Invent. math. (1999)
Digital Object Identifier (DOI) 10.1007/s002229900043

Symplectic singularities

Arnaud Beauville

DMI – École Normale Supérieure (UMR 8553 du CNRS), 45 rue d'Ulm, F-75230 Paris Cedex 05, France

Oblatum 16-III-1999 & 2-IX-1999 / Published online: 29 November 1999

Introduction

We introduce in this paper a particular class of rational singularities, which we call *symplectic*, and classify the simplest ones. Our motivation comes from the analogy between rational Gorenstein singularities and Calabi-Yau manifolds: a compact, Kähler manifold of dimension n is a Calabi-Yau manifold if it admits a nowhere vanishing n-form, while a normal variety V of dimension n has rational Gorenstein singularities if its smooth part V_{reg} carries a nowhere vanishing n-form, with the extra property that its pull-back in any resolution $X \to V$ extends to a holomorphic form on X. Among Calabi-Yau manifolds an important role is played by the symplectic (or hyperkähler) manifolds, which admit a holomorphic, everywhere non-degenerate 2-form; by analogy we say that a normal variety V has *symplectic singularities* if V_{reg} carries a closed symplectic 2-form whose pull-back in any resolution $X \to V$ extends to a holomorphic 2-form on X. Note that this last condition is automatic if the singular locus of V has codimension ≥ 4 [F], in particular for isolated singularities of dimension > 2.

We will look for the simplest possible isolated symplectic singularities $o \in V$, namely those whose projective tangent cone is smooth: this means that blowing up o in V provides a resolution of V with a smooth exceptional divisor. Examples of such singularities are obtained as follows. Each simple complex Lie algebra has a smallest non-zero nilpotent orbit \mathcal{O}_{\min} for the adjoint action; its closure $\overline{\mathcal{O}}_{\min} = \mathcal{O}_{\min} \cup \{0\}$ has a symplectic singularity at 0, isomorphic to the cone over the smooth variety $\mathbf{P}\mathcal{O}_{\min} := \mathcal{O}_{\min}/C^*$. In particular its projective tangent cone is smooth (it is isomorphic to $\mathbf{P}\mathcal{O}_{\min}$).

Our main result is the converse:

Theorem.— Let (V, o) be a germ of isolated symplectic singularity, whose projective tangent cone is smooth. Then (V, o) is analytically isomorphic to the germ $(\overline{\mathcal{O}}_{min}, 0)$ for some simple complex Lie algebra.

¹ also called canonical singularities of index 1.

The key point of the proof is the fact that the homogeneous space $\mathbf{P}\mathcal{O}_{\min}$ carries a holomorphic *contact structure* (inherited from the symplectic structure of \mathcal{O}_{\min}). Given a resolution $X \to V$ with a smooth exceptional divisor E, we show that the extension to X of the symplectic form has a residue on E which defines a contact structure. We then deduce from [B1] that E is isomorphic to some $\mathbf{P}\mathcal{O}_{\min}$, and we conclude with a classical criterion of Grauert.

We discuss in §4 whether a classification of isolated symplectic singularities makes sense. Each such singularity gives rise to many others by considering its quotient by a finite group; to get rid of those we propose to consider only isolated symplectic singularities with trivial local fundamental group. The singularities $(\overline{\mathcal{O}}_{\min}, 0)$ have this property when the Lie algebra is not of type C_l ; it is certainly desirable to find more examples.

1. Definition and basic properties

We consider algebraic varieties over C (our results extend readily to the analytic category). We will say that a holomorphic 2-form on a smooth variety is *symplectic* if it is closed and non-degenerate at every point. A *resolution* of an algebraic variety V is a proper, birational morphism $f: X \to V$ where X is smooth.

Definition 1.1.— A variety has a symplectic singularity at a point if this point admits an open neighborhood V such that:

- a) V is normal;
- b) The smooth part V_{reg} of V admits a symplectic 2-form φ ;
- c) For any resolution $f: X \to V$, the pull back of φ to $f^{-1}(V_{reg})$ extends to a holomorphic 2-form on X.

We will mostly consider a symplectic singularity as a germ (V, o) – in which case we will always assume that V satisfies the conditions a) to c).

(1.2) A result of Flenner [F] guarantees that condition c) holds when codim $Sing(V) \ge 4$. We chose to impose it in all cases in order to get uniform results.

As for rational singularities it is enough to check c) for one particular resolution: this follows easily from the fact that two given resolutions of V are dominated by a common resolution.

Proposition 1.3.— A symplectic singularity is rational Gorenstein.

Proof: We keep the notation of Definition 1.1 and put dim V = 2r. The form φ^r generates the line bundle $\omega_{V_{reg}}$, and for any resolution $X \to V$ extends to a holomorphic form on X; this implies that V has rational Gorenstein singularities [R].

The following remark shows that isolated symplectic singularities of dimension > 2 are *not* local complete intersections:

Proposition 1.4.— Let V be a variety with symplectic singularities which is locally a complete intersection. Then the singular locus of V has codimension < 3.

Proof: We can realize locally V as a complete intersection in some smooth variety S. The exact sequence

$$0 \to N_{V/S}^* \longrightarrow \Omega_{S|V}^1 \longrightarrow \Omega_V^1 \to 0$$

provides a length 1 locally free resolution of Ω^1_V . We can assume codim $Sing(V) \geq 3$; by the Auslander-Buchsbaum theorem and the fact that V is Cohen-Macaulay, the depth of Ω^1_V at every point of Sing(V) is ≥ 2 . It follows that Ω^1_V is a reflexive sheaf, so the isomorphism $\Omega^1_{V_{reg}} \to T_{V_{reg}}$ defined by a symplectic 2-form on V_{reg} extends to an isomorphism $\Omega^1_V \to T_V$. Combining the resolution of Ω^1_V and its dual we get an exact sequence

$$0 \to N_{V/S}^* \longrightarrow \Omega_{S|V}^1 \longrightarrow T_{S|V} \stackrel{\textit{u}}{\longrightarrow} N_{V/S} \; ,$$

where the support of the cokernel T^1 of u is exactly Sing(V). Using the Auslander-Buchsbaum theorem again we get $dim(T^1) = dim Sing(V) \ge dim(V) - 3$.

2. Examples

- (2.1) In dimension 2, the symplectic singularities are the rational double points (that is, the A-D-E singularities).
- (2.2) Any product of varieties with symplectic singularities has again symplectic singularities.
- (2.3) Quotient singularities

The following result will provide us with a large list of symplectic singularities:

Proposition 2.4.— Let V be a variety with symplectic singularities, G a finite group of automorphisms of V, preserving a symplectic 2-form on V_{reg} . Then V/G has symplectic singularities.

Proof: We first observe that the fixed locus F_g in V_{reg} of any element $g \neq 1$ in G is a symplectic subvariety of V_{reg} ([Fu], Prop. 2.6), and therefore has codimension ≥ 2 . Let $V^o := V_{reg} - \bigcup_{g \neq 1} F_g$. The symplectic 2-form on V^o descends to a symplectic 2-form φ^o on V^o/G ; since the complement of V^o/G in V/G has codimension ≥ 2 , φ^o extends to a symplectic 2-form φ on

 $(V/G)_{reg}$. Let $g: Y \to V/G$ be a resolution of V/G; by taking a resolution of $Y \times_{(V/G)} V$ we get a commutative diagram

$$\begin{array}{ccc} X & \stackrel{f}{\longrightarrow} & V \\ \downarrow & & \downarrow \\ Y & \stackrel{g}{\longrightarrow} & V/G \end{array}$$

where f is a resolution of V. Then $g^*\varphi$ is a meromorphic 2-form on Y, whose pull back to X is holomorphic. By an easy local computation, this implies that $g^*\varphi$ is holomorphic.

(2.5) This applies for instance when V is a finite-dimensional symplectic vector space, and G a finite subgroup of Sp(V). If we impose moreover that the non trivial elements of G have all their eigenvalues $\neq 1$, then V/G has an isolated symplectic singularity. As J. Wahl pointed out to me, a complete (and rather lengthy) list of such finite subgroups can be deduced from [Wo], thm. 7.2.18 (if $\dim(V) = 2$ we get the well-known list of finite subgroups of SL(V), the corresponding quotient singularities being the rational double points). The simplest case is obtained when $G = \{\pm Id_V\}$; the quotient V/G is then isomorphic to the cone over the Veronese embedding of P(V) into $P(S^2V)$. In particular, the projective tangent cone at the singular point of V/G is isomorphic to P(V). It will follow from our Theorem and from §4 below that for all other isolated symplectic quotient singularities V/G, the projective tangent cone at the singular point is not smooth.

Proposition 2.4 also applies to the symmetric products $V^{(p)} = V^p/\mathfrak{S}_p$: if the variety V has symplectic singularities, so does $V^{(p)}$.

(2.6) Nilpotent orbits

Let $\mathfrak g$ be a simple complex Lie algebra and $\mathcal O \subset \mathfrak g$ a nilpotent orbit (for the adjoint action)². Then *the normalization of the closure of* $\mathcal O$ *in* $\mathfrak g$ *has symplectic singularities*. This is due to Panyushev [P], who uses it to prove that this variety has rational Gorenstein singularities. The point is that $\mathcal O$ can be identified with a coadjoint orbit using the Killing form, and therefore carries the Kostant-Kirillov symplectic 2-form.

In particular, the Lie algebra $\mathfrak g$ contains a unique (non-zero) minimal nilpotent orbit $\mathcal O_{\min}$, which is contained in the closure of all non-zero nilpotent orbits. The closure $\overline{\mathcal O}_{\min} = \mathcal O_{\min} \cup \{0\}$ is normal, and has an isolated symplectic singularity at 0.

This singularity can be described as follows. The orbit \mathcal{O}_{\min} is stable by homotheties; the quotient $\mathbf{P}\mathcal{O}_{\min} := \mathcal{O}_{\min}/C^*$ is a smooth, closed subvariety of $\mathbf{P}(\mathfrak{g})$. The variety $\overline{\mathcal{O}}_{\min}$ is the cone over $\mathbf{P}\mathcal{O}_{\min} \subset \mathbf{P}(\mathfrak{g})$. This means that we have a resolution $f: L^{-1} \to \overline{\mathcal{O}}_{\min}$, where L is the restriction of $\mathcal{O}_{\mathbf{P}(\mathfrak{g})}(1)$

² A general reference for nilpotent orbits is [C-M].

to $\mathbf{P}\mathcal{O}_{\min}$, and f contracts to 0 the zero section E of L^{-1} . In this situation f is the blow up of 0 in $\overline{\mathcal{O}}_{\min}$, and the exceptional divisor E, isomorphic to $\mathbf{P}\mathcal{O}_{\min}$, is the projective tangent cone to 0 in $\overline{\mathcal{O}}_{\min}$.

For instance, let V be a finite-dimensional symplectic vector space; the Lie algebra $\mathfrak{sp}(V)$ can be identified with S^2V , in such a way that \mathcal{O}_{\min} (resp. $\overline{\mathcal{O}}_{\min}$) is the image of V – $\{0\}$ (resp. V) by the map $v \mapsto v \cdot v$. In other words, $\overline{\mathcal{O}}_{\min}$ is isomorphic to V/ $\{\pm 1\}$ (see (2.5)) and $\mathbf{P}\mathcal{O}_{\min}$ to $\mathbf{P}(V)$.

3. Characterization of minimal orbits singularities

(3.1) This section is devoted to the proof of the theorem stated in the introduction. So we let (V, o) be an isolated symplectic singularity, $f: X \to V$ the blow up of the maximal ideal of o in V, and E the exceptional divisor. By construction E is isomorphic to the projective tangent cone to V at O; we assume that it is smooth. Since E is a Cartier divisor in X it follows that X is smooth.

We denote by i the embedding of E in X, and put L := $i^*\mathcal{O}_X(-E)$. By the standard properties of the blow up the line bundle L on E is *very ample*.

(3.2) Let dim V = 2r. We can assume that V – {o} carries a symplectic 2-form which extends to a holomorphic 2-form φ on X; we have div $(\varphi^r) = kE$ for some integer $k \geq 0$. The adjunction formula gives $K_E = L^{-k-1}$, so that E is a Fano manifold. This implies $H^0(E, \Omega_E^p) = 0$ for each $p \geq 1$, and in particular $i^*\varphi = 0$.

Let $e \in E$. Since φ is closed, we can write $\varphi = d\alpha$ in a neighbourhood U of e in X, where α is a 1-form on U such that $i^*\alpha$ is closed. Shrinking U if necessary we can write $i^*\alpha = d(i^*g)$ for some function g on U; replacing α by $\alpha - dg$ we may assume $i^*\alpha = 0$. If u = 0 is a local equation of E in U, this means that α is of the form $u\,\tilde{\theta} + h\,du$, where $\tilde{\theta}$ is a 1-form and h a function on U; replacing α by $\alpha - d(hu)$ and $\tilde{\theta}$ by $\tilde{\theta} - dh$ we arrive at $\alpha = u\tilde{\theta}$ and

$$\varphi = du \wedge \tilde{\theta} + u \, d\tilde{\theta} .$$

This gives $\varphi^r = ru^{r-1}du \wedge \tilde{\theta} \wedge (d\tilde{\theta})^{r-1} + u^r(d\tilde{\theta})^r$. Thus the order of vanishing k of φ^r along E is $\geq r-1$; the crucial point of the proof is the equality k=r-1. We need an easy lemma:

Lemma 3.3.— Let X be a smooth closed submanifold of a projective space \mathbf{P}^{N} , of degree ≥ 2 . Then $H^{0}(X, \wedge^{p} T_{X}(-p)) = 0$ for $0 , and for <math>p = \dim(X)$ except if X is a hyperquadric.

Proof: When X is a hyperquadric our assertion is equivalent to $H^0(X, \Omega_X^q(q)) = 0$ for $0 < q < \dim(X)$, which can be checked by a direct computation (see for instance [K], thm. 3). We assume $\deg(X) \ge 3$.

The case p=1 follows from a more general result of Wahl ([W], see remark below). Let $p \ge 2$; we use induction on the dimension of X, the

case of curves being clear. Let H be a smooth hyperplane section of X; the exact sequence

$$0 \to T_H \longrightarrow T_{X|H} \longrightarrow \mathcal{O}_H(1) \to 0$$

gives rise to exact sequences

$$0 \to \bigwedge^p \mathrm{T}_{\mathrm{H}}(-p) \longrightarrow \bigwedge^p \mathrm{T}_{\mathrm{X}_{|\mathrm{H}}}(-p) \longrightarrow \bigwedge^{p-1} \mathrm{T}_{\mathrm{H}}(-(p-1)) \to 0.$$

By the induction hypothesis we conclude that $H^0(H, \Lambda^p T_{X|H}(-p))$ is zero. Thus a section of $H^0(X, \Lambda^p T_X(-p))$ must vanish on any smooth hyperplane section of X, and therefore vanishes identically.

Remark 3.4.— Wahl's result is rather easy in our situation: using the exact sequence

$$0 \to H^0(X, T_X(-1)) \longrightarrow H^0(X, T_{\textbf{P}^N}(-1)_{|X}) \longrightarrow H^0(X, N_{X/\textbf{P}^N}(-1))$$

and the isomorphism $C^{N+1} \stackrel{\sim}{\longrightarrow} H^0(X, T_{\mathbf{P}^N}(-1)_{|X})$ deduced from the Euler exact sequence, we see that a nonzero element of $H^0(X, T_X(-1))$ corresponds to a point $p \in \mathbf{P}^N$ such that all projective tangent spaces $\mathbf{P}T_x(X)$, for x in X, pass through p. This is easily seen to be impossible, for instance by induction on $\dim(X)$.

It seems natural to conjecture that the statement of the lemma extends to the more general situation considered in [W], namely that $H^0(X, \Lambda^p T_X \otimes L^{-p}) = 0$ for p > 0 whenever L is ample, except if $(X, L) = (\mathbf{P}^n, \mathcal{O}_{\mathbf{P}^n}(1))$, with $n \geq p$, or $(X, L) = (Q_p, \mathcal{O}_{Q_n}(1))$.

(3.5) We now prove the equality k=r-1. If $E=\mathbf{P}^{2r-1}$ and $L=\mathcal{O}_{\mathbf{P}^{2r-1}}(1)$, V is smooth; if $E=\mathbf{P}^1$ and $L=\mathcal{O}_{\mathbf{P}^1}(2)$, V is a surface with an ordinary double point. We exclude these two cases. The perfect pairing $\Omega_X^1\otimes\Omega_X^{2r-1}\to K_X$ provides an isomorphism $\Omega_X^{2r-1}\cong T_X\otimes K_X$; thus exterior product with φ^{r-1} gives a linear map $\Omega_X^1\to T_X(kE)$, which is an isomorphism outside E (it is the inverse of the isomorphism defined by φ). This map may vanish on E, say with order k-j ($j\leq k$), so that we get a map $\lambda:\Omega_X^1\to T_X(jE)$ whose restriction to E is nonzero. Observe that det λ is a section of $\mathcal{O}_X(2(rj-k)E)$ which is nonzero outside E, hence $k\leq rj$ and in particular $j\geq 0$.

We have a diagram of exact sequences

$$\begin{split} 0 \longrightarrow L \longrightarrow \Omega^1_{X|E} \longrightarrow \Omega^1_E \longrightarrow 0 \\ & \qquad \qquad \downarrow^{\lambda_{|E}} \\ 0 \longrightarrow T_E \otimes L^{-j} \longrightarrow T_{X|E} \otimes L^{-j} \longrightarrow L^{-j-1} \longrightarrow 0 \;. \end{split}$$

Since $j\geq 0$ we have $\operatorname{Hom}(\mathsf{L},\mathsf{L}^{-j-1})=\operatorname{Hom}(\Omega^1_\mathsf{E},\mathsf{L}^{-j-1})=\operatorname{Hom}(\mathsf{L},\mathsf{T}_\mathsf{E}\otimes\mathsf{L}^{-j})=0$ by Lemma 3.3. Thus $\lambda_{|\mathsf{E}}$ factors through a map

 $\mu: \Omega^1_E \to T_E \otimes L^{-j}$; since λ is antisymmetric μ is antisymmetric, that is, comes from an element of $H^0(E, \Lambda^2 T_E \otimes L^{-j})$.

Since $\lambda_{|E}$ is non-zero, Lemma 3.3 implies $j \leq 1$, hence $k \leq r$. Moreover if k = rj, det λ does not vanish, hence λ and therefore $\lambda_{|E}$ are isomorphisms; but this is impossible because $\lambda_{|E}$ vanishes on the sub-bundle $L \subset \Omega^1_{X|E}$. Thus we have k < rj, and therefore j = 1 and k = r - 1.

- (3.6) Going back to the local computation of (3.2), we observe that the form $\theta:=i^*\tilde{\theta}$ is defined globally as a section of $\Omega_{\rm E}^1\otimes L$: it is the image of $\varphi\in {\rm H}^0({\rm X},\Omega_{\rm X}^2(\log {\rm E})(-{\rm E}))$ by the residue map $\Omega_{\rm X}^2(\log {\rm E})(-{\rm E})\to \Omega_{\rm E}^1\otimes \mathcal{O}_{\rm X}(-{\rm E})_{|\rm E}.$ We now know that the (2r)-form $du\wedge\tilde{\theta}\wedge(d\tilde{\theta})^{r-1}$ on U does not vanish, so the twisted (2r-1)-form $\theta\wedge(d\theta)^{r-1}\in {\rm H}^0({\rm E},{\rm K_E}\otimes {\rm L}^r)$ does not vanish. This means, by definition, that θ is a *contact structure* on the Fano manifold E. The classification of Fano contact manifolds is an interesting problem, with important applications to Riemannian geometry (see for instance [L] or [B2]). Here we have one more information, namely that the line bundle L is *very* ample; this implies that E is isomorphic to one of the homogeneous contact manifolds ${\bf P}\mathcal{O}_{\min}$ ([B1], cor. 1.8).
- (3.7) It remains to show that the embedding of E in X is isomorphic, in some open neighbourhood of E, to the embedding of the zero section in the line bundle $L^{-1} \to E$. By a criterion of Grauert [G], it is sufficient to prove that the spaces $H^1(E, T_E \otimes L^k)$ and $H^1(E, L^k)$ are zero for $k \ge 1$. Since E is a Fano manifold, the second assertion follows from the Kodaira vanishing theorem; since the tangent bundle of E is spanned by its global sections, the first one follows from the Griffiths vanishing theorem ([Gr], Theorem G).

4 Local fundamental group

(4.1) In view of (2.3) it seems hopeless to classify all isolated symplectic singularities: there are too many quotient singularities, already in dimension 4. One way to get around this problem is to consider only singularities with *trivial local fundamental group*. We briefly recall the definition: if (V, o) is an isolated singularity, we can find a fundamental system $(V_n)_{n\geq 1}$ of neighbourhoods of o such that V_q is a deformation retract of V_p for $q \geq p$; the group $\pi_1(V_n)$, which is independant of n and of the particular fundamental system, is called the local fundamental group of V at o and denoted $\pi_1^0(V)$ (for a canonical definition one should be more careful about base points, but this is irrelevant here).

If (V, o) is a quotient of an isolated singularity (W, ω) by a finite group G acting on W with ω as only fixed point, we have an exact sequence

$$0 \to \pi_1^{\omega}(W) \longrightarrow \pi_1^{o}(V) \longrightarrow G \to 0$$

(in particular $\pi_1^o(V) = G$ if W is smooth of dimension ≥ 2). Conversely, to each surjective homomorphism of $\pi_1^o(V)$ onto a finite group G corresponds

an isolated singularity (W, ω) with an action of G fixing only ω such that $W/G \cong V$; if (V, o) is a symplectic singularity, so is (W, ω) . Therefore a first step in a possible classification is to study isolated symplectic singularities with trivial local fundamental group. It turns out that the singularities $(\overline{\mathcal{O}}_{\min}, 0)$ are of this type (with one exception):

Proposition 4.2.— Let \mathfrak{g} be a simple complex Lie algebra, and $\mathfrak{O}_{\min} \subset \mathfrak{g}$ its minimal nilpotent orbit. Then $\pi_1^0(\overline{\mathcal{O}}_{\min}) = 0$ except if \mathfrak{g} is of type C_r $(r \geq 1)$; in that case $\pi_1^0(\overline{\mathcal{O}}_{\min}) = \mathbf{Z}/(2)$, and the corresponding double covering of $\overline{\mathcal{O}}_{\min}$ is smooth.

Proof: Consider the resolution $f: L^{-1} \to \overline{\mathcal{O}}_{\min}$ (2.6); denote by $E \subset L^{-1}$ the zero section. Let D be a tubular neighbourhood of E in L^{-1} , and $D^* = D - E$. Since the homogeneous space $\mathbf{P}\mathcal{O}_{\min}$ is simply-connected, the homotopy exact sequence of the fibration $f: D^* \to \mathbf{P}\mathcal{O}_{\min}$ reads

$$H_2(\mathbf{P}\mathcal{O}_{\min}, \mathbf{Z}) \stackrel{\partial}{\longrightarrow} \mathbf{Z} \longrightarrow \pi_1(D^*) \to 0$$
,

where the map ∂ corresponds to the Chern class $c_1(L^{-1}) \in H^2(\mathbf{P}\mathcal{O}_{\min}, \mathbf{Z})$.

Put dim $\mathbf{P}\mathcal{O}_{\min} = 2r - 1$. Since $K_{\mathbf{P}\mathcal{O}_{\min}} = \mathbf{L}^{-r}$, the class $c_1(\mathbf{L})$ is primitive unless $\mathbf{P}\mathcal{O}_{\min} = \mathbf{P}^{2r-1}$, which occurs exactly when \mathfrak{g} is of type C_r (see [B1]). Assume this is not the case. The homotopy exact sequence gives $\pi_1(\mathbf{D}^*) = 0$; since the pull back of any neighbourhood of 0 in $\overline{\mathcal{O}}_{\min}$ contains a tubular neighbourhood of E, this implies $\pi_1^0(\overline{\mathcal{O}}_{\min}) = 0$.

If \mathfrak{g} is of type C_r the same argument gives $\pi_1^0(\overline{\mathcal{O}}_{\min}) = \mathbf{Z}/(2)$; actually we have seen in (2.6) that $\overline{\mathcal{O}}_{\min}$ is isomorphic to the quotient of C^{2r} by the involution $v \mapsto -v$.

(4.3) It would be interesting to find more examples of isolated symplectic singularities with trivial local fundamental group, and also examples with *infinite* local fundamental group.

Acknowledgements. I am grateful to J. Wahl for useful discussions.

References

- [B1] A. Beauville: Fano contact manifolds and nilpotent orbits, Comment. Math. Helv. 73, 566–583 (1998)
- [B2] A. Beauville: Riemannian Holonomy and Algebraic Geometry. Preprint math.AG/9902110
- [C-M] D. Collingwood, W. McGovern: Nilpotent orbits in semi-simple Lie algebras. Van Nostrand Reinhold Co., New York (1993)
- [F] H. Flenner: Extendability of differential forms on non-isolated singularities. Invent. math. 94, 317–326 (1988)
- [Fu] A. Fujiki: On primitively symplectic compact Kähler V-manifolds of dimension 4. Classification of algebraic and analytic manifolds. PM 39, 71–250; Birkhäuser (1983)

Symplectic singularities

- [G] H. Grauert: Über Modifikationen und exzeptionelle analytische Mengen. Math. Ann. **146**, 331–368 (1962)
- [Gr] P. Griffiths: Hermitian differential geometry, Chern classes, and positive vector bundles. Global Analysis (Papers in Honor of K. Kodaira), 185–251; Univ. Tokyo Press (1969)
- [K] Y, Kimura: On the hypersurfaces of Hermitian symmetric spaces of compact type.Osaka J. Math. 16, 97–119 (1979)
- [L] C. Le Brun: Fano manifolds, contact structures, and quaternionic geometry. Int. J. Math. 6, 419–437 (1995)
- [P] D.I. Panyushev: Rationality of singularities and the Gorenstein properties of nilpotent orbits. Functional Anal. Appl. **25**, 225–226 (1991)
- [R] M. Reid: Canonical 3-folds. Journées de Géometrie Algébrique d'Angers (1979), 273–310; Sijthoff & Noordhoff (1980)
- [W] J. Wahl: A cohomological characterization of \mathbf{P}^n . Invent. math. 72, 315–322 (1983)
- [Wo] J.A. Wolf: Spaces of constant curvature, 3rd ed. Publish or Perish, Boston (1974)