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Introduction

We introduce in this paper a particular class of rational singularities, which
we call symplectic, and classify the simplest ones. Our motivation comes
from the analogy between rational Gorenstein singularities and Calabi-Yau
manifolds: a compact, Kähler manifold of dimensionn is a Calabi-Yau
manifold if it admits a nowhere vanishingn-form, while a normal variety
V of dimensionn has rational Gorenstein singularities1 if its smooth part
Vreg carries a nowhere vanishingn-form, with the extra property that its
pull-back in any resolutionX → V extends to a holomorphic form onX.
Among Calabi-Yau manifolds an important role is played by the symplectic
(or hyperkähler) manifolds, which admit a holomorphic, everywhere non-
degenerate 2-form; by analogy we say that a normal varietyV hassymplectic
singularitiesif Vreg carries a closed symplectic 2-form whose pull-back in
any resolutionX → V extends to a holomorphic 2-form onX. Note that
this last condition is automatic if the singular locus ofV has codimension
≥ 4 [F], in particular for isolated singularities of dimension> 2.

We will look for the simplest possible isolated symplectic singularities
o ∈ V, namely those whose projective tangent cone is smooth: this means
that blowing upo in V provides a resolution ofV with a smooth exceptional
divisor. Examples of such singularities are obtained as follows. Each simple
complex Lie algebra has a smallest non-zero nilpotent orbitOmin for the
adjoint action; its closureOmin = Omin ∪ {0} has a symplectic singularity
at 0, isomorphic to the cone over the smooth varietyPOmin := Omin/C∗. In
particular its projective tangent cone is smooth (it is isomorphic toPOmin).

Our main result is the converse:

Theorem.– Let (V,o) be a germ of isolated symplectic singularity, whose
projective tangent cone is smooth. Then(V,o) is analytically isomorphic
to the germ(Omin,0) for some simple complex Lie algebra.

1 also called canonical singularities of index 1.
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The key point of the proof is the fact that the homogeneous space
POmin carries a holomorphiccontact structure(inherited from the symplec-
tic structure ofOmin). Given a resolutionX → V with a smooth exceptional
divisor E, we show that the extension toX of the symplectic form has
a residue onE which defines a contact structure. We then deduce from
[B1] that E is isomorphic to somePOmin, and we conclude with a classical
criterion of Grauert.

We discuss in §4 whether a classification of isolated symplectic singu-
larities makes sense. Each such singularity gives rise to many others by
considering its quotient by a finite group; to get rid of those we propose
to consider only isolated symplectic singularities with trivial local funda-
mental group. The singularities(Omin,0) have this property when the Lie
algebra is not of typeCl ; it is certainly desirable to find more examples.

1. Definition and basic properties

We consider algebraic varieties overC (our results extend readily to the an-
alytic category). We will say that a holomorphic 2-form on a smooth variety
is symplecticif it is closed and non-degenerate at every point. Aresolution
of an algebraic varietyV is a proper, birational morphismf : X → V where
X is smooth.

Definition 1.1.– A variety has a symplectic singularity at a point if this
point admits an open neighborhoodV such that:

a) V is normal;
b) The smooth partVreg of V admits a symplectic2-formϕ;
c) For any resolutionf : X → V, the pull back ofϕ to f −1(Vreg) extends

to a holomorphic2-form onX.

We will mostly consider a symplectic singularity as a germ(V,o) – in
which case we will always assume thatV satisfies the conditions a) to c).

(1.2) A result of Flenner [F] guarantees that condition c) holds when
codim Sing(V) ≥ 4. We chose to impose it in all cases in order to get
uniform results.

As for rational singularities it is enough to check c) for one particular
resolution: this follows easily from the fact that two given resolutions ofV
are dominated by a common resolution.

Proposition 1.3.– A symplectic singularity is rational Gorenstein.

Proof: We keep the notation of Definition 1.1 and put dimV = 2r . The form
ϕr generates the line bundleωVreg

, and for any resolutionX → V extends
to a holomorphic form onX; this implies thatV has rational Gorenstein
singularities [R]. ut
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The following remark shows that isolated symplectic singularities of
dimension> 2 arenot local complete intersections:

Proposition 1.4.– LetV be a variety with symplectic singularities which is
locally a complete intersection. Then the singular locus ofV has codimen-
sion≤ 3.

Proof: We can realize locallyV as a complete intersection in some smooth
varietyS. The exact sequence

0→ N∗V/S−→ Ω1
S|V −→ Ω1

V → 0

provides a length 1 locally free resolution ofΩ1
V. We can assume

codim Sing(V) ≥ 3; by the Auslander-Buchsbaum theorem and the fact that
V is Cohen-Macaulay, the depth ofΩ1

V at every point ofSing(V) is≥ 2. It
follows thatΩ1

V is a reflexive sheaf, so the isomorphismΩ1
Vreg
→ TVreg

de-

fined by a symplectic 2-form onVreg extends to an isomorphismΩ1
V → TV.

Combining the resolution ofΩ1
V and its dual we get an exact sequence

0→ N∗V/S−→ Ω1
S|V −→ TS|V

u−→ NV/S ,

where the support of the cokernelT1 of u is exactlySing(V). Using the
Auslander-Buchsbaum theorem again we get dim(T1) = dimSing(V) ≥
dim(V)− 3. ut

2. Examples

(2.1) In dimension 2, the symplectic singularities are the rational double
points (that is, the A-D-E singularities).

(2.2) Any product of varieties with symplectic singularities has again sym-
plectic singularities.

(2.3) Quotient singularities
The following result will provide us with a large list of symplectic

singularities:

Proposition 2.4.– LetV be a variety with symplectic singularities,Ga finite
group of automorphisms ofV, preserving a symplectic2-form onVreg. Then
V/G has symplectic singularities.

Proof: We first observe that the fixed locusFg in Vreg of any elementg 6= 1
in G is a symplectic subvariety ofVreg ([Fu], Prop. 2.6), and therefore has
codimension≥ 2. Let Vo := Vreg

⋃
g6=1 Fg. The symplectic 2-form on

Vo descends to a symplectic 2-formϕo on Vo/G; since the complement of
Vo/G in V/G has codimension≥ 2,ϕo extends to a symplectic 2-formϕ on
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(V/G)reg. Let g : Y → V/G be a resolution ofV/G; by taking a resolution
of Y ×(V/G) V we get a commutative diagram

X
f−−−→ Vy y

Y
g−−−→ V/G

where f is a resolution ofV. Theng∗ϕ is a meromorphic 2-form onY,
whose pull back toX is holomorphic. By an easy local computation, this
implies thatg∗ϕ is holomorphic. ut

(2.5) This applies for instance whenV is a finite-dimensional symplectic
vector space, andG a finite subgroup ofSp(V). If we impose moreover that
the non trivial elements ofG have all their eigenvalues6= 1, thenV/G has
an isolated symplectic singularity. As J. Wahl pointed out to me, a complete
(and rather lengthy) list of such finite subgroups can be deduced from [Wo],
thm. 7.2.18 (if dim(V) = 2 we get the well-known list of finite subgroups
of SL(V), the corresponding quotient singularities being the rational double
points). The simplest case is obtained whenG= {±IdV}; the quotientV/G
is then isomorphic to the cone over the Veronese embedding ofP(V) into
P(S2V). In particular, the projective tangent cone at the singular point of
V/G is isomorphic toP(V). It will follow from our Theorem and from §4
below that for all other isolated symplectic quotient singularitiesV/G, the
projective tangent cone at the singular point is not smooth.

Proposition 2.4 also applies to the symmetric productsV(p) = V p/Sp:
if the varietyV has symplectic singularities, so doesV(p).

(2.6) Nilpotent orbits
Let g be a simple complex Lie algebra andO ⊂ g a nilpotent orbit (for

the adjoint action)2. Then the normalization of the closure ofO in g has
symplectic singularities. This is due to Panyushev [P], who uses it to prove
that this variety has rational Gorenstein singularities. The point is thatO
can be identified with a coadjoint orbit using the Killing form, and therefore
carries the Kostant-Kirillov symplectic 2-form.

In particular, the Lie algebrag contains a unique (non-zero) minimal
nilpotent orbitOmin, which is contained in the closure of all non-zero nilpo-
tent orbits. The closureOmin = Omin ∪ {0} is normal, and has an isolated
symplectic singularity at 0.

This singularity can be described as follows. The orbitOmin is stable by
homotheties; the quotientPOmin := Omin/C∗ is a smooth, closed subvariety
of P(g). The varietyOmin is the cone overPOmin ⊂ P(g). This means that
we have a resolutionf : L−1→ Omin, whereL is the restriction ofOP(g)(1)

2 A general reference for nilpotent orbits is [C-M].
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to POmin, and f contracts to 0 the zero sectionE of L−1. In this situation
f is the blow up of 0 inOmin, and the exceptional divisorE, isomorphic to
POmin, is the projective tangent cone to 0 inOmin.

For instance, letV be a finite-dimensional symplectic vector space; the
Lie algebrasp(V) can be identified withS2V, in such a way thatOmin (resp.
Omin) is the image ofV {0} (resp.V) by the mapv 7→ v · v. In other
words,Omin is isomorphic toV/{±1} (see (2.5)) andPOmin to P(V).

3. Characterization of minimal orbits singularities

(3.1) This section is devoted to the proof of the theorem stated in the
introduction. So we let(V,o) be an isolated symplectic singularity,f :
X → V the blow up of the maximal ideal ofo in V, andE the exceptional
divisor. By constructionE is isomorphic to the projective tangent cone toV
ato; we assume that it is smooth. SinceE is a Cartier divisor inX it follows
thatX is smooth.

We denote byi the embedding ofE in X, and putL := i ∗OX(−E). By
the standard properties of the blow up the line bundleL onE is very ample.

(3.2) Let dimV = 2r . We can assume thatV {o} carries a symplectic 2-
form which extends to a holomorphic 2-formϕ onX; we havediv (ϕr ) = kE
for some integerk ≥ 0. The adjunction formula givesKE = L−k−1, so that
E is a Fano manifold. This impliesH0(E,Ωp

E) = 0 for eachp ≥ 1, and in
particulari ∗ϕ = 0.

Let e ∈ E. Sinceϕ is closed, we can writeϕ = dα in a neighbourhood
U of e in X, whereα is a 1-form onU such thati ∗α is closed. ShrinkingU
if necessary we can writei ∗α = d(i ∗g) for some functiong onU; replacing
α by α − dg we may assumei ∗α = 0. If u = 0 is a local equation ofE
in U, this means thatα is of the formu θ̃ + h du, whereθ̃ is a 1-form and
h a function onU; replacingα by α − d(hu) and θ̃ by θ̃ − dh we arrive at
α = uθ̃ and

ϕ = du∧ θ̃ + u dθ̃ .

This givesϕr = rur−1du ∧ θ̃ ∧ (dθ̃)r−1 + ur (dθ̃)r . Thus the order of
vanishingk of ϕr alongE is ≥ r − 1; the crucial point of the proof is the
equalityk = r − 1. We need an easy lemma:

Lemma 3.3.– Let X be a smooth closed submanifold of a projective space
PN, of degree≥ 2. ThenH0(X,∧∧∧ p TX(−p)) = 0 for 0 < p < dim(X),
and for p= dim(X) except ifX is a hyperquadric.

Proof: When X is a hyperquadric our assertion is equivalent to
H0(X,Ωq

X(q)) = 0 for 0< q< dim(X), which can be checked by a direct
computation (see for instance [K], thm. 3). We assume deg(X) ≥ 3.

The casep = 1 follows from a more general result of Wahl ([W], see
remark below). Letp ≥ 2; we use induction on the dimension ofX, the
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case of curves being clear. LetH be a smooth hyperplane section ofX; the
exact sequence

0→ TH −→ TX |H −→ OH(1)→ 0

gives rise to exact sequences

0→ ∧∧∧ p TH (−p) −→ ∧∧∧ p TX |H(−p) −→ ∧∧∧ p−1 TH(−(p− 1))→ 0.

By the induction hypothesis we conclude thatH0(H,∧∧∧ p TX |H(−p)) is
zero. Thus a section ofH0(X,∧∧∧ p TX (−p)) must vanish on any smooth
hyperplane section ofX, and therefore vanishes identically. ut
Remark 3.4.–Wahl’s result is rather easy in our situation: using the exact
sequence

0→ H0(X,TX(−1)) −→ H0(X,TPN(−1)|X) −→ H0(X,NX/PN(−1))

and the isomorphismCN+1 ∼−→ H0(X,TPN(−1)|X) deduced from the Euler
exact sequence, we see that a nonzero element ofH0(X,TX(−1)) corres-
ponds to a pointp ∈ PN such that all projective tangent spacesPTx(X), for
x in X, pass throughp. This is easily seen to be impossible, for instance by
induction on dim(X).

It seems natural to conjecture that the statement of the lemma extends to
the more general situation considered in [W], namely thatH0(X,∧∧∧ p TX ⊗
L−p) = 0 for p> 0 wheneverL is ample, except if(X,L) = (Pn,OPn(1)),
with n ≥ p, or (X,L) = (Qp,OQp(1)).

(3.5) We now prove the equalityk = r − 1. If E = P2r−1 and L =
OP2r−1(1), V is smooth; ifE = P1 andL = OP1(2), V is a surface with
an ordinary double point. We exclude these two cases. The perfect pairing
Ω1

X ⊗ Ω2r−1
X → KX provides an isomorphismΩ2r−1

X
∼= TX ⊗ KX; thus

exterior product withϕr−1 gives a linear mapΩ1
X → TX(kE), which is an

isomorphism outsideE (it is the inverse of the isomorphism defined byϕ).
This map may vanish onE, say with orderk− j ( j ≤ k), so that we get
a mapλ : Ω1

X → TX( jE) whose restriction toE is nonzero. Observe that
detλ is a section ofOX(2(r j − k)E) which is nonzero outsideE, hence
k ≤ r j and in particularj ≥ 0.

We have a diagram of exact sequences

0−→ L −→ Ω1
X |E −→ Ω1

E −→ 0yλ|E
0−→ TE⊗ L− j −→ TX |E⊗ L− j −→ L− j−1 −→ 0 .

Since j ≥ 0 we have Hom(L,L− j−1) = Hom(Ω1
E,L

− j−1) =
Hom(L,TE ⊗ L− j ) = 0 by Lemma 3.3. Thusλ|E factors through a map
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µ : Ω1
E→ TE⊗ L− j ; sinceλ is antisymmetricµ is antisymmetric, that is,

comes from an element ofH0(E,∧∧∧2 TE⊗ L− j ).
Sinceλ|E is non-zero, Lemma 3.3 impliesj ≤ 1, hencek ≤ r . Moreover

if k = r j , detλ does not vanish, henceλ and thereforeλ|E are isomorphisms;
but this is impossible becauseλ|E vanishes on the sub-bundleL ⊂ Ω1

X |E.
Thus we havek < r j , and thereforej = 1 andk = r − 1.

(3.6) Going back to the local computation of (3.2), we observe that the
form θ := i ∗θ̃ is defined globally as a section ofΩ1

E ⊗ L: it is the image
of ϕ ∈ H0(X,Ω2

X(logE)(−E)) by the residue mapΩ2
X(logE)(−E) →

Ω1
E⊗ OX(−E)|E. We now know that the(2r)-form du∧ θ̃ ∧ (dθ̃)r−1 on U

does not vanish, so the twisted(2r −1)-form θ ∧ (dθ)r−1 ∈ H0(E,KE⊗Lr )
does not vanish. This means, by definition, thatθ is acontact structureon
the Fano manifoldE. The classification of Fano contact manifolds is an
interesting problem, with important applications to Riemannian geometry
(see for instance [L] or [B2]). Here we have one more information, namely
that the line bundleL is veryample; this implies thatE is isomorphic to one
of the homogeneous contact manifoldsPOmin ([B1], cor. 1.8).

(3.7) It remains to show that the embedding ofE in X is isomorphic, in
some open neighbourhood ofE, to the embedding of the zero section in the
line bundleL−1→ E. By a criterion of Grauert [G], it is sufficient to prove
that the spacesH1(E,TE⊗ Lk) andH1(E,Lk) are zero fork ≥ 1. SinceE is
a Fano manifold, the second assertion follows from the Kodaira vanishing
theorem; since the tangent bundle ofE is spanned by its global sections, the
first one follows from the Griffiths vanishing theorem ([Gr], Theorem G).

4 Local fundamental group

(4.1) In view of (2.3) it seems hopeless to classify all isolated symplectic
singularities: there are too many quotient singularities, already in dimen-
sion 4. One way to get around this problem is to consider only singularities
with trivial local fundamental group. We briefly recall the definition: if
(V,o) is an isolated singularity, we can find a fundamental system(Vn)n≥1
of neighbourhoods ofo such thatVq is a deformation retract ofV p for
q ≥ p; the groupπ1(Vn), which is independant ofn and of the particular
fundamental system, is called the local fundamental group ofV at o and
denotedπo

1(V) (for a canonical definition one should be more careful about
base points, but this is irrelevant here).

If (V,o) is a quotient of an isolated singularity(W, ω) by a finite group
G acting onW with ω as only fixed point, we have an exact sequence

0→ πω1 (W) −→ πo
1(V) −→ G→ 0

(in particularπo
1(V) = G if W is smooth of dimension≥ 2). Conversely, to

each surjective homomorphism ofπo
1(V) onto a finite groupG corresponds
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an isolated singularity(W, ω) with an action ofG fixing only ω such that
W/G ∼= V; if (V,o) is a symplectic singularity, so is(W, ω). Therefore
a first step in a possible classification is to study isolated symplectic singu-
larities with trivial local fundamental group. It turns out that the singularities
(Omin,0) are of this type (with one exception):

Proposition 4.2.– Let g be a simple complex Lie algebra, andOmin ⊂ g
its minimal nilpotent orbit. Thenπ0

1(Omin) = 0 except ifg is of typeCr

(r ≥ 1); in that caseπ0
1(Omin) = Z/(2), and the corresponding double

covering ofOmin is smooth.

Proof: Consider the resolutionf : L−1 → Omin (2.6); denote byE ⊂
L−1 the zero section. LetD be a tubular neighbourhood ofE in L−1, and
D∗ = D E. Since the homogeneous spacePOmin is simply-connected, the
homotopy exact sequence of the fibrationf : D∗ → POmin reads

H2(POmin,Z)
∂−→ Z −→ π1(D

∗)→ 0 ,

where the map∂ corresponds to the Chern classc1(L−1) ∈ H2(POmin,Z).
Put dimPOmin = 2r−1. SinceKPOmin = L−r , the classc1(L) is primitive

unlessPOmin = P2r−1, which occurs exactly wheng is of type Cr (see
[B1]). Assume this is not the case. The homotopy exact sequence gives
π1(D∗) = 0; since the pull back of any neighbourhood of 0 inOmin contains
a tubular neighbourhood ofE, this impliesπ0

1(Omin) = 0.
If g is of typeCr the same argument givesπ0

1(Omin) = Z/(2); actually
we have seen in (2.6) thatOmin is isomorphic to the quotient ofC2r by the
involution v 7→ −v. ut
(4.3) It would be interesting to find more examples of isolated symplectic
singularities with trivial local fundamental group, and also examples with
infinite local fundamental group.

Acknowledgements.I am grateful to J. Wahl for useful discussions.
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