SINGULARITIES AND THEIR DEFORMATIONS: HOW THEY
CHANGE THE SHAPE AND VIEW OF OBJECTS

ALEXANDRU DIMCA

ABSTRACT. We show how the presence of singularities affect the geometry of
complex projective hypersurfaces and of their complements. We illustrate the
general principles and the main results by a lot of explicit examples involving
curves and surfaces.

1. THE SETTING AND THE PROBLEM

Let P"*! be the complex projective (n+1)-dimensional projective space. It can be
regarded as the set of complex lines passing through the origin of C"*? or, alterna-
tively, as the simplest compactification of the affine space C"*!. The homogeneous
coordinates of a point x € P"™! are denoted by

T=(Tog: Tyt Tpyr).

Let C[Xo, X1, ..., X,,11] be the corresponding ring of polynomials in Xg, X7, ..., X;,11
with complex coefficients. For a homogeneous polynomial f € C[Xy, Xy, ..., X;41]
we define the corresponding projective hypersurface by

V(f)={z e P f(z) = 0}
i.e. V(f) is the zero set of the polynomial f in the complex projective (n + 1)-
dimensional projective space. We consider P"*! endowed with the strong complex
topology (coming from the metric topology on C"™') and all subsets in P"*! are
topological spaces with the induced topology. Note that this topology is quite
different from the Zariski topology used in Algebraic Geometry over an arbitrary
algebraically closed field.

A point x € V(f) is a singular point if the tangent space of V(f) at z is not
defined. Formally the set of such singular points of V(f) is called the singular locus
of V(f) and is given by

Sing(V([)) = {z € P, fo(2) = . = fuya(x) = 0}
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where f; denotes the partial derivative of f with respect to X;. We assume in the
sequel that the hypersurface V'(f) is reduced (i.e. we have chosen a simple equation
for V(f), without multiple factors) and then dimSing(V(f)) < dimV (f) = n.

In this survey we will investigate an algebraic view of the shape of the hyper-
surface V(f), expressed by various invariants from Algebraic Topology such as the
homology groups, cohomology groups, fundamental groups. For the definition of
these invariants we refer to [13], [28]. This will give a precise idea about the in-
trinsic geometry of the hypersurface and helps a lot in understanding the possible
deformation of that object.

To understand the topology of a space A it is usual to give its homology group
with integer coefficients H;(A,Z) or at least the corresponding Betti numbers

bj(A) =rankH;(A,7Z)

defined when the rank of this Z-module is finite. To give the Betti numbers of a
space A is the same as giving its rational homology groups H;(A, Q). Indeed, one
has

b;(A) = dimgH;(A, Q).

A weaker invariant is the Euler characteristic of the space A given by

X(A) = (=1)b;(A)
J

when these Betti numbers exist and are all trivial except finitely many. For alge-
braic varieties these numerical invariants are always defined since a quasi-projective
n-dimensional complex algebraic variety has the homotopy type of a finite CW-
complex of (real) dimension 2n.

In order to understand the position of V() inside the complex (n+1)-dimensional
projective space, in other words its view from outside, we have to study the topology
of the complement

M(f) =P\ V(f).

This will tell us how much freedom we have to move around the hypersurface V(f).
This idea was very fruitful in Knot Theory. Here one studies various embeddings of
the circle S* into the sphere S3. The image of such an embedding is a knot K and
the fundamental group of the complement 7 (S \ K) is called the group of the knot
K.

For any knot K one has

H\(S’\K,Z) =17

and S3\ K is a K(m,1)-space, i. e. all the topological information about it is
contained in its fundamental group. Refer to [28] for a formal definition.
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Note that the homology says nothing about the view of our knot K. A key result
due to Papakyriakopoulos says that

m(S*\K,Z) =7

if and only if the knot K is trivial, i.e. isotopic to a linear embedding of the circle.
For all these results concerning Knot Theory we refer to [25].

This trip into the realm of knot theory is related to the above discussion through
the following construction. Let n = 1 and O be any point on the curve V(f) such
that V(f) has just one branch at O. A small closed ball B in P? centered at O
has a boundary B homeomorphic to the sphere S3. Moreover we have that the
intersection V(f) N @B is homeomorphic to the circle S'. The corresponding knot
is trivial if and only if O is not a singular point on the curve V(f).

The main message of our paper is that the larger the dimension of the singular
locus of V(f), the more difficult it is to give accurate answers to the above problems
concerning the shape and the view of the hypersurface V().

We warn the reader that the setting discussed here is the simplest possible one.
We will show by examples that the answers to the above questions become much
more complicated in either of the following three apparently simpler settings.

(RS) The real setting consists of replacing all the objects above by the corre-
sponding real objects. This study is clearly more interesting for applications than
the complex setting (CS) considered above. However, usually, a real problem is first
solved in the complex setting and then we try to get as much real information out
of the complex solution. For more on this see [2], [4], [20] [24], [27].

(AS) The affine setting consists of working in an affine (or numerical) space C"*.
The objects are easier to define but the behavior at infinity causes many technical
problems. For more on this see [7], Chapter 6, section 3, [12], [11], [8].

(RB) The real bounded setting consists of studying bounded pieces of real algebraic
varieties, e.g. the intersections of real affine algebraic varieties with balls or cubes.

2. THE SMOOTH CASE

In this section we consider only smooth hypersurfaces V'(f), i.e. hypersurfaces
with an empty singular locus

Sing(V(f)) = 0.

The first result says that in this case the coefficients of the polynomial f play no
role in determining the shape and the view of the smooth hypersurface V(f), see
6], p.15. In terms of deformations, we can say that a small deformation of a smooth
hypersurface is smooth and its shape and view are unchanged.



4 ALEXANDRU DIMCA

Theorem 2.1. Let f and g be two homogeneous polynomials in C[ Xy, X1, ..., X;41]
of the same degree d such that the corresponding hypersurfaces V(f) and V (g) are
smooth. Then the following hold.

(i) The hypersurfaces V(f) and V(g) are diffeomorphic. In particular they have
exactly the same invariants coming from Algebraic Topology.

(ii) The complements M(f) and M(g) are diffeomorphic.

Example 2.2. (i) Consider first the case of complex projective plane curves, i.e.
n = 1. Such a curve C is the same as an oriented Riemann surface, so topologically
it is obtained from the 2-dimensional sphere by adding a number of handles. This
number is called the genus ¢g(C) of the curve C. In the case of a plane curve
C = V(f) one can easily show using the above theorem and taking g = X§+X{+ X4
(a Fermat type equation) that there is the following celebrated genus-degree formula

(d—1)(d—2)

o) = 22

Hence for d = 1 and d = 2 we get the sphere S? = P!, for d = 3 we get an elliptic
curve which is diffeomorphic to a torus S' x S!. One can also show that

Ho(V(f)) = Ho(V(f)) = Z and H\(V(f)) = Z*.

(ii) Consider now the case of real projective plane curves. The example of f =
X2+ X2+ X2 and g = X2 — X? + X7 shows that the above theorem is false in
the real setting. A smooth real curve V(f) is a collection of circles, but their exact
number and relative position depends heavily on the coefficients of f and this is an
area of active research, see [4].

(iii) Consider now the affine setting, i.e. complex curves in C2. The example of
f=X*+Y3—1and g = X + X?Y — 1 shows that the above theorem is false in
this setting. Indeed, topologically V(f) is a torus with 3 deleted points, while V' (g)
is a punctured plane. Hence

hi(V(f)) =4#1=b(V(9g))

There is a similar description of the homology of a smooth hypersurface V' (f) in
general, see for instance [6], p.152.

Proposition 2.3. Let V' be an n-dimensional smooth hypersurface of degree n. Then
the integral homology of V' is torsion free and the corresponding Betti numbers are
as follows.

(1) b;(V) =0 for j #n odd or j ¢ [0,2n];

(11) b;(V) =1 for j # n even and j € [0, 2n;

n+2_l

(ii) x(V) = =71 o po2,
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Example 2.4. Let S; be a smooth cubic surface in P3. Then the corresponding
sequence of integral homology groups H;(Ss,Z) for 0 < j < 4 is the following:
7,0,7",0,7Z.

Now we turn to the study of the complement M(f) in this case. One way to
study it is to consider the Milnor fiber F(f) associated to the polynomial f. This
is the following affine hypersurface

F(f)={z € C"** f(z) = 1}.

If d is the degree of f as above, then there is a monodromy automorphism of F'(f)
given by

h:F(f)— F(f),x=(xo,.sTnt1) — (AZo, ooy ATpi1)

with A = exp(27i/d). Let G be the cyclic group of order d spanned by h. Then the
quotient F'(f)/G can be identified to the complement M (f). This gives the second
part of the following.

Theorem 2.5. Assume that n > 0. Then the following hold.

(i) The Milnor fiber F(f) is homotopy equivalent to a bouquet of (n+1)-dimensional
spheres. In particular, F(f) is simply-connected and the reduced integral homology
groups of F(f) vanish in degrees up-to n.

(7i) The complement M(f) has m(M(f)) = Z/dZ and the reduced rational homology
groups of F(f) vanish in degrees up-to n.

Using the homotopy exact sequence of the fibration G — F(f) — M(f), refer to
[28] for a definition, one gets information on the higher homotopy groups, namely
i (M(f)) = m;(F(f)) =0for 1 < j <n+1and m;(M(f)) = m;(F(f)) = Z" for
j =n+ 1 where

p=(d-1)""
is the Milnor number of f. In particular, even in the simplest case, the complement
M(f) is not a K (m,1)-space.

In conclusion, in the case of smooth hypersurfaces, the spaces V' (f) and M(f) are
not very complicated. They depend only on the dimension n and the degree d, and
their topological invariants can be computed to a large extent.

3. THE ISOLATED SINGULARITIES CASE

In this section we consider hypersurfaces V(f) having at most isolated singulari-
ties, i.e. hypersurfaces with a finite singular locus

Sing(V(f)) ={a1,...,am}.
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In order to study the topology of such an object we have to study first the local
situation, i.e. the topology of an isolated hypersurface singularity (V,0) defined at
the origin of C**! by a reduced analytic function germ

g: (C"0) — (C,0).

The topological study was essentially done by Milnor in [21] where the following
facts are obtained.

Theorem 3.1. Let B, be a closed ball of radius € > 0, centered at the origin of C"*
with boundary the sphere Se.

(i) For all € > 0 small enough, the intersection V N B, is the cone over the link
K =V NS of the singularity (V,0). This link is an (n — 2)-connected submanifold
of the sphere S, and dimK = 2n — 1.

(ii) For all € >> &6 > 0 small enough, the Milnor fiber of the singularity (V,0),
defined as F = B.N g~1(8) is a smooth manifold, homotopy equivalent to a bouquet
of n-spheres. The number of spheres in this bouquet is the Milnor number u(V,0)
of the singularity (V,0) and is given by

On+1
J(g)

where O, 41 is the ring of germs of analytic function germs at the origin of C*! and
J(g) is the Jacobian ideal of g, i.e. the ideal spanned by all the partial derivatives
of g. Alternatively, the Milnor number u(V,0) is given by the degree of the gradient
mapping germ

u(V,0) = dime

grad(g) : (C™*',0) — (C"*,0).

The Milnor fiber should be regarded as a smooth deformation of the singular fiber
g 1(0) of g over the origin.

By the above theorem, it follows that the only interesting homology group of the
Milnor fiber F' is the group

L(V,0) = H,(F,Z) = 2"V",

This group is endowed with a (—1)"-symmetric bilinear form <, > coming from the
intersection of cycles. Regarded with this additional structure, the free abelian group
L(V,0) is called the Milnor lattice of the singularity (V,0). It is known that this
intersection form <, > is non-degenerate exactly when the link K is a Q-homology
sphere, i.e. H,(K,Q) = H,(S*"',Q), see for details [6], p. 93.

Similarly, the Milnor lattice is unimodular (i.e. the corresponding bilinear form
has as determinant 41 or —1) if and only if the link has the same integral homology
as the sphere S2"1.
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The Milnor lattice tells a lot about the possible deformations of an isolated hy-
persurface singularity. Indeed, the singularity (V,0) can be deformed into the sin-
gularity (W,0) only if there is an embedding of lattices

L(W,0) — L(V,0).

The Milnor number p(V,0) is also called the number of vanishing cycles at the
singularity (V,0). Ample justification for this name is given below.

One may ask which singularities among the isolated ones are the simplest. The
answer depends on our interests, but in a lot of questions the class of simple singu-
larities introduced by Arnold, see for details [1], are very useful. These singularities
are by definition the singularities which can be deformed only into finitely many iso-
morphism classes of singularities. Their classification, up to isomorphism, is given
in dimension n = 2 by the following list of local equation at the origin, see [5] where
the possible deformations are discussed in detail.

A" 4yt 2% for k>0,
Dy 2y 4+ "+ 22 for k> 3;
Fe:2®+yt + 22, B2 +ay® 4+ 2% and Es : 2 +9° + 2%
To get the corresponding equation for the curve singularities, i.e. n = 1, we have
just to discard the last term 22 from the above equations. Note that for curves A,
is just a node, while A, is just a cusp. These names are used for higher dimensional
singularities A as well.

In the above list of simple surface singularities, all the associated Milnor lattices
are non-degenerate and only the lattice L(Eyg) is unimodular.

Remark 3.2. Using the real parts of some of the above expressions defining the
simple singularities, one can obtain simple real equations for hypersurfaces in the
real projective space RP3 which represent up to diffeomorphism all the surfaces,
i.e. all the compact, connected 2-manifolds. For example, any compact, connected
2-manifold M which is orientable can be constructed up to diffeomorphism from
the sphere S? by attaching ¢ handles, where g > 0 is the genus of M exactly as in
Example 2.2. This integer g is completely determined by the equality

X(M) =2-2g.
Let X, Y, Z and W be the homogeneous coordinates on the real projective space
RP3. Then the equation
Re(X +iY)¥ + (X?+Y?*+ Z2 + W?)" ' Re(Z +iW)* = 0,

which is essentially the real part of the simple singularity As,_;, defines a compact,
connected 2-manifold of genus g. For more details and a similar formula for non-
orientable surfaces based on the real part of the simple singularity Dy, see [10].
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It is quite natural to look for equations of the non-orientable surfaces in the real
projective space RP? since they are not embeddable in the usual affine space R3.
See [14], p. 181 for a topological immersion of the projective plane RP? in R? having

as singularity a cross cap (also called a Whitney umbrella) described as the image
of the mapping

2

/»vf/;'//,“»
RSN
XY PN
,4.4'4;{}"/ )

Za

D
Y

70}
7]

AT FH = A
A 4

1 AV VAY iz

47154
%

FIGURE 1. A cross cap

The next result compares the topology of the hypersurface V' (f) having at most
isolated singularities to the known topology of a smooth hypersurface V' (f)smootn

having the same dimension n and degree d as V(f). For a proof we refer to [6], p.
162.

Theorem 3.3. (i) H;(V(f),Z) = H;(V(f)smootn, Z) for all j ¢ {n,n+ 1}. In
addition, H,.1(V (f),Z) is torsion free.

(ZZ) X(V(f)) = X(V(f)smooth) + (_1)n—1 Zk:l,m ,u(V, ak).

Example 3.4. For a plane curve C, the above result coupled with the following
easy facts gives a complete description of the integral homology.
(a) ba(C) is equal to the number of irreducible components of C;
(b) the first homology group is torsion free.
As an explicit example, consider a 3 cuspidal quartic curve Cj.
Any such curve is projectively equivalent to the curve defined by the equation

XW2 Y222+ 72X? - 2XYZ(X +Y + Z) =0.



SINGULARITIES AND THEIR DEFORMATIONS 9

The corresponding smooth curve has genus ¢ = 3 and hence b; = 6. The singular
curve Cy is irreducible (since the only singularities are cusps, hence locally irre-
ducible!) and has 3 cusps located at the points (1 : 0 :0),(0:1:0),(0:0:1).
Hence one would expect a loss of 6 = 3 x u(As) cycles due to the presence of
singularities. Using Theorem 3.3 and the above remarks, it follows that indeed
b1(Cy) = 0. This result is confirmed by the known fact that the normalization of
()} is the projective line P! and the normalization morphism is a homeomorphism
in this situation.

For any curve C its homology is determined by its degree, the list of singularities
on C' and the number of irreducible components of C'.

Beyond the curve case, new phenoma may occur. First of all torsion can appear
in the homology, see for details [6], p. 161.

Theorem 3.5. (i) If all the Milnor lattices L(V, ay) for k = 1,...,m are unimodular,
then H;(V(f),Z) = H;(V(f)smooth, Z) for all j # n and H,(V(f),Z) is torsion
free of rank by (V(f)smootn) = D _j—1.m #(V; ar). In this situation, V(f) is an integral
homology manifold and in particular the Poincaré Duality holds over Z.

(i) If all the Milnor lattices L(V,ay) for k = 1,...,m are nondegenerated, then
H;(V(f),Z) = Hj(V(f)smootn, Z) for all j # n, bu(V(f)) = bulV(f)smootn) —
> ke1.m M(Vsax) and the torsion part of H,(V (f),Z) is determined by a lattice mor-
phism defined on the direct sum of the lattices L(V, ay,).

X %
Xxtv+z2'Y = X5v+2

FIGURE 2. A curve with 3 cusps in affine coordinates x =
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In the second case, the hypersurface V(f) is a rational homology manifold and
in particular the Poincaré Duality holds over Q. For precise information on the
determinant of the cup-product in this case see [6], p. 171. For general facts on
Poincar Duality and cup-product, see [13].

Example 3.6. The list of cubic surfaces with isolated singularities can be found in
[3]. We list some of the cases below.

(a) A cubic surface S can have s nodes Ay, for s = 1,2,3,4. The only case which

produces torsion is s = 4 and then the torsion part of the second homology group
of S is given by TorsHs(S) = Z/2Z.

(b) A cubic surface S can have s cusps Ag, for s = 1,2,3. The only case which
produces torsion is s = 3 and then TorsHs(S) = Z/3Z.

For a complete discussion and proofs we refer to [6], p. 165.

Note also that the determinant of the cup-product can be used to distinguish
hypersurfaces having the same integral homology. For instance, the three cubic
surfaces with singularity type 341, A; A and A3 have all the same integral homology,
but they are not homotopy equivalent since the cup-products are different, see [6],
p- 171.

A second major phenomenon is the dependence of the Betti numbers of the hy-
persurface V'(f) on the position of singularities.

Example 3.7. The classical example here, going back to Zariski in the early ’30’s,
is that of sextic surfaces

Se: f(X,Y,Z)+T°=0

where f(X,Y,Z) =0 is a plane sextic curve (s having 6 cusps. Two situations are
possible here.

(a) The six cusps of the sextic curve Cg are all situated on a conic. This is the case
for instance for

f(X,Y,2) = (X?+Y?) + (Y? + Z°).
Then it can be shown that by(Sg) = 2, see for instance [6], p.210.

(b) The six cusps of the sextic curve Cg are not situated on a conic. Then it can be
shown that by(Sg) = 0, see loc.cit.

The explanation of this difference is that the two types of sextic curves cannot be
deformed one into the other even though they are homeomorphic.
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A good way to understand this strange behaviour of the Betti numbers is to use
algebraic differential forms defined on M(f) and with poles along V (f) to describe
the topology of V(f) and of the complement M (f). See [6], Chapter 6, for details
on this approach and a lot more examples.

This remark has brought into discussion the complement M(f). For n = 1, the
main topological invariant is the fundamental group 71 (M (f)). Usually this group
is highly non-commutative.

Example 3.8. (a) For the 3 cuspidal quartic Cy considered in Example 3.4, the
fundamental group m (M (f)) is the metacyclic group of order 12 which can be
described by generators and relations as the group

G = {u,v;u? = v* = (uv)?}.
(b) For the two types of 6 cuspidal sextic curves discussed in Example 3.7, one has
m(M(f)) = Z/2Z  Z/3L.
a free product, for Cg of the first type, and
m(M(f))=2/2Z x 7./37 = Z6Z,

a direct product, for Cg of the second type, see [6], p.134.
This example shows that the fundamental group 71 (M(f)) depends on the posi-
tion of singularities even for plane curves.

In higher dimension, i.e. for n > 1, the complement M(f) has a commutative
fundamental group, which is cyclic of order d, and the object of study is the homology
H.(M(f)¢,Q) of the infinite cyclic covering M (f)¢ of the space M(f)\ H, where
H is a generic hyperplane. Then the groups H,(M(f)¢, Q) can be regarded in a
natural way as A-modules of finite type, where A = Q[T, T~!] and, as such, they are
called the Alexander invariants of the hypersurface V(f). See [12], [15], [16], [19]
for more on this beautiful subject.

In conclusion, when the number or the type of singularities on the hypersurface
V(f) is small compared to the degree d, then the list of singularities is enough to
determine the topology of V(f), even the embedded topology, see [6], pp.17-19. In
such a case there is usually no torsion in homology.

On the other hand, when the number or the type of singularities on the hyper-
surface V(f) is large compared to the degree d, then torsion is likely to occur in
homology and the position of singularities may influence the Betti numbers of the
hypersurface V(f).

4. THE GENERAL CASE

In this section we consider hypersurfaces V' (f) having an s-dimensional singular
locus, for 0 < s < n—1. Note that s < n— 1 implies that the hypersurfaces V(f) is
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irreducible. Little is known in general about the homology of such a hypersurface;
for the following result see [6], p. 144.

Theorem 4.1. With the above notation, there are isomorphisms

H;(V(f)) = H;(P")

for allj <n and j > n+ s+ 1. The complement M(f) has a commutative funda-
mental group, which is cyclic of order d, if s <n —1.

Remark 4.2. For an arbitrary hypersurface V(f), Parusinski has defined a global
Milor number p(V(f)) such that one has the following generalization of Theorem
3.3, (ii).

X(V () = X(V(f)smootn) = n(V ().

For more details and application see [23]. An alternative approach via vanishing
cycles is described in [7], pp.179-183.

For special classes of hypersurfaces the information we have is complete. This is
the case for instance when V' (f) is a hyperplane arrangement, i.e. V(f) is a finite
union of hyperplanes in P**!. Then not only the homology is known, but also the
cohomology algebra, see [22].

In general, one can adopt various approaches which we briefly describe below.

4.3. Using algebraic differential forms. There is a spectral sequence whose Fs-
term consists of various homogeneous components of the homology of the Koszul
complex of the partial derivatives of f and converging to the cohomology of M (f),
see [9]. Recall that the Koszul complex describes the linear relations involving the
partial derivatives of f, then the relations among the relations, and so on. Hence it
can be successfully handled by the computer algebra packages.

As an example, using this approach one can determine the Betti numbers of the
cubic surface

S, X2Z+ Y3+ XYT =0.

The singular locus here is 1-dimensional (i.e. the line X =Y = 0) and it turns out
that the surface S% has the same rational cohomology as the projective plane P?,
see [9] for very explicit computations.

4.4. Building the hypersurface inductively out of successive hyperplane
sections. We have seen in Theorem 3.1 that a key role is played by the fact that
the Milnor fiber F' in that case has a very simple topology, i.e. it is homotopically
equivalent to a bouquet of spheres. In the case of projective hypersurfaces we have
a similar result, see [11].
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Theorem 4.5. For any hypersurface V(f) and any transversal hyperplane H, the
complement V,(f) = V(f) \ H, which can be regarded as the affine part of V(f)
with respect to the hyperplane at infinity H, is homotopically equivalent to a bouquet
of n-spheres. The number of spheres in this bouquet is given by the global Milnor
number of f, defined as the degree of the gradient mapping

grad(f) : M(f) — P"*.

The remaining difficult problem is to glue the information we have on V,(f) and
on the hyperplane section V' (f) N H in order to get information on the hypersurface
v(f).

Another possibility is to look for the Alexander invariants in this setting, and this
was recently done by Maxim, see [19].

4.6. Cyclic coverings of a projective space. Let p : X — P"" be a cyclic
covering ramified along the hypersurface V'(f).

For simplicity, we assume below that the degree of p coincides with the degree d
of the hypersurface V(f). The general case can be treated similarly, using weighted
projective spaces instead of the usual projective spaces, see [6], Appendix B.

Under our assumption, it follows that X can be identified to the hypersurface

V(f) given in the projective space P"*2 by the equation

f(Xo, s Xng1, T) = f(Xo, ooy Xps1) +T% = 0.

We have already seen this construction in Example 3.7.

If M(f) denotes the corresponding complement, then we have the following iso-
morphism for the cohomology with rational coefficients coming from Alexander Du-
ality

Hy TV () = B2 (M(f))
where H denotes the primitive cohomology as defined in 6], p. 146. Let now F
(resp. F') be the Milnor fibers associated to the homogeneous polynomials f (resp.

f ) as in Theorem 2.5. It follows from the Thom-Sebastiani Theorem, see [6], p.
196, that one has the following isomorphisms.

H™ (M () = H™ 4Py = ™19 (F) .

Here H"™7J(F); is the eigenspace of the monodromy corresponding to the eigen-
value 1, and H"*'77(F)_; has a similar meaning.

Now several results in [7], Section 6.4 obtained via the theory of perverse sheaves
give sufficient conditions for the vanishing of the groups H"™7J(F)_ for all j > 0,
see Example 6.4.14, Corollary 6.4.15, Theorem 6.4.18. As a sample result, we give
the following.
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Proposition 4.7. Assume that the hypersurface V(f) is a normal crossing divisor
along one of its irreducible components. Then the associated cyclic covering X =

V(f) satisfies HgHﬂ(V(f)) =0 for all j > 0. In other words, the Betti numbers

of the associated cyclic covering X = V(f) are known once the Euler characteristic
X(X) is known.

In conclusion, in the general case we encounter two difficult problems, whose
solution is far from being complete even from the theoretical view-point. The first
one is to classify the simplest non-isolated singularities and to understand their local
topology. For recent progress in this area we refer to [26]. The second one is to glue
the local information in order to obtain information on the global topology. Here
the most powerful approach is to use the theory of constructible sheaves, [7].
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