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Introduction

We introduce in this paper a particular class of rational singularities, which
we call symplecti¢c and classify the simplest ones. Our motivation comes
from the analogy between rational Gorenstein singularities and Calabi-Yau
manifolds: a compact, Kéhler manifold of dimensianis a Calabi-Yau
manifold if it admits a nowhere vanishingform, while a normal variety
V of dimensionn has rational Gorenstein singularittei§ its smooth part
Vyeg Carries a nowhere vanishingform, with the extra property that its
pull-back in any resolutiolXX — V extends to a holomorphic form of.
Among Calabi-Yau manifolds an important role is played by the symplectic
(or hyperkahler) manifolds, which admit a holomorphic, everywhere non-
degenerate 2-form; by analogy we say that a normal vaviéigssymplectic
singularitiesif V¢4 carries a closed symplectic 2-form whose pull-back in
any resolutionX — V extends to a holomorphic 2-form ofi Note that
this last condition is automatic if the singular locus\bhas codimension
> 4 [F], in particular for isolated singularities of dimensien2.

We will look for the simplest possible isolated symplectic singularities
0 € V, namely those whose projective tangent cone is smooth: this means
that blowing upoin V provides a resolution of with a smooth exceptional
divisor. Examples of such singularities are obtained as follows. Each simple
complex Lie algebra has a smallest non-zero nilpotent @hjt, for the
adjoint action; its closuré min = Omin U {0} has a symplectic singularity
at 0, isomorphic to the cone over the smooth vai&,in := O min/C*. In
particular its projective tangent cone is smooth (it is isomorphle@g,,).

Our main result is the converse:

Theorem.— Let (V, 0) be a germ of isolated symplectic singularity, whose
projective tangent cone is smooth. Th&h o) is analytically isomorphic
to the germ(@min, 0) for some simple complex Lie algebra

1 also called canonical singularities of index 1.
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The key point of the proof is the fact that the homogeneous space
PO min carries a holomorphicontact structurginherited from the symplec-
tic structure of9in). Given a resolutiolX — V with a smooth exceptional
divisor E, we show that the extension % of the symplectic form has
a residue ork which defines a contact structure. We then deduce from
[B1] that E is isomorphic to somPO min, and we conclude with a classical
criterion of Grauert.

We discuss in 84 whether a classification of isolated symplectic singu-
larities makes sense. Each such singularity gives rise to many others by
considering its quotient by a finite group; to get rid of those we propose
to consider only isolated symplectic singularities with trivial local funda-
mental group. The singularitie® », 0) have this property when the Lie
algebra is not of typ€;; it is certainly desirable to find more examples.

1. Definition and basic properties

We consider algebraic varieties o@(our results extend readily to the an-
alytic category). We will say that a holomorphic 2-form on a smooth variety
is symplectidf it is closed and non-degenerate at every pointegolution

of an algebraic variety is a proper, birational morphism: X — V where

X is smooth.

Definition 1.1.— A variety has a symplectic singularity at a point if this
point admits an open neighborhodsuch that:

a) Vis normal;

b) The smooth par¥/ .4 of V admits a symplecti2-form ¢;

c) For any resolutionf : X — V, the pull back ofp to f~1(Veq) extends
to a holomorphic2-form onX.

We will mostly consider a symplectic singularity as a geivh) o) — in
which case we will always assume thasatisfies the conditions a) to c).

(2.2) A result of Flenner [F] guarantees that condition c) holds when
codim SingV) > 4. We chose to impose it in all cases in order to get
uniform results.

As for rational singularities it is enough to check c) for one particular
resolution: this follows easily from the fact that two given resolution¥ of
are dominated by a common resolution.

Proposition 1.3.— A symplectic singularity is rational Gorenstein.

Proof: We keep the notation of Definition 1.1 and put dém= 2r. The form
¢" generates the line bundJe\,reg, and for any resolutioiX — V extends
to a holomorphic form orX; this implies thatvV has rational Gorenstein
singularities [R]. O
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The following remark shows that isolated symplectic singularities of
dimension> 2 arenotlocal complete intersections:

Proposition 1.4.— LetV be a variety with symplectic singularities which is
locally a complete intersection. Then the singular locu¥ ¢fas codimen-
sion< 3.

Proof: We can realize locallyy as a complete intersection in some smooth
variety S. The exact sequence

0— Nys— Qé‘v—>9\l,—>0

provides a length 1 locally free resolution &l. We can assume
codim SingV) > 3; by the Auslander-Buchsbaum theorem and the fact that
V is Cohen-Macaulay, the depth @f at every point oSing(V) is > 2. It
follows that2y is a reflexive sheaf, so the isomorphisz,, — Ty, de-

fined by a symplectic 2-form ovfq €xtends to an isomorphisf} — T,,.
Combining the resolution a2}, and its dual we get an exact sequence

u
0— Ny,s — Qgy — Tsy — Nys,

where the support of the cokern€l of u is exactlySing(V). Using the
Auslander-Buchsbaum theorem again we get(@in = dimSingV) >
dim(V) — 3. O

2. Examples

(2.1) In dimension 2, the symplectic singularities are the rational double
points (that is, the A-D-E singularities).

(2.2) Any product of varieties with symplectic singularities has again sym-
plectic singularities.

(2.3) Quotient singularities
The following result will provide us with a large list of symplectic
singularities:

Proposition 2.4.— LetV be a variety with symplectic singularitigS a finite
group of automorphisms &f, preserving a symplectform onV,eg. Then
V /G has symplectic singularities.

Proof. We first observe that the fixed lockgin V4 0f any elemeng # 1

in G is a symplectic subvariety of ¢4 ([Fu], Prop. 2.6), and therefore has
codimension> 2. LetV® := Vieg — (Jg4 Fg- The symplectic 2-form on
V° descends to a symplectic 2-forpA on V°/G; since the complement of
V°/GinV /G has codimensior 2, ¢° extends to a symplectic 2-forgon
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(V/G)reg. Letg : Y — V/G be aresolution o¥/ /G; by taking a resolution
of Y x /G V we get a commutative diagram

X — 5 v

Lo

y %5 v/G

where f is a resolution ofV. Theng*y is a meromorphic 2-form olY,
whose pull back tdX is holomorphic. By an easy local computation, this
implies thatg*e is holomorphic. ]

(2.5) This applies for instance whevi is a finite-dimensional symplectic
vector space, an@ a finite subgroup oBp(V). If we impose moreover that
the non trivial elements d& have all their eigenvalueg 1, thenV /G has
an isolated symplectic singularity. As J. Wahl pointed out to me, a complete
(and rather lengthy) list of such finite subgroups can be deduced from [Wo],
thm. 7.2.18 (if dinfV) = 2 we get the well-known list of finite subgroups
of SL(V), the corresponding quotient singularities being the rational double
points). The simplest case is obtained wiees: {£Id\ }; the quotient /G
is then isomorphic to the cone over the Veronese embeddiRg\of into
P(S2V). In particular, the projective tangent cone at the singular point of
V /G is isomorphic taP(V). It will follow from our Theorem and from 84
below that for all other isolated symplectic quotient singularitiess, the
projective tangent cone at the singular point is not smooth.

Proposition 2.4 also applies to the symmetric prod¥ = VP/S .
if the varietyV has symplectic singularities, so doés”.

(2.6) Nilpotent orbits

Let g be a simple complex Lie algebra addc g a nilpotent orbit (for
the adjoint actiorf). Thenthe normalization of the closure @f in g has
symplectic singularitiesThis is due to Panyushev [P], who uses it to prove
that this variety has rational Gorenstein singularities. The point is@hat
can be identified with a coadjoint orbit using the Killing form, and therefore
carries the Kostant-Kirillov symplectic 2-form.

In particular, the Lie algebrg contains a unique (non-zero) minimal
nilpotent orbit®nin, which is contained in the closure of all non-zero nilpo-
tent orbits. The closur® min = Omin U {0} is normal, and has an isolated
symplectic singularity at O.

This singularity can be described as follows. The ofhif, is stable by
homotheties; the quotieFO min := Omin/C* is a smooth, closed subvariety
of P(g). The varietyQ i, is the cone ovePO,in C P(g). This means that
we have a resolutiofi : L~ — Oin, wherelL is the restriction 00p(g) (1)

2 A general reference for nilpotent orbits is [C-M].
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to POmin, and f contracts to O the zero secti@of L. In this situation
f is the blow up of 0 iN9,in, and the exceptional divisd, isomorphic to
PO min, is the projective tangent cone to 0dhyn.

For instance, leV be a finite-dimensional symplectic vector space; the
Lie algebrasp(V) can be identified witl$?V, in such a way tha® i, (resp.
Omin) is the image oV — {0} (resp.V) by the mapv — v - v. In other
words, @ min is isomorphic toV /{£1} (see (2.5)) ané®® yin to P(V).

3. Characterization of minimal orbits singularities

(3.1) This section is devoted to the proof of the theorem stated in the
introduction. So we letV, 0) be an isolated symplectic singularity, :
X — V the blow up of the maximal ideal @fin V, andE the exceptional
divisor. By constructiork is isomorphic to the projective tangent cona/to
ato; we assume that it is smooth. Sirieés a Cartier divisor irX it follows
thatX is smooth.

We denote by the embedding o in X, and putL := i*Ox(—E). By
the standard properties of the blow up the line budta E is very ample

(3.2) LetdimV = 2r. We can assume th&t— {0} carries a symplectic 2-
form which extends to a holomorphic 2-forron X; we havediv (¢") = kE
for some integek > 0. The adjunction formula givaég = L%, so that
E is a Fano manifold. This implied°(E, QE) = 0 for eachp > 1, and in
particulari*p = 0.

Lete € E. Sinceg is closed, we can write¢ = d« in a neighbourhood
U of ein X, wherex is a 1-form onU such thai*« is closed. ShrinkindJ
if necessary we can wriiéa = d(i*g) for some functiorg on U; replacing
o by o — dg we may assumé&« = 0. If u = 0 is a local equation oE
in U, this means that is of the formu6 + h du, whereg is a 1-form and
h a function onU; replacinge by o — d(hu) andé by 6 — dh we arrive at
a = uf and 3 3

p=dund+uds.

This givesg’ = ru"tdu A 8 A (d6)"~1 + u'(dd)". Thus the order of
vanishingk of ¢ alongE is > r — 1; the crucial point of the proof is the
equalityk =r — 1. We need an easy lemma:

Lemma 3.3.— Let X be a smooth closed submanifold of a projective space
PN, of degree> 2. ThenH°(X, AP Tx(—p)) = 0for 0 < p < dim(X),
and for p = dim(X) except ifX is a hyperquadric.

Proof: When X is a hyperquadric our assertion is equivalent to
HO(X, Q‘j((q)) = 0 for 0 < g < dim(X), which can be checked by a direct
computation (see for instance [K], thm. 3). We assumeXeg 3.

The casep = 1 follows from a more general result of Wahl ([W], see
remark below). Letp > 2; we use induction on the dimension Xf the
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case of curves being clear. Lidtbe a smooth hyperplane sectiongfthe
exact sequence

0— TH —> TX|H —> (9H(1) —0
gives rise to exact sequences
0> APTH(—p) — AP Txu(—p) — AP T(—(p—1) — 0.

By the induction hypothesis we conclude that(H, A P Txp(=p) is

zero. Thus a section dfi°(X, AP Tx(—p)) must vanish on any smooth
hyperplane section df, and therefore vanishes identically. O

Remark 3.4.-Wabhl's result is rather easy in our situation: using the exact
sequence

0 — H(X, Tx(—1)) — HO(X, Tpn(—1) ) —> H(X, Ny /prn(—1))

and the isomorphisr@N+t — HO(X, Tpn(—1) x) deduced from the Euler

exact sequence, we see that a nonzero elemed?©f, Tx(—1)) corres-
ponds to a poinp e PN such that all projective tangent spa@ds (X ), for
xin X, pass througlp. This is easily seen to be impossible, for instance by
induction on dingX).

It seems natural to conjecture that the statement of the lemma extends to
the more general situation considered in [W], namely H&X, A P Tx ®
L~P) = Ofor p > OwheneveL is ample, except ifX, L) = (P", Opn (1)),
withn > p, or (X, L) = (Qp, Oq,(1)).

(3.5) We now prove the equalitk = r — 1. If E = P¥~1 andL =
Opz-1(1), V is smooth; ifE = P andL = 0p:(2), V is a surface with
an ordinary double point. We exclude these two cases. The perfect pairing
QF ® Q41 — Ky provides an isomorphisrRs * = Ty ® Ky; thus
exterior product withy'~* gives a linear ma®} — Tx(KE), which is an
isomorphism outsid& (it is the inverse of the isomorphism defined gy
This map may vanish ok, say with ordekk — j (j < k), so that we get
a mapi : Q% — Tx(jE) whose restriction td is nonzero. Observe that
detx is a section of®x(2(rj — K)E) which is nonzero outsid&, hence
k <rj and in particularj > 0.

We have a diagram of exact sequences

0—>L—>Q§<‘E—>Qé—>0
b
0— Te®L™} —>TX‘E®L*J' — L1 — 0.

Since j > 0 we haveHom(L,L~!™1) = Hom(Qt,L~I7Y =
Hom(L, Te ® L™!) = 0 by Lemma 3.3. Thus ¢ factors through a map
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" Qé — Te® L; sincex is antisymmetriqu is antisymmetric, that is,
comes from an element 6f°(E, A2 Te ® L~).

SinceA ¢ is non-zero, Lemma 3.3 impligs< 1, hencek < r. Moreover
ifk=rj, detx does not vanish, henéaand therefore\|E are isomorphisms;

but this is impossible because: vanishes on the sub-bundlec Q5 e.
Thus we hav& < rj, and thereforg = 1andk =r — 1.

(3.6) Going back to the local computation of (3.2), we observe that the
form 6 := i*0 is defined globally as a section 6ft ® L: it is the image

of ¢ € HX, Q%(logE)(—E)) by the residue majz(logE)(—E) —

Qf ® Ox(—E)g. We now know that the2r)-form du A 6 A (d6)"~* onU
does not vanish, so the twist€2r — 1)-formé A (d9)'—* € HO(E, Ke®@ L")
does not vanish. This means, by definition, thé a contact structureon

the Fano manifolcE. The classification of Fano contact manifolds is an
interesting problem, with important applications to Riemannian geometry
(see for instance [L] or [B2]). Here we have one more information, namely
that the line bundlé is veryample; this implies th&E is isomorphic to one

of the homogeneous contact manifoli i, ([B1], cor. 1.8).

(3.7) It remains to show that the embedding®in X is isomorphic, in
some open neighbourhood Bfto the embedding of the zero section in the
line bundleL~! — E. By a criterion of Grauert [G], it is sufficient to prove
that the spaced’(E, Te ® L¥) andH(E, LX) are zero fok > 1. SinceE is

a Fano manifold, the second assertion follows from the Kodaira vanishing
theorem; since the tangent bundle=aé spanned by its global sections, the
first one follows from the Griffiths vanishing theorem ([Gr], Theorem G).

4 Local fundamental group

(4.1) Inview of (2.3) it seems hopeless to classify all isolated symplectic
singularities: there are too many quotient singularities, already in dimen-
sion 4. One way to get around this problem is to consider only singularities
with trivial local fundamental groupWe briefly recall the definition: if
(V, 0) is an isolated singularity, we can find a fundamental systémn-1
of neighbourhoods 06 such thatV, is a deformation retract o¥, for
g > p; the groupr1(Vy), which is independant af and of the particular
fundamental system, is called the local fundamental grouyg af o and
denotedr? (V) (for a canonical definition one should be more careful about
base points, but this is irrelevant here).

If (V, 0) is a quotient of an isolated singularifyV, ») by a finite group
G acting onW with w as only fixed point, we have an exact sequence

0— ny(W) — (V) — G— 0

(in particularzy (V) = Gif W is smooth of dimensior 2). Conversely, to
each surjective homomorphism§(V) onto a finite groufss corresponds
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an isolated singularityW, ) with an action ofG fixing only w such that
W/G = V; if (V,0) is a symplectic singularity, so ieV, w). Therefore

a first step in a possible classification is to study isolated symplectic singu-
larities with trivial local fundamental group. It turns out that the singularities
(Omin, 0) are of this type (with one exception):

Proposition 4.2.— Let g be a simple complex Lie algebra, afth, C g
its minimal nilpotent orbit. Themr?(Omin) = 0 except ifg is of typeC;

(r > 1); in that caser(@Omin) = Z/(2), and the corresponding double
covering ofO mi, is smooth.

Proof: Consider the resolutiorf : L™ — Onin (2.6); denote byE C
L~ the zero section. LdD be a tubular neighbourhood & in L=, and
D* = D - E. Since the homogeneous sp& ., is simply-connected, the
homotopy exact sequence of the fibratibn D* — PO, reads

Ho(POmin, Z) — Z —> m1(D*) — 0,

where the map corresponds to the Chern claggL 1) € H2(POmin, Z).
PutdimPO yin = 2r —1. SinceKpyp,,,, = L™, the clas; (L) is primitive
unlessPOmin = P?~1, which occurs exactly whep is of type C, (see
[B1]). Assume this is not the case. The homotopy exact sequence gives
m1(D*) = 0; since the pull back of any neighbourhood of @ig;, contains
a tubular neighbourhood @&, this impliesz2(O in) = 0.
If g is of typeC, the same argument gives (O min) = Z/(2); actually
we have seen in (2.6) théky,, is isomorphic to the quotient &> by the
involution v > —v. O

(4.3) It would be interesting to find more examples of isolated symplectic
singularities with trivial local fundamental group, and also examples with
infinite local fundamental group.

Acknowledgementsl. am grateful to J. Wahl for useful discussions.
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