ + 1, r the pairing: 

tpL : H~174176174 -1) --, H~ 

Then 

dim Z < g - dim Im tp z . 

Proof  as in IS-D, p. 162]. 
We now begin the study of line bundles with property (P). We fix some nota- 

tion. I fL  is a line bundle on a curve X, we denote by ILl the set of effective divisors 
D such that (P(O)~L; this is an open set in P(H~ L)) (which may be different 
from P(H~ L)) if X is reducible). We shall say for convenience that L is non- 
singular if IL} contains a divisor with non-singular support (or equivalently, if 
at each double point x of X, there is a global section s of L such that s ( x ) .  0). 

(4.4) Lemma. Let L be a line bundle on C with property (P); assume that at each 
double point of  C, either s or t do not vanish. Then L~- g* M(E), where: 

- M is a non-singular line bundle on C with h~ 2. 
- E is a divisor on C with non-singuiar "support. 
- l r . E ~ l m c |  in particular O~c| -1 and ~ocQM -2 are non-singular 
line bundles. 

Proof o n e  can suppose that s and t are both non-zero at each double point of C. 
Put ~o=s/t; since z*tp-= q~, one gets q~= 7r* ~b, where ~b is a rational function on C. 
Let E be the divisor of common zeros ors and t, Z(s) (resp. Z(~0), Z(~)) the divisor 
of zeros of s (resp. ~o, ~,); all these divisors have non-singular support and one has: 

Z(s)=Z(~o)+E with Z(tp)=~*Z(qJ). 

This gives L~-Ir*M(E), with M =  r the last statement follows from the 
isomorphism Nm(  L ) "~- O~c . 

(4.5) Notice that the argument is still valid if the involution ~ has some non- 
singular fixed points. 

We are thus led to study the dimension of the locus of line bundles M on 
a curve C with ordinary double points, such that h~  and M, ~oc| -1 
and t oc |  -2 are non-singular. We need some preliminary lemmas: 
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(4.6) Lemma. Let L, M be two non-singular line bundles on C, cp the pairing: 

H~174176 --, H~174  

Then dim Im cp > h~ + h ~  1. 

Proof. The lemma follows from the fact that ILl and IMI are non-empty, and the 
morphism: 

ILIx I M I ~ I L |  

is generically finite. 

(4.7) Lemma. Let L be a non-singular line bundle on C; suppose ogc| -1 is non. 
singular. Then: 

h ~  1. 

I f  equality holds, then either L = (Pc or L = ~o c or there exists on C a non-singular 
line bundle M with deg M = h ~ (M)= 2 (we'll say for short that "C has a non-singular 

'9. 
Proof. The first statement follows from Lemma 4.6 and the Riemann-Roch 
theorem; the second statement is proved as in [S-D, p. 159], noting that if one 
chooses D'6 Icoc@L-11 with non-singular support, then (gc((D, D')) and COc(- (D, D')) 
are non-singular. 

(4.8) Lemma. Let Z be an irreducible subvariety of G~, ( 0 < d < 2 g - 2 )  such that 
for L generic in Z both L and C~c@L -~ are non-singular. Then d i m ( Z ) ~ d - 2 r .  
Moreover if c~c@L -2 is non-singular, equality holds only if C has a non-singular g~. 

Proof. The first part follows from Lemmas 4.3 and 4.6. If d imZ = d - 2 r ,  a generic 
line bundle L in Z is generated by its global sections, and h~ From the 
exact sequence: 

(4.8.1) O__,cocQL-2 ~.-s), (Coc| ~s.,) ~ COc___~0 

we get: 

dim Im Ca = 2 h~ (coc| L - 1)_ hO(coc| L - 2), 

hence by Lemma 4.3: 

d -  2r< g -  2(g + r - d )  + h~174 -2) 

or 

h~174 d =�89174 g) + 1. 

Since L 2 is clearly non-singular, C has a non-singular g~ by Lemma 4.7. 

(4.9) Lemma. Let C be a curve of genus g with ordinary double points, such that 
for each component C i of C, the intersection number of C i with the rest of C is 
even. Suppose that C has no non-singular g~. Let Z be an irreducible subvariety 
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of G), 0<d__<g-2;  assume that for Lgeneric in Z, L, Coc| -1 and (.Dc(~L - 2  are  

non singular. Then, dim Z__< d -  3. 
I f  d i m Z - - d - 3 ,  C is one of the following: 

a) C is trigonal (=3-sheeted covering of p1); 
C is a two-sheeted covering of a curve of genus one, and g >= 6; 
C is a plane quintic; 
C is the union of two curves Ct and C2, with one of the following configura- 

b) 
c) 
d) 

tions : 
C~ 

CI 

C1 

n C2=2 .  

c~ C2 = 4, and neither C 1 nor C 2 is a rational curve. 

n C 2 =4,  C 1 is rational, C 2 has a non-singular g~ and pa(C:)_->4. 

~: C1 c~ C 2 =4, C 1 is rational and tOc2~-(gc2(~ui) , where C 1 c3 C 2 = {u I ..... u4}. 

(4.9.1) Proof. The first statement is contained in Lemma4.8. Assume d i m Z - - d - 3 ,  
and take the smallest d for which this happens (so that a generic L in Z is generated 
by its global sections). If d = 3, we get a non-singular line bundle L with h~ 2, 
degL--3 .  L defines a morphism h: C - ~ P  1. If some union of components C 1 
goes to a point under h, the intersection of C 1 with the rest of C consists of at most 
2 points (since this number is even by hypothesis, and h is of degree 3), so we are 
in case d); if not, h is a 3-sheeted covering of P~ : that is case a). 

(4.9.2) Assume d__>4 (hence g__>6). The exact sequence (4.8.1) gives h~ 
so that we get a (d-3)-dimensional  subvariety of G~] ~. By Lemma 4.8, this is 
possible only if: 

(i) d-- 4, dim Z -- 1, 

(ii) d=5 ,  d i m Z = 2 ,  g__>7. 

Exclusing case d), we may assume that for any decomposition C = C 1 u C2 
with 4~C 1 c~ C 2 = n  , the following holds: 

(A) n__>4, and n>__6 except if C1~ o r C 2 is a rational curve. Moreover since 
Coc| -2 must be non-singular we get: 

(B) d e g L i c , < p , ( C i ) - l +  2 ( i= 1, 2). 

Furthermore we claim that one must have degLic ,>0  for any component 
C l of C. Namely for L generic in Z, let us denote by hL: C--~ p1 the morphism 
defined by L. Let C o be the union of the components C s of C such that hL(Cj)= p1 
(for L generic in Z). If h~l({z}) is one-dimensional for some z e P  1 and L generic, 
one must have h~l({z})c~Co={Ul ... u4} by (A), and h~  
for L generic in Z. 

Let us put Ltco=Lo . If deg(L)=4  (case (i)), we get: 

L o - 0 c o ( ~  ui) for L generic in Z.  

In order to get dimZ__>l, we must have h~ 
Note that L 0 and O~co| 1 are non-singular, and pa(Co)_>_3 by (B). Hence 

Lemma 4.7 gives: 

- either po(Co)=3 and COco~OCo(~Ui) 
-- or pa(Co)~_4 and Co has a non-singular g21 . 
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Both cases are excluded (by d)). 
If deg(L) = 5, we find: 

Lo_~ePCo(~ Ui+ X); x eC o .  

Since dim Z > 2, x must be a generic point of some component of Co; but this 
contradicts the fact that L is generated by its global sections. 

We conclude finally that Co = C, i.e. deg Lic ~ > 0 for any component C~. 

(4.9.3) Now if possibility i) holds, we apply the argument in [M 2, p. 349]; note 
that the line bundle M can be chosen non-singular. So we get a morphism 
h: C--* p2 such that for a generic L in Z, the morphism C ~ P~ defined by L is 
the composition of h with a projection from p2 to pl.  We denote by (C~) the 
irreducible components of C'=h(C), 

di=deg  C~, ri=deghlh-lr 

One has: 

deg Lth-,tc~) = ri(di - ei) 

where e i = 1 or 0 according to whether every center of projection lies on C~ or not; 
and: 

~, ri(di- ei) = 4 with ~ ei =< 1. 
i i 

Now we examine the various possibilities: 

If deg C' = 5, h is birational: since g > 6, C is a plane quintic. 
If deg C' __< 4 and C' is irreducible, one must have r 1 = 2, d 1 = 3: we get case b). 
Suppose deg C'<__4, C' reducible. If r~ = 1 for some i, C' i must have at least 

4 intersection points with the rest of C', by (A): the only possibility is d 1 = d 2 = 2 ,  
rl =2, r2= l ,  e 1 = 1. But then degLih_,tc,2~=2, which contradicts (B). 

Thus one has r i >2  for all i; the only possible case is r~ = 2  and d~-e~= 1 ( i= 1, 2). 
But then the intersection h-l(C~)c~ h-~(C~) contains at most 4 points, and this 
contradicts either (A) or (B). 

(4.9.4) The elimination of possibility (ii) in (4.9.2) is more tedious. 
We first suppose g>8 .  We proceed as in (4.9.3): we fix a non-singular L o 

in Z; then we can choose ( g - 8 )  points/]1 ... Pg-8 on C such that: 

M = Ogc| - ~, Pi) is non-singular and h~ = 4, 

h~174 1 for any L in Z.  

We conclude that M defines a morphism h: C--*P a such that for L generic in Z, 
the morphism C--~ P~ defined by L is the composition ofh  with a projection from 
pa to p1. 

We use the same notation as in (4.9.3): 

h(C)= C '=  U C'i, d i=deg  C'i, ri=deghlh-~(c,~ ) 
l 
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ei= intersection number of C'i with a generic line of projection so that 

degLlh-ltcl) = ri(di - ei) and ~,ri(di - el) = 5 (C). 

One has e i<2  and y '  ei<2 (if C' has a 2-dimensional family of trisecants, 
i 

it must be the family of lines lying in a p lane /7  containing some component Cj; 
but if the generic line of projection lay in H, one would have d j - e  i = 0, which 
is impossible (4.9.2)). 

Now we look at the various possibilities: 

i) If h was birational, the curve C' would have degree <7  and genus >8.  
Suppose C' does not contain any plane curve of degree >3. Then we can find a 
p l a n e / / i n  p3 such tha t / / c~  C' consists of distinct points/]1 . . . .  , Pa (d__< 7), no 3 of 
them lying on a line. For  r > 3, we can always find a surface of degree r passing 
through P1 ... Pk-1 and not PR (k<d): namely, one can find a union o f r  planes with 
this property. This implies: 

h~ ', h*Op(r))-h~ ;, h*CI,(r-  1))=d for r > 3 .  

Since hl(C ', h* (_gp(r))=0 for r large enough, we get: 

h 1 (C', h* Cr (2)) = O. 

Hence h~ ', h* (_9p(2)) = 2 d +  1 -- pa( C') <= 7. 
Thus C' must be contained in 3 linearly independent quadrics, which is im- 

possible. 
If C' contains a plane curve of degree > 3, one checks easily (using (A)) that 

p , (C')<6.  Thus h is not birational; C' must be reducible, of degree < 6. 

ii) There cannot be any component of degree 5 by (A) and (B). 

iii) There cannot be any component C'~ of degree 4: by (C) and (A), one must 
have r~ = 1 ; by (B), this implies ei = 2 and n = 6, i.e. C' is the union of a rational 
quartic and two trisecants; but this contradicts (A). 

iv) I f  C~ is a conic, e i = 1. 

Proof of iv. If ri=2, iv) follows from (C) and (A). If ri= 1, we get from (B) n = 6 ;  
this is seen to be incompatible with (C). 

v) There cannot be any component C' i of degree 3. 

Proof of v. If e i=2  , C' is the union of C'~ and some lines (by iv)); one checks that 
this always contradicts (A). If r~= 1, pa(C'i)=O, one gets by (B) n>6 ,  which is im- 
possible by (C). If ri= 1, p,(C'~)= 1, C' is a plane curve; by (A) C' must be the 
union of C'~ and a rational curve having 4 common points, which is impossible. 
If r~ = 2, e~= 1, one gets a contradiction to (A) (using (C)). 

vi) Therefore C' is a union of lines and conics; moreover d i - e i = l  for all i, 
and ~ r~ = 5. One checks easily that every choice for the (r~) leads to a contradiction 
with (A) or (B). 

(4.9.5) We now suppose g = 7, C irreducible. Then we can modify the argument 
in [M2, p. 350] as follows: by Riemann-Roch, we get for L generic in Z: mc|  -2 
"~c (P+q) ,  where p and q are non-singular points of C. Let W be the locus of 
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effective divisors of degree 2 on C, Crog the open set of non-singular points of C, 
d:JC--~ J C the multiplication by 2. Choosing base points, we get embeddings: 

Creg c W ~ J C  

since the restriction to C~eg of any irreducible covering of JC is irreducible (see 
for instance [Se, w Prop. 10]), we conclude that d-l(W) is irreducible. Conse- 
quently we get as in [M2] h~ for any M with M 2-coc. But there is always 
such an M with h~ even. To see this, we can use Corollary 1.2 if the normaliza- 
tion N of C is not rational; if N is rational, we find an equisingular deformation 
of C into a hyperelliptic curve C o (i.e. such that there exists a two-sheeted covering 
P: Co __.p1), use Theorem 1.1 and the fact that if M=p* (9p(3), one has M | =COCo 
and h~ 

Thus in any case we get an M of degree 6 with h~ one checks easily 
that M is non-singular, hence by Lemma 4.7 C is hyperelliptic. 

(4.9.6) Suppose finally g=7,  C reducible. Again for L generic in Z we get 
COc| where p, q are non-singular points of a component Ca. We 
put C o = U C , , n = : ~ C  oc~Ct. 

i>1 
If pa(Co)= 0, it turns out that we can still apply the argument of (4.9.5). We first 

notice that the Jacobian of C is isomorphic to the Jacobian of the irreducible 
curve obtained from C a by identifying the points of Co n C a ; from this we deduce 
as in (4.9.5) that the set of line bundles L such that COc| e)c( p + q), for some 
non-singular points p, qeCl, is irreducible. Thus we get h~ for any 
M with M2___-COc and any p non-singular in C1. Now we must rule out the possi- 
bility that every section of M vanishes on C1; but this is impossible since the 
kernel of the restriction 

H~ C, COc) --" H~ C1, COclc,) 

is H~ which is zero. So, we obtain h~ and we conclude as in 
(4.9.5). 

Using (A) and (B), we find two cases with pa(Co)*0: 

a) degLjc =1, p~(C1)=0 , n=6 .  

b) degLic =2, pa(C1)=p,(Co)=l, n=6.  

We notice that in both cases Ltc o is fixed (since L21co ~ coClCo) and h~ Llco)= 3, 
h~ Lic,)=2. Let g: Co--*P2 be the morphism defined by Llco; put C o n  C 1 
= {x I ... x6}. A line bundle in Z corresponds to a morphism h: C1 __+p1 (defined 
by Lic,), plus a projection q0 from p2 to p1 such that: q)og(x,)=h(xi)(1<i<6). 
In case a), Lic , is fixed, so any projection from p2 to pX should conserve the pro- 
jective relations between the 6 distinct points g(xi), which is impossible. 

In case b), for each degree 2 morphism h there must be a one-dimensional 
family of projections; this implies that the g(x~) lies on a conic Q, and the center 
of projection lies on Q. But then every morphism h should give the same projective 
relations between the h(xi), which is easily seen to be impossible. 

We are now in position to prove the main theorem of this section. For sim- 
plicity of the statement, we assume that C (or equivalently C) is a stable curve 
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([D-M]);  in our situation, this means that we eliminate the case C =  C 1 w C2, 
with 4~Clc~C2=2 and C1 rational (see 4.11.3 below). We say that a curve is 
hyperelliptic if it can be realized as a two-sheeted covering of P1. 

(4.10) Theorem. Let C be a stable curve of genus 2 g - 1 ,  z an involution of 
satisfying (,), C =  C/(t) the quotient curve, (P, ~,) the associated Prym variety. 
Recall that pa(C)=g and d i m P = g - 1 ;  we assume g>_5. Then: 

I f  d i m S i n g ~ , = g - 3 ,  C is hyperelliptic, or C= C 1 w C2 with ~ C 1 c~ C2=2;  
(P, ~) is a product of two principally polarized abelian varieties. 

I f  dim Sing ~ = g - 4 ,  C is hyperelliptic or obtained from a hyperelliptic curve 
by identifying two points; (P, ~) is a hyperelliptic Jacobian. 

I f  dim S i n g S = g - 5 ,  one of the following holds: 

a) C is a 3-sheeted covering of  p1 ; then (P, ~) is a Jacobian. 

b) C is obtained from a hypereIliptic curve by identifying two points; then 
(P, S) is a Jacobian. 

c) C is a double cooer of a stable curve of genus one and g > 6. 

d) C is a genus 5 curve with one vanishing thetanull (that is, a line bundle N 
such that h~ N2~o9c) and h~ 7~*N) is even. 

e) C is a plane quintic and h~ ~* (9c(1)) is odd. 

0 C is obtained from a hyperelliptic curve by identifying two pairs of points. 

g) C is obtained from a genus 4 curve with one vanishing thetanull by identifying 
two points. 

h) C = C 1 w C 2 with ~ C1 n C2 = 4, and neither C~ nor C2 is a rational curve. 

i) C = C 1 u C 2 with 4~ C1 c~ C 2 = 4, C 1 is rational and C 2 is a hyperelliptic 
curve of genus >3. 

j) C = C 1 w C 2 with C1 n C 2 = {ul . . . . .  u4}, C1 is rational and O9c~_~ Cc2(~ " ui) 
(hence Pa( C) = 6). 

Proof. Let Z be an irreducible component of Sing3 with d i m Z > g - 5 ,  and 
L a generic line bund l e in  Z. According to Proposition 4.2 we can find two 
linearly independant sections s, t of L such that s |  z* t = t* s | t. 

(4.10.1) Assume first that the sections s, t have the property that at each singular 
point of C, either s or t is non-zero. Then, by Lemma 4.4, L is of the form n*M(E); 
that is, for each L in Z we get: 

- a line bundle M on C wilh h~  
- an effective divisor n .Ee logc |  

(Moreover if E = 0, one has the supplementary condition h~ * M) even.) 
Conversely for any such line bundle M and any effective divisor D e lo9 c | M-21 

we get as in [M 21 a finite number of points in Sing E. 
Thus we can bound dim Z by: 

(dimension of possible M's) + h~174 M -  2) _ 1. 

Assume C has no non-singular g~ and deg M < g - 2 ;  then Lemmas 4.7 and 4.9 
g!ve dim Z ~ g -  5, and dim Z = g - 5 only in cases a) to d) of Lemma 4.9. This 
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gives cases a), c), e)~ h), i), j) of the theorem (for plane quintics, the same study as 
in [M2, p. 347] gives the supplementary condition h~ rc*6c(1)) odd). In 
case a), (P, ~) is a Jacobian by [R]. 

If deg M = g -  1, M is a theta-characte~istic; this can give a (g-5)-dimensional  
Sing ~ only in genus 5 (case d)). 

If C has a non-singular g21, this g2 x defines a morphism g: C--*P1; if at least 
one component of C is mapped to a point, then C is a union C a u C 2 with 

C 1 c~ C 2 =2, and we conclude by Lemma 4.11 below. If not, g is a two-sheeted 
covering, and C is hyperelliptic; at this point one can either extend the analysis 
of two-sheeted coverings of hyperelliptic curves in [M 2] to singular curves, or 
simply notice that a singular hyperelliptic curve is a specialization of a non- 
singular one, hence the Prym variety must be a hyperelliptic Jacobian or a product 
of two hyperelliptic Jacobians. 

(4.10.2) Next suppose that the two sections s, t of L are such that s and t do not 
vanish simultaneously on any component  of C, but vanish simultaneously at 
some singular points zl . . . . .  z,. Let f :  /5 ~ C be the normalization of C at 
Zl . . . .  ,z , ,  D=/3/ (0  the quotient curve, r c ' : / 3 ~ D  the projection; we define: 
Ll=f*L(-~(xi+yi)) ,  where {xi,yi}=f-l(zi). Then Nm(LOgo %, and since s 
and t define global sections of L 1, L 1 has property (P). 

First suppose that /5 is connected. Then we can bound the dimension of 
possible Ll's as in 4.10.1; but to a line bundle L 1 on /5  corresponds only a finite 
number of L's in the Prym variety (see Remark 3.6). Since p,(D)=g-n, the only 
possibility in order to get dim Z > g - 5 is n = 2 and D = D 1 u D 2 with # D 1 n D 2 = 2, 
which gives case h), or n = 2 and D hyperelliptic, which gives case f), or n = 1 and 
D hyperelliptic. In the last situation we can have dim Z = g -  5 or g - 4 ;  but both 
cases are specializations of case a). Namely, put C' = D u R, where R is a rational 
curve and D n R = {n'(Xl), rc'(y0}. We can find a one-dimensional family of non- 
singular trigonal curves, with C' as special fibre; then we blow down R and get C 
as special fibre. It follows that the Prym variety is a Jacobian, which must be 
hyperelliptic if dim Sing ~ = g - 4. 

Now suppose tha t /5  is disconnected: say/3=/31 u D 2 ,  with/31c~/3=~. The 
hypothesis on s, t implies h~ 1, h~ 1. Conversely, this is enough 
to insure that L 1 has property (P)! Namely take a ~ H ~ (D 1, L 11~1), b e H  ~ (D 2 , L 11b2), 
and define s =(a, 0), t=(0 ,  b) via the identification: 

H~ (/3, Lx) = H~ (/31, LI Ibm)~ H~ (/32, L11b2) 

then clearly z* s|174 t=0 .  
Let ' " Di=zr (D,); the locus of effective divisors E on /31 such that 7r.E~lo%,l 

has dimension p.(D1)-1. Thus we get: 

dimZ <p~(D1)- 1 + p~(D2)- 1 = g - n -  1 

provided neither D 1 nor D2 is rational. To get dim Z > g - 5, we must have either 
n=2 ,  which gives the case C=ClwCz,  #r to which we apply 
Lemma 4.11 below; or n=4,  which gives case h). 

(4.10.3) Finally let us consider the general case. Then it may happen that s and t 
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vanish simultaneously on some components of 12; let P be the union of these 
components, d the union of the other components, F = F / 0 ) ,  G=G/0),  P c~ 
={x I ... Xr}. Put L~ = L l ~ ( - ~ x l ) ;  then, Nm L 1 ~-coa and again L~ has property 
(P). Conversely given Lt and any line bundle N on F such that NmN~-cOclF, 
we get a finite number of line bundles L in Z such that: 

Lle~-Ll(~,xl), LIp-~N. 

The dimension of possible N's is: 

r 
po(F)-p , (F)=po(F)-  1-t 2 

(recall that we use the convention that p a ( F ) = I - z ( O r )  for a not necessarily 
connected curve F). Assume first that G is connected; then we can bound the 
dimension of possible Ll's as in (4.10.2) by pa(G)-e, where e>3.  Thus, we get" 

dimZ<p, (G)_e+Pa(F)  r r _ - l + ~ - = g - e  2 

The only new possibility is r = 4, e = 3 which gives case i), Finally if G is discon- 
nected, the dimension of possible Ll's is bounded by p, (G)-1  (4.10.2). Therefore: 

r r 
d i m Z < p . ( G ) - l + p . ( F ) - l + - ~ = g - 1  2" 

But, this gives no new case. Thus the proof of the theorem is complete, once we 
prove the following lemma: 

(4.11) Lemma. Suppose C = C l w C 2 ,  with C l n C 2 = { p , q } .  Let C'i (i=1,2) be 
the curve obtained from Ci by identifying p and q, Pi the Prym variety associated to 
C'i with the involution induced by L Then P ~-P1 • P2 as principally polarized abelian 
varieties. 

(4.11.1) We first prove the following more general statement: 

- Let C be a curve with ordinary double points, t an involution of C satisfying (.), 
(P, E) the associated Prym variety; let N be a curve obtained from C by blowing-up 
some singular points, such that dim JN = dim J12 - 1. Define R = Ker (Nm) c JIV. 
Then R is an abelian variety, the principal polarization on JIV induces twice a 
principal polarization ~ on R, and (R, ~g) is isomorphic to (P, ~). 

Proof of (4.11.1). As in Proposition 3.5, we get an exact sequence: 

0--~ 2;/(2) --~ Z/(2) • P~--~ R -~0 

where g: P ~ R  is an isomorphism. Then the proof of Theorem 3.7 applies to 
this situation and gives the statement about polarizations. 

(4.11.2) Proof of the Lemma. Let R~=Ker(Nmljc, ) (i=1,2). By (4.11.1), the 
principal polarization on JC~ induces twice a principal polarization ~ ,  and 
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(Ri, ~) is isomorphic to P~ with its principal polarization; then by (4.11.1) again, 
P is isomorphic to the product (R1, kUx) • (R2, t/'2), hence the result. 

(4.11.3) The proof of the lemma applies when C2, say, is a rational curve: in 
that case one finds P~P~. This allows to extend the theorem to non-stable curves 
(with ordinary double points). 

5. Exchanged Components 

We shall need to study the Prym variety under a more general assumption than 
hypothesis (*) in w 3. We start from a connected curve C of genus 2 g - 1 ,  with 
ordinary double points, and an involution t: C --, C. If C is the quotient curve, 
the norm defines a morphism Nm:.IC---~JC, and we define the Prym variety P 
by P = (Ker Nm) ~ It is a group variety, extension of an abelian variety by a torus. 

We now assume: 

{_ / i s n o t t h e i d e n t i t y o n a n y c o m p o n e n t o f ~ .  
(**) pa(C)=g. 

P is an abelian variety. 

Let us fix some notation: 

n I = # nodes of t~ fixed under t, with the 2 branches not exchanged. 
n} = # nodes of C fixed under t, with the 2 branches exchanged. 

2 n e = # nodes exchanged under t. 
c I = # components fixed under i. 

2Ce= ~ components exchanged under ~. 
r = # fixed-non-singular points of ~. 

(5.1) Lemma. The assumptions (**) are equivalent to r=n~=0 ,  ne=C e. 

Proof Let N (resp. N) be the normalization of C (resp. C). The covering n': N ~ N 
is ramified at the points of N lying over fixed non-singular points, and fixed 
singular points with no exchanged branches; hence, by the Hurwitz formula: 

/- 
p,,(~')-- 1 = 2(p,,(N)- 1 ) + ~ - +  ny 

so 

p,,((~)- 1 =p , , (N)-  1 +2n~+ns+n'.r 

r t = 2(p,,(N)- 1)+-~+2n~+2n.c+n I. 

The singular points of C come from singular points on C with no exchanged 
branches and from exchanged singular points, hence: 

pa(C)- l=Pa(N) -  l +ni+ne . 

Therefore 

r ! p , (C) -  1 =2(p , (C)-  1) + ~ - +  nf. 
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Thus the condition p~(C)=g is equivalent to r = n ~ = 0 .  
We now express the condition that P is an abelian variety; from the diagram: 

0-,7" , J~ , J ~ - , 0  

O--~ T ~ JC ~ JN--~O 

and from the surjectivity of the norm it follows that P is an abelian variety if and 
only if dim T = dim T. 

Here dim 7"= 2 n e + n s - 2 c~ - c s + 1 

dim T = n e + n s - c e - c s  + l 

thus d i m T " - d i m T = n e - c ~ ,  and the lemma is proved. 

So the assumptions (**) are equivalent to (*) if c~=0. When c~=n~4=O, let B 
be the union of the components of C fixed under z; we write ~ = A w A ' u  B, 
where A '=  l(A) and A and A' have no common component. Recall that to the 
curve C we associate a graph F: the vertices of F are the irreducible components 
of F, and the edges between two vertices are the intersection points of the two 
corresponding components. We say that C is tree-like if its graph is a tree and if 
each irreducible component of C is non-singular. 

(5.2) Proposition. (i) I f  B=O, then C = A  w A' where A can be chosen connected 
and tree-like, and # A n A' = 2. 

(ii) I f  B#:~, then A nA'=~J; each connected component of A is tree-like and 
meets B at only one point. B is connected and satisfies condition (.). 

We shall use the following easy lemma: 

(5.3) Lemma. Let F be a connected graph, t an involution o f f  without fixed points. 
There exists a connected subgraph S o f t  such that S n ~S=~J and S w tS contains 
every vertex of F. 

(Hint: take a connected subgraph S maximal for the property S n  zS=~J.) 

Proof of the Proposition. If B=j~, we write C = A  w A', where A corresponds to 
the subgraph S in Lemma 5.3. Let v be the number of vertices of S, e the number 
of edges, s the number of singular points on A which belong to only one compo- 
nent. The equality c~=n e gives: 

v = e + s + { ( #  A n A ' ) .  

Since 1 - v + e > O ,  we get s=0 ,  # A A A ' = 2  and 1 - v + e = 0 ,  that is A is tree-like. 
Assume B4=~[. By Lemma5.1, the points of A n A '  are exchanged under z; 

we put: 

# r  

# A n B = # A ' c ~ B = m .  

i A = # irreducible components of A. 
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c a = ~: connected components of A. 
n a = # singular points of A. 
2 b = # singular points of B exchanged under t. 

Then ce=ia,  ne=nA + r  + m + b .  
Recall that for any curve A, nA--iA+CA>O (this is the first Betti number of 

the graph of A, plus the number of double points of A which belong to only one 
component). 

Thus, if c e = n e : 

O=nA--iA + r  + m + b > r  + m + b - - c A .  

Since C is connected, any component of A u A' meets B. But one can choose A 
in such a way that a connected component of A u A '  is either a connected compo- 
nent of A or A', or can be written D u tD where D is connected (by Lemma 5.3). 
From this, we get m > c a, hence: 

O > r + m + b - c a > r + b > = O  

and r=0 ,  m =  c A, n A -  i A + c A =0, b =0, which gives the proposition. 

(5.4) Theorem. Under the assumptions (**), any theta divisor of  J C  (w 2) induces 
on P twice a principal polarization 8 In case (i) of  Proposition 5.2, (P, 8)  is iso- 
morphic to the Jacobian variety J A  (with its principal polarization); in case (ii), 
(P, 8) is isomorphic to the product J A  x Q (with the product polarization), where Q 
is the Prym variety associated to (B, O. 

Proof. We recall that if (A, OA), (B, OB) are two principally polarized abelian 
varieties, the divisor 6) A x B +A x O B defines a principal polarization on A x B, 
which we call the product polarization. 

In case (ii), JC  is isomorphic to J A  • J A  x JB,  and P =(Ker  Nm)  ~ to the sub- 
variety j ( J A )  • Q, where j is the embedding of J A  in J A  • J A  defined by j ( x )  
=(x, - x )  (note that since A is tree-like, J A  is an abelian variety). If B' is the 
normalization of B, the polarization induced on P by a theta divisor of J C  is the 
pull-back of the product polarization on J A  • J A  • JB'  (by Proposition 2.2); 
therefore, it is the product of the polarization on j ( J A )  induced by the product 
polarization of J A  • JA,  and the polarization on Q induced by a theta divisor of 
JB. The result follows by noting that the product polarization on J A  • J A  induces 
twice the principal polarization on j (JA) .  

In case (i), C is obtained from the disjoint union ALIA' (A'=A) by identifying 
a point p (resp. q) in A with a point q (resp. p) in A'; C = C/~ is obtained from A by 
identifying p and q, and n: ~ ~ C is an unramified two-sheeted covering. 

We look at the exact sequences: 

O--}T  ~JC  , J A x J A - ~ O  

O--} T , J C  , J A  --~0 
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here m is the addition morphism; T and T are isomorphic to the multiplicative 
group of k. One checks immediately that Nm: T--~ T is an isomorphism; hence 
P ~ K e r  m=j(JA),  and by the preceding remark the polarization induced on P 
is twice the principal polarization of the Jacobian variety JA. 

6. Compactification of the Prym Mapping 

In this section we apply the results of [D-M] to "compactify" the mapping which 
associates to a curve plus a 2-sheeted covering the corresponding Prym variety. 
The natural language here is the theory of stacks, used in [D-M]. However, to 
avoid excessive technicality, we first prove the main result over C, with a more 
down-to-earth language; then we consider the situation over Z, using algebraic 
stacks. 

(6.1) Construction. There'exists an irreducible complete variety S over k, a family 
of stable curves q:C~__~, and a S-involution t:c~--*c~ such that: 

a) For each s in S, the induced involution t~: c~__, c~ is different from the identity 
on each component of c~ s. 

b) c~ 5 has genus 2 g - l ,  and the quotient curve c~s/(zs) has genus g. 
c) For any non-singular curve C of genus 2 g -  1 with a fixed point free involu- 

tion t, the pair (C, z) is isomorphic to (c~, ~) for some s in S. 

We start with a complete family of stable curves of genus 2 g -  1 

q : J; --, T, 

where T is a complete, irreducible variety ([D-M]). Using [D-M, p. 84], we see 
that the functor of T-involutions of 5~ is representable by a scheme finite over T; 
this means that we can find a complete variety I, a finite morphism r: I-- ,  T, 
and an /-involution tr of ~ XTI, such that for any t in T, the correspondence: 

r -1 (t) ~ {involutions of ~ } ,  

Xl'-'~tTl~t x {xl 

is one-to-one. 
Since the moduli space of non-singular curves of genus g with a two-sheeted 

covering is irreducible ([D-M]), we can find an irreducible component S of I 
such that property c) is satisfied, where we denote by (c~, t) the pull-back of 
(~  x r I, tr) over S. 

Suppose t equals the identity on some component D of c~s. One can find an 
open set 0 in c~, stable under z, smooth over S, such that Oc~D~fJ. The quotient 
U=O/(O is smooth over S, hence the finite morphism ~: 0 ~  U is flat (use for 
instance [EGA IV 11.3.11+15.4.2]). Since ~ has degree 2, it must be ramified 
along Oc~D, which is impossible since D is reduced. This gives a); since the 
quotient curve c~j(q) is reduced, its genus is independant of s, hence equal to g. 

(6.2) We put qr 0. By a result of M.Artin (I-A]), the Jacobians of the 
curves ~ (resp. c~s) fit together in an algebraic space over S, denoted by Pic~ 
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(resp. Pic~ The norm defines a morphism: 

Nm: Pic ~ (~/S) ~ Pic ~ (~/S). 

Let ~fi=(Ker Nm) ~ It follows from the general theory of group schemes (e.g. 
[SGA 3 exp. VI B Cor. 4.4]) that ~ is a smooth algebraic space over S, whose 
fibre over s is the Prym variety associated to (~s, 0. 

The set S of points s in S such that ~ is an abelian variety is open. By Lemma 1.3 
in [FGA exp. 236], the restriction ~ of ~ to S is proper over S. 

Moreover, according to Remark 2.4, by choosing a line bundle L on ~ such 
that d e g ( L , ) = 2 g - 2  and h~ for each s, we can define (locally on S for the 
6tale topology) a divisor O over Pic ~ (r and the restriction of O to ~ gives 
a S-morphism: 

such that p = 2 p', where p' is an isomorphism from ~ onto ~ (by Theorems 3.7 
and 5.4). 

Since p does not depend on the choice of L, the polarization p' is defined 
globally over S, so that we get a fiat family of principally polarized abelian vari- 
eties over S, hence a morphism: 

p: S--, d,_~ 

where s~g_ 1 is the (coarse) moduli space of principally polarized abelian varieties 
of dimension ( g -  1) over k (see [M 4]. Over C, ~r is the quotient of the Siegel 
upper half-space Hg by the modular grou p Sp(2g, Z)). 

(6.3) Proposition. The mapping p is proper. 

Proof. Using the valuative criterion of properness ([EGA II, 7.3.8]) and the com- 
pleteness of S, we are reduced to prove the following: 

Let T be the spectrum of a complete discrete valuation ring, r/ its generic 
point; also let c~___, T be a family of stable curves with involution, such that 
( ~ ,  0 satisfies condition (**) and the Prym variety ~ has good reduction (i.e. 
extends to an abelian variety over T). Then ~ is an abelian variety. 

But now since ~ is an extension of an abelian variety by a torus, it is iso- 
morphic to the neutral component of the Neron model of ~ over T ([SGA 7 IX, 
3.2]) which is abelian by hypothesis. Hence p is proper. 

(6.4) Proposition. Assume k= C. Then every principally polarized abelian variety 
of dimension g < 5 is a (generalized) Prym variety. 

Proof. In view of Proposition 6.3 and of the irreducibility of effg_ 1, it suffices to 
prove that p is generically surjective, and this is a classical result by Wirtinger 
(I-W, w 59]). A different proof of Wirtinger's theorem can be given as follows: 
using Theorem 5.4 one sees easily that every Jacobian variety is a specialization 
of a Prym variety, hence p(S) contains the Jacobians. This gives the result for 
g < 3; and also for g = 4, since p (S) is irreducible, contains the divisor of Jacobians 
and some other abelian varieties. 
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In genus 5, it is enough to prove that for a suitable choice of S, the morphism p 
is unramified at some point s of S. If C = ~s is non-singular, this is easily seen to 
be equivalent to the following: the natural map: 

q~ : S2 Ho( C" ojct~tl) _~ HO(c, O9c ~ 2) 

(where r/ is the line bundle with t/z= dP c associated to the 2-sheeted covering 
n: C ~  C) is an isomorphism. 

We start from a non-singular curve X of genus 5, not trigonal, without 
vanishing theta-nulls. X is a complete intersection of 3 quadrics (P), (Q), (R) 
ill p 4 ,  we identify the set of quadrics (~.P+btQ+ vR) containing X to a projective 
plane H. Inside of H we consider the discriminant locus C, which is a non-singular 
curve of degree 5 (hence of genus 6). The points of C correspond to quadrics of 
rank 4 through X; these quadrics contain two systems of generatrices, which 
define an unramified 2-sheeted covering of C, hence a line bundle t /on  C with 
~ 2 ~ C  . 

Besides the embedding i: C ~  17, we consider an other embedding j: C , p 4  
defined by: 

j (x)=focus  of the singular quadric corresponding to x. One checks that: 
j* d~p (i) = i* d~n (2)| 

Now in the product embedding C .,i~ , H x p4, C is a complete intersec- 
tion: in fact it is defined by the 5 equations: 

2P/~,+#Q'xj+vR'x,=O; i=0,  . . . ,4 .  

Therefore. if p and q are the projections from H • p4 onto H and p , ,  and 
E=[_p*On(1)| ~, we get a resolution of (9 c by the Koszul complex: 

O--~ A S E ___, ...--,E---~On• 

Taking tensor products with q*(gr(2), weconclude by standard arguments that 
the restriction map: 

j*: n ~  *, d~r (2)) --* H~ o~) 

is an isomorphism; but this map can be identified with q~, hence the result. 

Now we return to the case of an algebraically closed field k of arbitrary 
characteristic , 2 .  

(6.5) Theorem. (i) Every principally polarized abelian variety of dimension g< 5 
is a (generalized) Prym variety. 

(ii) The moduli space sCg of principally polarized abelian varieties over k is 
irreducible for g<= 5. 

Proof. We refer to [D-M] for the definition and the properties of algebraic stacks. 
All the schemes and stacks we consider are defined over B=Spec(Z[�89 

(6.5.1) We start with the algebraic stack r162162 [21] classifying stable curves of 
genus ( 2 g -  1). The stack r162 [�89 is proper over B. 

'According to [D-M, Th. 1.11], the stack J '  which classifies stable curves Of 
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,A[ 1 genus (2 g - 1) with a non trivial involution is finite and unramified over 2g-1 [3], 
hence proper over B. We consider the subset 3 of J '  which classifies curves with 
involution (~, z )~  T such that for each t in T: 
- The involution h induced on Ct is different from the identity on each compo- 
nent of Ct; 

- p , (C, / (h) )=g.  

The argument of (6.1) shows that J is an open and closed subset of J ' .  
We define as in (6.2) the open subset J of J classifying stable curves with 

involution such that the associated Prym variety is an abelian variety. We get 
a morphism of stacks over B: 

p : J  dg - i  

where d~_l denotes the algebraic stack classifying principally polarized abelian 
varieties of dimension ( g -  1) over B. 

(6.5.2) Lemma. p is proper, and surjective if g < 6. 

Proof. The proof of Proposition 6.3 gives the properness of p. Since the restriction 
of p in characteristic zero is surjective (6.4), p is surjective. 

This proves part (i) of the Theorem; it remains to prove that the fibres of J 
over B are irreducible. By associating to a curve with involution (C, 0 the quotient 
curve C/(0 we get a morphism of algebraic stacks over B: 

q: J--~.~g [�89 

The morphism q is not representable since the involution z is an automorphism 
of (C, 0 which induces the identity on C/(t). We introduce the universal curve c~ 
(resp. ~) over J (resp. ~r162189 and its smooth open subset c~,** (resp. ~,,,); the 
stack ~r classifies curves with involution (C, t)---~T, plus a section ~: T--~ ~r** 
(we denote by Cr, , the open subset of C consisting of points smooth over T). 
The stack c~**g classifies stable curves of genus g: C --~ T, plus a section e: T---~ C,,,. 
There is a morphism: 

such that the diagram: 

Y ' ,  ,[�89 

is commutative. 

(6.5.3) Lemma. The morphism r is representable and finite. 

Proof. This means the following: 

a) Let (C, 0 ~ T  be a curve with involution (classified by o~), ~: T ~  ~r., a 
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section. Then, any T-automorphism of t2 which commutes with t, induces the 
identity on C/(0 and leaves ~ fixed is the identity. 

b) Let C--, T be a stable curve of genus g, e: T-~ Crag a section. We consider 
the functor F which associates to each T-scheme U the set: 

i stable curves with / 
involution (C, t)-* U 

F(U) = set of isomorphism classes of section ~: U ~  C~g 

U-morphism n: C--, C v 

- ( C ,  0 is classified by J ;  

such that: - n o ~ = e  
--T~o I=TC 

- n  induces an isomorphism C/(l) - ~ C v. 

Then, F is representable by a scheme finite over T. 
To prove a), we note that the only non-trivial T-automorphism of C which 

commutes with l and induces the identity on C/(0 is z itself; but by Lemma 5.1, 
any fixed point of t is singular in its fibre, so z cannot leave g fixed. 

Let us prove b). We associate to the data (C, z, ~, n) the coherent sheaf s on C v 
defined by: 

induces on each fibre (Cv) . a torsion-free rank one coherent sheaf. Note that 
the algebra structure on n ,  (9 e gives an isomorphism: 

2: Lf ~ , Hom(Lf, (gcv). 

The section E corresponds to an isomorphism: 

a: e*~ a ~) C~ 

such that (e* 2) (a - 1 ( 1 ) )  = ~. 
Conversely given (s u) such that ~f is isomorphic to Hom(~ ,  C9c~ ), there is 

exactly one 2 satisfying the preceding condition; from (.~f, a, 2) we can reconstruct 
the data ((~, l,~, n). Therefore, our functor F is isomorphic to the functor: 

F':  U,,~ {set of isomorphism classes of pairs (~f, a) on C v wbere: 

(i) s  is a coherent sheaf whose restriction on each fibre is torsion-free of 
rank t ; 

(ii) ~ is isomorphic to Hom(Lf, ~9c~); 

(iii) a is an isomorphism e* s ~,  (Yr. 

If we replace condition (ii) by a certain condition on deg Lf, then it follows from 
the work of Oda and Seshadri ([O-S]) that the functor F" we obtain is repre- 
sentable by a "compactification of Pic~  '' K.  The functor F' is a closed 
subfunctor of F", hence is representable by a closed subscheme K 2 of K, proper 
over T; since the fibres of K 2 o v e r  T are finite, K 2 is finite over T. This achieves 
the proof of the lemma. 
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Now, we consider the "Teichmtiller stacks" c J / ~  and oJ/g ([D-M] p. 106) 
with G=Z/2 .  Recall that ~j//o classifies smooth curves of genus g:p: C ~ T 
with an element of H~ Rap,(Z/2)),  and GJ~g is the normalization of ~'g[�89 
with respect to o j /o .  Let Ocgreg (resp. Gcg ~ be the pull-back of cgreg over oJ/g 
(resp. ~j/o). These stacks are normal, irreducible, and their fibres over 
B =  Spec(Z [�89 are normal and irreducible: this follows from the same result for 
GJ//g and G J / ~  (proved in [D-M]) and the fact that the morphism cgr~g __+ G j0g 
and Gcg~ G J//~ are flat, with normal fibres and with an irreducible generic fibre. 
In particular, Gcgr~g is the normalization of ~r~g with respect to Gcg ~ 

Let c~0 be the open subset of ~ which classifies smooth curves. It follows 
from the proof of Lemma 6.5.3 that c~o is isomorphic to Gcg ~ By the universal 
property of the normalization and Lemma 6.5.3, there is a morphism: 

S : G~reg ---4. (~O~reg 

which is finite and surjective. Therefore, there is a surjective morphism c~r ___, j ;  
it follows that the fibres of J over B are irreducible, and so are the fibres of J .  
Since p is surjective when g=<6 (Lemma 6.5.2), we conclude that the fibres of 
~r or equivalently the coarse moduli spaces ~'g-1 over k, are irreducible for 
g<6 .  

Let us mention a first (and immediate) consequence of Theorems 6.5, 5.4 and 
4.10. 

(6.6) Proposi t ion.  Let (A, O) be a principally polarized abelian variety of  dimension 
g (2<g<5) .  

1) I f  dim Sing O = g - 2 ,  (A, O) is a product o f  two principally polarized 
abelian varieties. 

2) I f  dim Sing 0 = g - 3, (A, O) is a hyperelliptic Jacobian. 

7. S c h o t t k y  P r o b l e m  in G e n u s  4 

(7.1) In the moduli space d4,  we look at the following subvarieties: 

N O =locus of principally polarized abelian varieties with Sing O ~e~. 
J4 = locus of Jacobian varieties and products of Jacobians. 
0,uH=locus of principally polarized abelian varieties with (at least) one 

vanishing theta-null, i.e. such that Sing O contains a point of order two. 

It is clear that N O is a closed algebraic subvariety of ~r .]4 is an irreducible 
divisor in d4  ([Ho], [D-M]). The subvariety 0,~ n is a divisor: to see this, we can 
find a finite covering g: ~ ' - - - ,d4 such that there exists on ~r 

- a complete family of principally polarized abelian varieties q:Y" ~ ~r cor- 
responding to g; 
- a divisor 7 j in 5f, flat over ~r such that ~ is a symmetric O divisor on ~ for 
any t in sr 
- a set of sections o fq  (e,) ,~ such that for any t in d ' ,  {e,(t)},~x is the set of 
points of order two in ~ .  
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By [MS] (or, over C, by the classical theory of theta functions), the subset: 
E + = {tr~,~, e ~ ( d ' ) r  ~ )  is non empty; therefore 0nun=g( U e~-l(kv)) is a divisor 
i n  ~r  ~ E z +  

(7.2) Theorem. N O = Y w 0,ull. 

Proof Let (A, O) be a principally polarized abelian variety with Sing O4=~, 
which is neither a Jacobian nor a product;  we must prove that (A, 6/) has a 
vanishing theta-null. By Theorems 6.5, 5.4 and 4.10, (A, O) is isomorphic to a 
Prym variety satisfying condition d), f), g) or h) in Theorem 4.10. 

We will prove that the line bundles L which give singular points on ~ are 
theta-characteristic (L 2_-__~oe). This is obvious in case d). In the other cases, we 
start from a curve N which is: 

- a hyperelliptic curve of genus 3 in case f); 
- a genus 4 curve with one vanishing theta-null in case g); 
- the disjoint union of two elliptic curves in case h). 

In any case there is a line bundle H on N such that H| h~ C is 
obtained from N by identifying points Pl to P2, P3 to P4, etc . . . .  We get a diagram: 

N I ~C 

where n' is a two-sheeted covering ramified at Pl, P2 . . . . .  
We put 

(~ ')- '  (Pi)  = { P i } "  

The proof of Theorem 4.10 shows that the possible singularities of ~ arise from 
line bundles Lon  ~ such that: 

f*L=n'*S(Z~, ). 

The ramified covering ~' defines a line bundle t / on  N with: 

hence 

f*L=n'*(H| 

Choose M on C such that f*M=H| 1 and M| then: f*L=n'*f*M 
= f *  n * m  and Nm(rc*M)=oJ c. 

Thus after suitable modification of M we get L=~*M, hence L| 
Using Proposit ion 3.4, we see that exactly half of the line bundles M on C 

with f*M=H| M| are such that n*M belongs to P (hence to Sing~). 
Thus we find: 

2 singular points of ~ in case f); 
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1 singular point in case g); 
3 singular points in case h). 

All these points correspond to vanishing theta-nulls. 

(7.3) Proposition. The divisor O,u n is the closure of the locus of Prym varieties 
associated to a non-singular curve C of genus five with one vanishing theta-nuU 
N and h~ n* N) even. 

Proof. We have to prove that cases f), g), h) are specializations of case d). We keep 
the notation used in Theorem 7.2. 

(7.3.1) In the canonical embedding (defined by ~c), C is a complete intersection 
of 3 quadrics, except in case g) if h~ -p2) )>  1. This is seen as for non- 
singular curves: C is contained in 3 linearly independant quadrics (by Riemann- 
Roch); if the intersection of these quadrics is bigger than C, it must be a cubic 
scroll, and C must be t r igona l - thus  the only possibility is the exceptional case 
mentioned above. This case is a specialization of the generic case g), so we may 
always assume that C is a complete intersection of 3 quadrics. 

(7.3.2) Furthermore C is contained in a quadric Q of rank < 3. This is because 
of the diagram: 

0---~Ker~oc , S2HO(C,o~c) ~c , H o ( C ,  o9c~2) 

J J J 
O---,Kerq~ N ,S2H~ wN) e'~ ,HO(N,o~2) 

which implies that Ker tpc contains a quadratic relation of rank 3 in case t) and g), 
and of rank 2 in case h). 

(7.3.3) In cases t) and g) we fix the quadric Q and a two-dimensional linear 
subspace H c Q, and deform the other quadrics; in case h), we l e t / / b e  the singular 
locus of Q and deform Q in a rank 3 quadric containing H. Thus we get a family 
of curves in p4: 

~ ,  ~ p 4 •  

T 

such that c~ o = C, and c~ t is non-singular for t 4= 0. 
Let J = i d e a l  of ( / / x  T ) c ~  in ff, S ~ 1 6 2  It is easy to check 

that Safc = f .  (H), while ~ f , ,  is a "vanishing theta-null". 
Thus we have found a family of curves ~ ~ T and a coherent sheaf La on c~ 

such that: 
- For t 4= 0, ~r is a non-singular genus 5 curve, ~ t  is a line bundle with La~ 2 = tg,, 
and h~ (Sat) = 2; 

- ~ o = C  and s 



184 A. Beauville 

Moreover, from the multiplication J |  ~o~/~c(9~ we get a duality L~QZP 
( . D ~ / T  . 

(7.3.4) There exists a line bundle L o on C such that: 

L~o2~e)c, f *  Lo=HQrl, h~ even 

(see Theorem 7.2). The variety of line bundles M on rg t with M |  is 6tale 
over T, hence by passing to an 6tale covering of T, we may extend Lo to a line 
bundle L on cg with L~2~o~/T.  Then by Theorem 1.1, h~ t, L,) is even for any 
t i n T .  

(7.3.5) Define r~=Spec(6~G(Z-a| where the algebra structure is given by 
the morphism: 

( ~ | 1 7 4  -~) ~ (P. 

deduced from the duality .W |  c%/T. Then: 

- for t4=0, n,: ~ r g  t is an unramified two-sheeted covering, and h~162 
=h~176 is even; 

- no:Cgo~rgo can be identified to the morphism n: C ~ C .  

This proves that situations 0, g), h) are specializations of situation d). 

(7.3.6) One sees easily that a morphism ~---, Co in case d) with Co singular is a 
specialization of an unramified two-sheeted covering C ~ C in case d) with C 
non-singular. This achieves the proof of Proposition 7.3. 

(7.4) Theorem. In characteristic zero, the divisor 0nul! is irreducible. 

(7.4.1) Proof We can suppose k = C .  
Let f :  X ~ S be a complete family of curves of genus 5 with one vanishing 

theta-null; this means that there is a line bundle N on X whose restriction N s 
to X s satisfies: 

N2~-r~x,; h~ for any s in S. 

We can take for S an irreducible smooth variety (fix a rank 3 quadric Qo in p4; 
a generic curve of genus 5 with one vanishing theta-null can be obtained as the 
intersection of Qo with two arbitrary quadrics). 

Let us denote by (JXs)2 the group of points of order two in JX~, isomorphic 
to HI(X,, Z/2). We consider the covering Z of S whose fibre over a point s in S 
is (JXs) 2. The quadratic form q on (JXs) z given by: 

q(q)=h~ N,| (mod2) 

splits the covering Z into two parts: we denote by Z o the subcovering correspond- 
ing to q = 0. We have to prove that Zo is irreducible; or equivalently, fixing a point 
s in S, that HI(S, s) acts transitively on the set of qe(JX~) 2 with q(~/)=0. Observe 
that it is enough to prove this assertion for one family X ~ S (not necessarily 
complete) of curves of genus 5 having a vanishing theta-null. We will reduce this 
problem to a statement about plane curves by using the following known facts 
abot}t curves of genus five. 
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(7.4.2) Let X be a non-singular curve of genus 5, which is neither hyperelliptic 
nor trigonal. Then X is canonically embedded in p4 as a complete intersection 
of three quadrics. Hence the linear system of quadrics in p4 containing X is a 
projective plane /7. The discriminant locus (curve of singular quadrics in /7) is 
a plane quintic with ordinary double points; such a double point appears if and 
only if the corresponding quadric is of rank 3, which means that X has a vanishing 
theta-null. The rank 4 quadrics contain two systems of generatrices, which define 
a double covering re: ( ~  C; if C is singular, rt is a degree two morphism with 
property (,) ofw 3. In any case the Prym variety associated to (C, C) is isomorphic 
to the Jacobian JX.  Note also that h~ (9c(1)) is odd. 

Conversely, given a stable plane quintic C, a degree two morphism n: C ~ C 
with property (,) and such that h ~ (rt* (_9 c (1)) is odd, there exists a unique curve 
of genus 5 such that J X - P r y m ( C ,  C). 

Furthermore, this construction can be done locally over any base variety. 
Let cg ~ S be a family of stable plane quintics (with cs c Ps 2) and ft. ~ -+ cg a degree 
2 morphism such that for each s in S, the induced morphism n s : c ~ f f ,  has 
property (,) and h~ is odd. Then locally over S, there exists a family 
X ~  S of non-singular curves of genus 5 such that JX~ ~- Prym@~, cg~) for each s. 

In the sequel of the proof, we are going to translate the assertion about the 
action of H~ (S) on (JX~) 2 as an assertion about c~ and ~, and then we shall prove 
by monodromy methods that this last assertion is true for a good choice of the 
family c~ ~ S. 

(7.4.3) Now let g: C'--~ T be a family of plane quintics with exactly one ordinary 
double point. We denote by R t (t~ T) the set of isomorphism classes of degree 2 
morphisms n: C ' ~  C' t with property (,) and such that h~ is odd. Let 
p: S---~ T be the covering of T such that p- l ( t )=Rt;  we put C =  C' •  We get 
a degree 2 morphism over S: 

n: ~-~ C. 

To this family of plane quintics with covering we associate (7.4.2) a family 
X --+ S of non-singular curves of genus 5 having one vanishing theta-null. Recall 
that there is a canonical isomorphism: 

JXs ~ , Prym(Cs, Cs). 

Let N~ be the normalization of C~. By [M2, p. 332], there is an isomorphism: 

(Jx~)2 ~ ,  H ~(u. z/2) 

which is equivariant with respect to the action of n x (S, s). 
To the quadratic form q on (JXs) 2 corresponds a form q' on H I ( ~ ,  Z/2), 

invariant under the action of 1-I~(S, s). We wish to prove that for a certain choice 
of the family C'-+ T, the group II1(S, s) acts transitively on the set of ~/eHX(N~, Z/2) 
with q'(rl) = O, q 4= O. 

Put t=p(s). The group Fix(T, t) acts on R, and FIx(S, s) is isomorphic to the 
isotropy subgroup of s~R,.  

A covering n: C ~  C~ with property (.) is given by a cycle in HI(Cs, Z/2) 
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which does not belong to Im H 1 (N~, Z/2); or in terms of cohomology, by a linear 
form: 

~o: H 1 (C~, Z/2) ~ Z/2 

such that 

~o (co) = 1, 

where o9 denotes the only non-zero element of the kernel of the cup product 
on HI(C~, Z/2). The composition: 

Ker q~-~n 1 (C~, Z/2) ~ H 1 (N~, Z/2) 

is an isomorphism respecting the symplectic structure and the action of H 1(S, s). 
We now wish to express the condition that the degree 2 morphism n: C ---, C~ 

corresponding to q~ belongs.to Rt, that is h~ * O~e,(1)) is odd. We can embed the 
family C ~ S in a larger family of plane quintics h: D ~ U such that the fibres 
of h over U - S  are non-singular. Let us choose a path in U from s to a point u 
in U - S .  By Lefschetz theory we get an injective map: 

H ~(C~, Z /2 )~H 1 (Ou, Z/2) 

which identifies HI(C~, Z/2) to the orthogonal of the "vanishing cycle" o9. The 
form ~o determines an element 7eHt(Du, Z/2) such that: 

q~(x)=(x, r) for xen~(c~, Z/2). 

There is a unique deformation invariant quadratic form r on H 1 (D~, Z/2) whose 
associated bilinear form is the cup-product (see I-M 1]); algebraically, it is given by: 

r(r/)=h~ (9o~(1)| 1 for n~(JD~)z_~H~(Du, Z/2) 

and its Arf invariant is equal to 1. 
The condition r  t is equivalent to r(7)= 1. Notice that Ker(~0) is the sub- 

space of HI(D~, Z/2) orthogonal to the hyperbolic plane generated by o9 and 7. 
Also, since ~o is a vanishing cycle and r is deformation invariant, one must have 
r(og) = 1. It follows that the condition q (7) = 1 is equivalent to the following: 

(A I) The Arf Invariant of the Restriction of r to Ker(~p) is 0 

Note that this is consistent with the fact that the Arf invariant of the form q 
(7.4.1) is 0. 

(7.4.4) We are now reduced to a monodromy computation. We will use the 
method of [A' C]. We consider the plane singularity: 

xS+xy3=O. 

A versal deformation of this singularity is given by: 
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xS + x y3 +tl x4 y+t2x4 +t3xay+t4xa +tsx2y+t6x2 +t7xy 

+tayE +t9x +tloy+tlx =0 .  

Note that the projective completion of this curve has always an ordinary double 
point at infinity. 

Recall the notation of [A'C]:  

~ ,  = a small ball in C 11, 

d c ~ ,  = discriminant locus, 

B e--a small ball in C 2. 

We take T= ~ -  A, the family C'-* T being given by the restriction of the versal 
deformation. 

Fix teT; put C~= C, F= Cc~B~. A'Campo's  method allows to compute the 
local monodromy, that is the action of Hi(T, t) on Hi(F, Z), or equivalently on 
H i (F, Z). But now there is an equivariant exact sequence: 

0 ~ H~ Z) ---, H~ Z ) ~  HI(F, Z) ~ Hi(C, Z). 

Since C - F  is connected, and dimH~(F)=dimHl(C)=ll, we get an isomor- 
phism: 

H i (F, Z/2) ~ , H 1 (C, Z/2) 

which respects the symplectic structure and the action of III(T). 
We are going to choose a linear form to on Hi(C, Z/2) as in (7.4.3), and prove 

that the subgroup of Hi (T, t) which leaves to invariant acts transitively on the set 
of q e Ker tO with q (t/) = 0, t/4= 0; by what we have seen, this will prove the Theorem. 
Now we apply A'Campo's  method. To get a "confluence de Morse",  we use the 
following succession of blowing up, deformation and blowing down: 
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One checks immediately that these operations can be done without altering the 
double point at infinity. 

We obtain finally the following "partage":  

which gives the Dynkin di~tgram: 

�9 

Recall that this means that there is a basis 61, ..., 611 of Hi(C, Z/2) with: 

(fit" 6j) = 1 if (~) and ( ~  are connected by a line in the diagram (i 4:j); 

= 0 if they are not. 

With the notation of (7.4.3), we have: 

The quadratic form r is characterized by r(6i)= 1 for all i. 
We choose the linear form q~ on Hi(C, Z/2) defined by: 

q~(66)= 1, q~(fii)=0 for i#: 6. 

We must check condition (A 1). It is convenient to use a symplectic basis for 
Ker(~o); we take: 

~1 =di4; 

~2 =69; 

0(3 =~1; 

ot5=68+69; 

f12 = ~11, 
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Then: 

(~,. ~)= O, ( /~ . /~ j )=  O, 

(O{i' J~ i )=  1. 

One checks immediately that: 

5 

y~ r (~,)- r (~,) = 0,  
i=1  

i.e. condition (.41) is verified. 

(cq. flj) = O' if i =l=j, 

189 

The monodromy group is generated by the transvections T~: 

Ti(x)=x+(x. 6i) 6,, xeHl(C, Z/2). 

We will study the orbits in Ker(~p) of the group G generated by the transvections T~ 
which leave cO invariant, that is the T~'s for i=# 6. We set up some notation: 

If x=~,pzCh+~_,q~flj, we note: 

[p' ] �9 .. /35 
X ~ 

ql q5 

We write x -  y if y = g .  x for some g in G. 
The action of T 4, T 2, T 9. T~I, T a is very simple; for instance: 

T4(x)= [ px +ql"" ] 
I_ q~ 

(which means that only the coordinate p~ is modified). 
Then we have: 

Ts(x)= [ p~ +(ql +p3) " ], 
�9 q 3  + ( q l + P 3 )  �9 

[P l+(qx+q4)  �9 �9 P 4 + ( q l + q 4 ) .  ] ,  Tv(x)= 
, . J  

Ts(x)= [ .  P2+(q2+qs) . .Ps+(q2+qs) ] ,  

Ta(X)= [ .  P2+(P4+P2+q2) . �9 �9 ] 
q2+(Pa+P2+q2) q4+(P4+P2+qz) ' 

Tao(X)=[Pl+r P2 P3+ r p#+r p 5 + r ]  
L qt q2 qa+ r q4+ r q5+ r 

with r=qx +P3+q3+p4+q4+ps+q5. 

a) There exists in G. x an element with Pl =ql =0. 

Proof If x does not have this property, we can suppose (using T 4, Tz) that: 
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Using T 7 and T4, T2, we can always suppose P4 = 1. Then using T 3 and T 9, Tll 
we can suppose q4 = 1. Then we apply TT. 

b) There exists in G. x an element with Pl =ql  =P2=q2 =0. 

Proof. Using a) and T9, Tll, we can suppose:  

1 

If  q5 = 1, we apply T 8. 
If  q 5 = 0 ,  q 4 = 0 ,  note that  using eventually Ta, T H we can suppose 

q l + p 3 + q 3 + p , , + q 4 + p s + q s = l .  Then, we apply TTTsTlo. 
If  qs=O, q 4 = l ,  we manage  in the same way to obtain  q~+P3+qa+Pg+q4 

+P5 + q s  =0 .  Then  we apply T a T~o T 7. 

c) There exists in G. x an element with Pi= qi=O ( i=  1, 2, 3). 

Proof. Applying  T~ we can suppose:  

[~ 0 1 
either x = 0 1 

We put r = p 4 + q 4 + p s + q 5 .  

[ Ol 
cl) x =  0 1 " 

0 1 :] or x-I~ i] 

If  r =  1, we apply T loT 1T2T4TloTET 5. 
If  r = 0 ,  using possibly T 1 Tlo T 5 we can suppose q4 = 1. Then  we apply Txo T?. 

:] c2) x =  0 0 " 

If  r = 1, we apply T1 o Ts. 
If  r = 0 ,  using T 5 T 1Tlo we can suppose q 4 =  1. Then applying T 5 T 7 we find 

again si tuation cl). 

d) Let us now write: 

0 0 q4 q5 q4 q5 " 

Then we have:  

by Ta Ta T9 T3, 
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1 p~? 1) 
(q4 05) = (q4 1+1 

(qO 4 Ps)------(q 0+1 Pl 5) 

P5 (P04 q5 ) ~'(14" qs+l  ]pS+l] 

by T3 Tl l T 8 , 

by TaTll T9T3 T a, 

if p4 + ps +qs= l, by TT T2 T4 Ts T1T2 Tlo. 

From this, it is immediate to conclude that the non-zero elements of HI(N~, Z/2) 
fall into two orbits under G, according to the value of the quadratic form r. This 
achieves the proof of Theorem 7.4. 

Let us mention the following corollary of Theorem 7.4: 

(7.5) Proposition. Assume char(k)=0. For (A, O) generic in Onun, the divisor 0 
has only one ordinary double point (corresponding to the vanishing theta-null). 

Proof. It is clearly enough to prove the result for one principally polarized abelian 
variety (A, O) in 0nu n. Let C be a non-singular curve of genus 5, not trigonal, 
having precisely two vanishing theta-nulls; i.e. two line bundles, H and H', with: 

H|174 and h~176 

Then rl=H'| -1 satisfies q| thus determines a two-sheeted covering 
re: t~--, C. The only singularity in the divisor ~ of the associated Prym variety 
(P, ~) corresponds to the line bundle n* H; we wish to compute the tangent cone 
to ~ at this singular point. According to [M2, p. 343], we must take a basis s t ... s 4 
of H~ n 'H) ;  if we identify the tangent space to P to H~ O~c| , the equa- 
tion of the tangent cone is given by the Pfaffian of the matrix: 

M = ( s i |  l* sj - s j |  l* si) 1 <_ i, j~_ 4.. 

Using the decomposition: 

H~ rc* H)=H~ H)~H~ H| 

we get a basis sl,s2, h, t2 of H~ with: 

l * S i = S  i l * t j =  - - t j .  

Then, the above matrix becomes: 

with aii=s~|176 O~c| (1 <i, j<2).  
Thus, the tangent cone is given by the equation: 

all a22 ~a12 a21:0.  
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Now from the exact sequence: 

0__,H_t (s2,-sl) ,d~c 2 (s,,~2) ,H---~0 

we deduce after tensorization with H |  that the natural map: 

n~ H)| H~ ( C, n Qrl) --+ H~ ( C, OOc| 

is injective. Hence the (au)'s are linearly independant in H ~ (C, ~Oc| Therefore 
the tangent cone to E at the singular point is of rank 4, which means that this 
point is an ordinary double point. 

(7.6) Note that this is in contrast with the situation for Jacobians: the O-divisor 
of a Jacobian variety has two ordinary double points, which can collapse in one 
non-ordinary double point. 

(7.7) Remark. Let us denote by p the projection from the Siegel upper half- 
space H 4 onto d 4. Theorem 7.2 and the work of Androtti-Mayer ([A-M]) give 
a theoretical way to write an equation for the divisor p-l(j4) in terms of theta- 
nulls. Notice first that the procedure given in [A-M] can be slightly modified to 
get only one equation for p-~(No). Namely the fact that a point z in H 4 belongs 
to p-~(No) is equivalent to the following (here we use freely the notation and 
results of [A-M], p. 227]): 

the linear space of codimension 5 in p15 given by: 

y~ ,l~. 02 0'2 (0, z) = 0 
tt 

(L) ~ 2 ,  O20z[U](O,z)=O ~=1,  4 . ~u~ ' " '  

has a non-empty intersection with the Kummer-Wirtinger variety K(z) c paS. 

This gives one condition on z; it is expressed by the vanishing of a function 
F(z) which is a homogeneous polynomial with rational coefficients in the 
"theta-nulls" C(r,/~, z). Note that F(z) is the Chow form of K(z) applied to the 
Pliicker coordinates of the linear system (L). 

We don't know whether the divisor given by 0(0, z)=0 in H 4 is irreducible; 
however we know that each of its components has multiplicity 1 : this follows from 
the "heat equations" ([A-M]) and Theorem 7.4. Let us denote by (p(z) the product 
of all the theta-null functions corresponding to even characteristics; in classical 
notation: 

o,z,= n 011 ~ . c = o  ~, (0, z) .  

Then it follows from what we have seen that a certain power of q~(z), say q~(z) ', 
divides F(z), and the holomorphic function: 

q~ (z)- ' .  F(z) 

gives an equation for p - l ( j , ) .  
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8. Schottky Problem in  G e n u s  5 

In genus 5, Theorem 4.10 (together with Theorem 6.5) gives a complete descrip- 
tion of the locus N1 of principally polarized abelian varieties with dim Sing O > 1. 
N 1 has already many components. However, if we still denote by 0n, n the divisor 
in ~r of principally polarized abelian varieties with (at least) one vanishing theta- 
null, we have: 

(8.1) Proposition. Y5 is the only component of N~ not contained in 0,~ n. 

Proof. It is well-known that a generic Jacobian has no vanishing theta-null (IF-I). 
Clearly any product of principally polarized abelian varieties belongs to 0,~ n. 
Thus we must prove that every Prym variety in case c), f), h), i) or j) of Theorem 4.10 
has a vanishing theta-null. 

(8.1.1) Case c. We may assume that C is non-singular, since this is the generic 
case and 0null is closed. 

Let E be an elliptic curve, h: C ~ E a two-sheeted covering ramified at the 
points ~ . . . . .  ~1o of C, a: C-~ C the corresponding involution; to this covering 
is associated a line bundle fi such that: 

62-----CE(~r~) with ri=h(fi). 

Let 7t: (~ ~ C be an unramified two-sheeted covering, given by a line bundle 
r/on C with r/E= (9c; we consider the Prym variety (P, ~) associated to this cover- 
ing. According to w 4, the singular points of ~ correspond to line bundles: 

L = rt* h* M(x + y) 

where: 

- M is a line bundle of degree 2 on E; 

- 7zx+ny=h*p where (pe(p)=fi |  

- h~ is even. 

Such a line bundle gives a vanishing theta-null when L| that is: 

p = r i and L = re* (h* M(Fi) ) (i= 1 . . . .  ,10). 

We wish to find such an L with h~ even. 
Let us fix i and consider the quadratic form q on (JC)2 associated to the 

"theta-characteristic" h*M(Fi) (see [M 1] or w 1). Notice that h~ If we 
r ep laceM by M |  (ct~(JE)2), we get a new line bundle E with: 

h~ �9 r /)=q(r/)+(~.Nmrl)  (mod). (1.2) 

Now we distinguish two cases: 

cl) ~* ~/~/. Then Nmrl~:O, so we can always find a theta-characteristic L 
with h~ e v e n - w h i c h  gives a vanishing theta-null. 

c2) a* r/=~/. Then C is a Galois covering of E, with group Z/2 x Z/2. Such 
a covering can be constructed in the following way: let R = r  l + . . .  +rio be the 
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ramification divisor of h; we take a partition R = R I + R  2 with R~>0, deg(Ri) 
even; we choose two line bundles ~ ,  62 on E such that: 

6~-d)E(Ri) ( i=1 ,2)  and f i~+62=6.  

Let hg: C i --. E be the associated 2-sheeted coverings, ramified along R i (i= 1, 2); 
we put C =  C1 xE C2, and denote by rr i the projection C ~  Ci. The morphism 

~ E factors through h and thus defines a 2-sheeted covering n: C ~ C. 
The line bundle L can be written: 

L = n * ( h * M ( q ) )  where i=  1 or 2 and q~h[-l(p). 

According to Proposition 3.4, one value of i gives an L with h~ even and the 
other gives h~ odd; we fix i such that h~ is even. When q is a ramification 
point of h i, we have L2 ~tor so we get a vanishing theta-null. Now h i is always 
ramified, except possibly .when deg(R1)= 0, deg (R2)= 10. But in that case we find: 

h ~ (~* (h* M(q))) = h ~ (h'~ M(q)) + h ~ (h* (M|  (q)) = 5 + 0 = 5 

h ~ (~r* (h* M(q))) = h ~ (h* M(q)) + h ~ (h* ( M |  ~)(q)) = 2 + 2 = 4. 

Hence, h~=h2 is ramified. 

(8.1.2) Case f. We use the notation of (7.2): so C is obtained from a hyperelliptic 
curve N by identifying pt to P2, P3 to P4; 

~ , r  

N I , C  

we denote by H the line bundle on N with deg(H)=  h~ 2, by Pi the point of 
lying over Pi. Here again we may assume that N is non-singular. The points of 
S inge  correspond to line bundles L such that: 

f * L = n ' * n ( ~ i + x + y )  with ( n ' x + n ' y ) ~ l n l .  

In order to get L| we must have 

f * L| 2 '~- f * cot _~- co~ ( X p ,) , 

that is ( 2x+2y)~ ]n ' *H] .  
This happens in particular when x + y = n '*r  and r is one of the 10 Weierstrass 

points of N. In this case, one has: 

y* L-'-~'*(H| 

where 6 is the line bundle on N associated to the covering ~' (62= 0~(~  p~)). Then 
we conclude as in (7.2) that L| 

(8.1.3) The proof  in cases h), i),j) is identical to (8.1.2); details are left to the reader. 
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(8.2) Remarks. 

(8.2.1) One can prove by the same method that every Prym variety of dimension 
h with dim Sing O > h - 4  and which is not a Jacobian has a vanishing theta-null. 

(8.2.2) In genus 5, a careful study of the curve S ings  described in Theorem 4.10 
gives the following result: 

Let (A, O) be a principally polarized abelian varieties of dimension 5. Then 
(A, O) is a non-hyperelliptic Jacobian if and only if (Sing O)/{ + 1} is isomorphic 
to a stable plane quintic. 

(8.2.3) Here we use the notation of (7.7). 
In [A-M], Andreotti and Mayer give a set of equations 

L(z)=0 

defining p-l(Js) in the open set g c H s . '  

g= {z~Hg, O(u, z) is irreducible}. 

From Proposition 8.1, we conclude that the f, 's define p-t(J  5 -O~n ) in the open 
set q~(z):~0. The ideal of p-l(J5) in ~ consists of all functions g holomorphic 
on 8 such that for some r > 0: 

g(z). q~'(z)=~G(z).f~(z) a, holomorphic in g.  
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