A. Beauville

NON-RATIONALITY OF THE \mathfrak{S}_{6}-SYMMETRIC QUARTIC THREEFOLDS

Abstract. We prove that the quartic hypersurfaces defined by $\sum x_{i}=t \sum x_{i}^{4}-\left(\sum x_{i}^{2}\right)^{2}=0$ in \mathbb{P}^{5} are not rational for $t \neq 0,2,4,6, \frac{10}{7}$.
Pour Alberto, à l'occasion de son 70^{e} anniversaire

1. Introduction

Let V be the standard representation of \mathfrak{S}_{6} (that is, V is the hyperplane $\sum x_{i}=0$ in \mathbb{C}^{6}, with \mathfrak{S}_{6} acting by permutation of the basis vectors). The quartic hypersurfaces in $\mathbb{P}(V)\left(\cong \mathbb{P}^{4}\right)$ invariant under \mathfrak{S}_{6} form the pencil

$$
X_{t}: t \sum x_{i}^{4}-\left(\sum x_{i}^{2}\right)^{2}=0, \quad t \in \mathbb{P}^{1}
$$

This pencil contains two classical quartic hypersurfaces, the Burkhardt quartic X_{2} and the Igusa quartic X_{4} (see for instance [6]); they are both rational.

For $t \neq 0,2,4,6$ and $\frac{10}{17}$, the quartic X_{t} has exactly 30 nodes; the set of nodes \mathcal{N} is the orbit under \mathfrak{S}_{6} of $\left(1,1, \rho, \rho, \rho^{2}, \rho^{2}\right)$, with $\rho=e^{\frac{2 \pi i}{3}}$ ([7], §4). We will prove:

Theorem. For $t \neq 0,2,4,6, \frac{10}{7}, X_{t}$ is not rational.

The method is that of [1]: we show that the intermediate Jacobian of a desingularization of X_{t} is 5-dimensional and that the action of \mathfrak{S}_{6} on its tangent space at 0 is irreducible. From this one sees easily that this intermediate Jacobian cannot be a Jacobian or a product of Jacobians, hence X_{t} is not rational by the Clemens-Griffiths criterion. We do not know whether X_{t} is unirational.

I am indebted to A. Bondal and Y. Prokhorov for suggesting the problem, to A. Dimca for explaining to me how to compute explicitly the defect of a nodal hypersurface, and to I. Cheltsov for pointing out the rationality of $X_{\frac{10}{7}}$.

2. The action of \mathfrak{S}_{6} on $T_{0}(J X)$

We fix $t \neq 0,2,4,6, \frac{10}{7}$, and denote by X the desingularization of X_{t} obtained by blowing up the nodes. The main ingredient of the proof is the fact that the action of \mathfrak{S}_{6} on $J X$ is non-trivial. To prove this we consider the action of \mathfrak{S}_{6} on the tangent space $T_{0}(J X)$, which is by definition $H^{2}\left(X, \Omega_{X}^{1}\right)$.

Lemma 1. Let \mathcal{C} be the space of cubic forms on $\mathbb{P}(V)$ vanishing along \mathcal{N}. We have an isomorphism of \mathfrak{S}_{6}-modules $\mathcal{C} \cong V \oplus H^{2}\left(X, \Omega_{X}^{1}\right)$.

Proof: The proof is essentially contained in [2]; we explain how to adapt the arguments there to our situation. Let $b: P \rightarrow \mathbb{P}(V)$ be the blowing-up of $\mathbb{P}(V)$ along \mathcal{N}. The threefold X is the strict transform of X_{t} in P. The exact sequence

$$
0 \rightarrow N_{X / P}^{*} \longrightarrow \Omega_{P \mid X}^{1} \longrightarrow \Omega_{X}^{1} \rightarrow 0
$$

gives rise to an exact sequence

$$
0 \rightarrow H^{2}\left(X, \Omega_{X}^{1}\right) \longrightarrow H^{3}\left(X, N_{X / P}^{*}\right) \longrightarrow H^{3}\left(X, \Omega_{P \mid X}^{1}\right) \rightarrow 0
$$

([2], proof of theorem 1), which is \mathfrak{S}_{6}-equivariant. We will compute the two last terms.
The exact sequence

$$
0 \rightarrow \Omega_{P}^{1}(-X) \longrightarrow \Omega_{P}^{1} \longrightarrow \Omega_{P \mid X}^{1} \rightarrow 0
$$

provides an isomorphism $H^{3}\left(X, \Omega_{P \mid X}^{1}\right) \xrightarrow{\sim} H^{4}\left(P, \Omega_{P}^{1}(-X)\right)$, and the latter space is isomorphic to $H^{4}\left(\mathbb{P}(V), \Omega_{\mathbb{P}(V)}^{1}(-4)\right)$ ([2], proof of Lemma 3). By Serre duality $H^{4}(\mathbb{P}(V)$, $\left.\Omega_{\mathbb{P}(V)}^{1}(-4)\right)$ is dual to $H^{0}\left(\mathbb{P}(V), T_{\mathbb{P}(V)}(-1)\right) \cong V$. Thus the \mathfrak{S}_{6}-module $H^{3}\left(X, \Omega_{P \mid X}^{1}\right)$ is isomorphic to V^{*}, hence also to V.

Similarly the exact sequence $0 \rightarrow O_{P}(-2 X) \longrightarrow O_{P}(-X) \longrightarrow N_{X / P}^{*} \rightarrow 0$ and the vanishing of $H^{i}\left(P, O_{P}(-X)\right.$) ([2], Corollary 2) provide an isomorphism of $H^{3}\left(X, N_{X / P}^{*}\right)$ onto $H^{4}\left(P, O_{P}(-2 X)\right)$, which is naturally isomorphic to the dual of C ([2], proof of Proposition 2). The lemma follows.

Lemma 2. The dimension of C is 10 .
Proof : Recall that the defect of X_{t} is the difference between the dimension of \mathcal{C} and its expected dimension, namely :

$$
\operatorname{def}\left(X_{t}\right):=\operatorname{dim} \mathcal{C}-\left(\operatorname{dim} H^{0}\left(\mathbb{P}(V), O_{\mathbb{P}(V)}(3)\right)-\# \mathcal{N}\right)
$$

Thus our assertion is equivalent to $\operatorname{def}\left(X_{t}\right)=5$.
To compute this defect we use the formula of [5], Theorem 1.5. Let $F=0$ be an equation of X_{t} in \mathbb{P}^{4}; let $R:=\mathbb{C}\left[X_{0}, \ldots, X_{4}\right] /\left(F_{X_{0}}^{\prime}, \ldots, F_{X_{4}}^{\prime}\right)$ be the Jacobian ring of F, and let $R^{s m}$ be the Jacobian ring of a smooth quartic hypersurface in \mathbb{P}^{4}. The formula is

$$
\operatorname{def}\left(X_{t}\right)=\operatorname{dim} R_{7}-\operatorname{dim} R_{7}^{s m}
$$

In our case we have $\operatorname{dim} R_{7}^{s m}=\operatorname{dim} R_{3}^{s m}=35-5=30$; a simple computation with Singular (for instance) gives $\operatorname{dim} R_{7}=35$. This implies the lemma.

Proposition 1. The \mathfrak{S}_{6}-module $H^{2}\left(X, \Omega_{X}^{1}\right)$ is isomorphic to V.

Proof : Consider the homomorphisms a and b of \mathbb{C}^{6} into $H^{0}\left(\mathbb{P}(V), O_{\mathbb{P}(V)}(3)\right)$ given by $a\left(e_{i}\right)=x_{i}^{3}, b\left(e_{i}\right)=x_{i} \sum x_{j}^{2}$. They are both \mathfrak{S}_{6}-equivariant and map V into \mathcal{C}; the subspaces $a(V)$ and $b(V)$ of \mathcal{C} do not coincide, so we have $a(V) \cap b(V)=0$. By Lemma 2 this implies $C=a(V) \oplus b(V)$, so $H^{2}\left(X, \Omega_{X}^{1}\right)$ is isomorphic to V by Lemma 1.

REmark 1. Suppose $t=2,6$ or $\frac{10}{7}$. Then the singular locus of X_{t} is $\mathcal{N} \cup \mathcal{N}^{\prime}$, where $\mathcal{N}{ }^{\prime}$ is the \mathfrak{S}_{6}-orbit of the point $(1,-1,0,0,0,0)$ for $t=2,(1,-1,1,-1,1,-1)$ for $t=6,(-5,1,1,1,1,1)$ for $t=\frac{10}{7}$ [7]. Since $x_{1}^{3}-x_{0}^{3}$ does not vanish on \mathcal{N}^{\prime}, the space of cubics vanishing along $\mathcal{N} \cup \mathcal{N}^{\prime}$ is strictly contained in \mathcal{C}. By Lemma 1 it contains a copy of V, hence it is isomorphic to V; therefore $H^{2}\left(X, \Omega_{X}^{1}\right)$ and $J X$ are zero in these cases. We have already mentioned that X_{2} and X_{4} are rational. The quartic $X_{\frac{10}{7}}$ is rational: it is the image of the anticanonical map of \mathbb{P}^{3} blown up along 6 lines which are permuted by \mathfrak{S}_{6} (see [4], proof of Lemma 4.5, and the references given there). We do not know whether this is the case for X_{6}.

3. Proof of the theorem

To prove that X is not rational, we apply the Clemens-Griffiths criterion ([3], Cor. 3.26): it suffices to prove that $J X$ is not a Jacobian or a product of Jacobians.

Suppose $J X \cong J C$ for some curve C of genus 5. By the Proposition \mathfrak{S}_{6} embeds into the group of automorphisms of $J C$ preserving the principal polarization; by the Torelli theorem this group is isomorphic to $\operatorname{Aut}(C)$ if C is hyperelliptic and $\operatorname{Aut}(C) \times$ $\mathbb{Z} / 2$ otherwise. Thus we find \# $\operatorname{Aut}(C) \geq \frac{1}{2} 6!=360$. But this contradicts the Hurwitz bound $\# \operatorname{Aut}(C) \leq 84(5-1)=336$.

Now suppose that $J X$ is isomorphic to a product of Jacobians $J_{1} \times \ldots \times J_{p}$, with $p \geq 2$. Recall that such a decomposition is unique up to the order of the factors: it corresponds to the decomposition of the Theta divisor into irreducible components ([3], Cor. 3.23). Thus the group \mathfrak{S}_{6} permutes the factors J_{i}, and therefore acts on $[1, p]$; by the Proposition this action must be transitive. But we have $p \leq \operatorname{dim} J X=5$, so this is impossible.

References

[1] A. Beauville : Non-rationality of the symmetric sextic Fano threefold. Geometry and Arithmetic, pp. 57-60; EMS Congress Reports (2012).
[2] S. Cynk: Defect of a nodal hypersurface. Manuscripta Math. 104 (2001), no. 3, 325-331.
[3] H. Clemens, P. Griffiths : The intermediate Jacobian of the cubic threefold. Ann. of Math. (2) 95 (1972), 281-356.
[4] I. Cheltsov, C. Shramov : Five embeddings of one simple group, Trans. Amer. Math. Soc., 366 (2014), no. 3, 1289-1331.
[5] A. Dimca, G. Sticlaru : Koszul complexes and pole order filtrations. Proc. Edinb. Math. Soc. (2) 58 (2015), no. 2, 333-354;
[6] B. Hunt : The geometry of some special arithmetic quotients. Lecture Notes in Mathematics 1637. Springer-Verlag, Berlin, 1996.
[7] G. van der Geer : On the geometry of a Siegel modular threefold. Math. Ann. 260 (1982), no. 3, 317-350.

AMS Subject Classification: primary: 14M20, secondary; 14E08, 14K30

Arnaud BEAUVILLE Université de Nice Sophia Antipolis
Laboratoire J. A. Dieudonné
UMR 7351 du CNRS, Parc Valrose
F-06108 Nice cedex 2, FRANCE
email: arnaud.beauville@unice.fr

Lavoro pervenuto in redazione il 02.07.2013.

