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T his article deals with microwave tomography for brain 
stroke imaging using state-of-the-art numerical model-
ing and massively parallel computing. Iterative micro-
wave tomographic imaging requires the solution of 

an inverse problem based on a minimization algorithm (e.g., 
gradient based) with successive solutions of a direct problem 
such as the accurate modeling of a whole-microwave mea-
surement system. Moreover, a sufficiently high number of 
unknowns is required to accurately represent the solution. As 
the system will be used for detecting a brain stroke (ischemic 
or hemorrhagic) as well as for monitoring during the treat-
ment, the running times for the reconstructions should be 
reasonable. The method used is based on high-order finite 
elements, parallel preconditioners from the domain decom-
position method and domain-specific language with the open-
source FreeFEM++ solver.

THE NEED FOR RAPID STROKE DIFFERENTIATION
A stroke, or a cerebrovascular accident, is classically char-
acterized as a neurological deficit attributed to an acute 
focal injury of the central nervous system by a vascular 
cause, including a cerebral infarction, an intracerebral 

hemorrhage, or a subarachnoid hemorrhage, and it is a 
major cause of disability and death worldwide [1]. About 
85% of strokes are ischemic due to a cerebral infarction, 
caused by an interruption of the blood supply to some part 
of the brain, and 15% are hemorrhagic (10% primary and 
5% subarachnoid hemorrhage) [2]. Differentiating between 
these different types of strokes is an essential part of the 
initial workup of patients because the subsequent man-
agement and treatment of each patient is vastly different. 
Rapid and accurate diagnosis is crucial since the only drug 
currently approved by the U.S. Food and Drug Administra-
tion for treatment of acute ischemic strokes is the intrave-
nous tissue plasminogen activator, which is administered 
within 3 h of the stroke onset. Neuroimaging has to play 
a vital role in the workup of an acute stroke by provid-
ing information essential to accurately triage patients and 
expedite clinical decision making with regards to treatment. 
Computed tomography (CT) and magnetic resonance imag-
ing (MRI) [3] are the gold standards, but they are bulky 
diagnostic instruments and cannot be used in continuous 
brain monitoring. A noninvasive and transportable or por-
table device would have clear clinical applications at the 
bedside in a neurological intensive care unit.

Microwave tomography is a novel, early-development 
stage imaging modality with a large number of potential 
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attractive medical applications. A difference between the 
dielectric properties (complex permittivity) of normal and 
diseased brain tissues is a great potential for this imaging 
modality. Detecting and identifying strokes is challenging, 
as it corresponds to a small opposite variation of the permit-
tivity values of brain tissues of about +/–10% of the baseline 
tissue values for the two types of strokes (ischemic or hemor-
rhagic) [4]. The rapid data acquisition time is another attrac-
tive feature of microwave tomography, but rapid tomographic 
reconstructions are mandatory for developing a novel imag-
ing modality with a new paradigm: detecting, identifying, 
and monitoring a stroke continuously during treatments by 
exposing head tissues to low-level microwave incident field 
and capturing the scattered signal by an array of antennas. 
Iterative tomographic imaging requires the solution of an 
inverse problem based on a minimization algorithm. Recon-
struction algorithms are computationally intensive with suc-
cessive solutions of the forward problem needing efficient 
numerical modeling and high-performance parallel comput-
ing. A majority of works in the literature has made use of geo-
metrically simple phantoms or with only a limited amount of 
tissue-mimicking materials. The modeling must have to accu-
rately take account of the high heterogeneity and complex-
ity of head tissues (skin, fat, skull, bone marrow, brain/white 
matter, brain/grey matter, cerebrospinal fluid, arteries, and 
more) for normal cases and different possible brain pathology 
cases (ischemic and hemorrhagic strokes, brain injuries, and 
more). Another major point refers to the accurate modeling 
of the incident field from transmitting and receiving anten-
nas. This interaction is very complex because it must be seen 
as a coupling problem between the antennas and the head 
rather than a simple scattering problem. In addition, the 
electric field is measured by means of receiving antennas 
(sensors). Therefore, we do not have access directly to the 
electric field but only via antenna S parameters. The purpose 
of this article is to solve the inverse problem associated to a 
prototype developed by EMTensor GmbH, Vienna, Austria, 
[5] using state-of-the-art modeling and high-performance 
and massively parallel computing.

THE TOMOGRAPHIC SYSTEM
The model of microwave imaging is based on Brain Imaging 
Generation 1 (BRIMG1), a tomographic microwave system 
developed by EMTensor GmbH [5]. The system consists of a 
cylindrical metallic chamber composed of five rings of 32 trans-
mitting/receiving antennas (Figure 1). The antennas are ceramic 

,59rf =^ h  loaded, open-ended waveguides. The diameter of 
the chamber is 285 mm with a height of 280 mm. The rings are 
30 mm, equally spaced, with the first one located 40 mm from 
the top of the chamber. The chamber is filled with a matching 
liquid medium during measurements. The operating frequency 
of the system is 0.9–1.8 GHz. The data acquisition cycle of the 
system is fully electronically controlled, allowing for a total data 
acquisition of about 30 s. The imaging chamber is in a horizontal 
position, allowing easy positioning of a human head within an 
imaging domain (Figure 2). The patient’s head is entered into 

the chamber, as shown in Figure 2. A special thin membrane is 
used for isolating the human head from the matching liquid and 
keeping the liquid within the chamber. Carbon-loaded silicone 
rubber (CLSR) is also used to reduce reflection from boundary 
conditions (Figure 3).

A switching matrix connected to a network analyzer selects 
the transmitting and receiving antennas. The system is poten-
tially delivering a 160 × 160 matrix of S parameters. The mea-
sured S parameters due to the scattered field of an object under 
investigation are obtained by complex subtraction between 
two measurements with an empty chamber and with the head, 

(a) (b)

FIGURE 1. (a) A general view of BRIMG1. (Photo courtesy of 
EMTensor GmbH.) (b) The computational domain. 

FIGURE 2. The BRIMG1: A human head measurement. 
(Photo courtesy of EMTensor GmbH.) 
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respectively. The raw data can be wirelessly transferred to a 
remote computing center.

The high-performance computing (HPC) machine will com-
pute the tomographic images, which can be quickly transferred 
from the computing center to the hospital.

FORWARD MODELING
We consider the domain R31X  for representing the whole-
chamber (Figure 1) as an inhomogeneous, dissipative, nonmag-
netic medium of complex permittivity, ( ) ' ( ) " ( ).x x i xf f f= +  
For each transmitting antenna, , , , ,j N1 2 f=  at radial 
frequency ,~  the wave equation for the electric field vector, 

( ),E xj  with an e i t~-  time dependence is

	 ( )        in ,E k E 0j j
2# #d d X- = 	 (1)

with ( ) ( ) ( ) ( ),k k x x x k xr r
2 2 2

0
2

0 0 0
2~ f n ~ f f n f= = = =  where 

k x^ h is the complex wavenumber of the inhomogeneous medi-
um, where ,0f  ,0n  and k0  are the permittivity, permeability, 
and wavenumber of free space, respectively, and where ( )xrf  is 
the relative complex permittivity.

The boundary conditions on the perfectly conducting parts 
cC  of the walls of the chamber are

	     on ,E n 0j c# C= 	 (2)

where n is the unit outward normal to .2X
The impedance boundary conditions on the aperture of 

the transmitting, open-ended waveguide, ,j  and the receiving 
waveguide, , , , , ,i N j i1 2 f !=  are

	 on ,C( ) ( )      E n i n E n gj j j i# # # #d b- = 	 (3)

	 ( ) ( )        on ,  ,E n i n E n i j0j j i# # # #d !b C- = 	 (4)

where b  is the propagation constant of the TE10  fundamental 
mode of the waveguide. In (3), we impose an incident wave 
corresponding to the excitation of the fundamental mode E j

0  of 
the jth waveguide with

	 ( ) ( ).g E n i n E nj j j
0 0# # # #d b= - 	 (5)

On the other hand, (4) corresponds to a first-order, Silver–Mül-
ler absorbing boundary condition, approximating a transparent 
boundary condition on the aperture of the receiving waveguide 
antenna, , , , , .i N j i1 2 f !=  On the bottom of the chamber, 
we impose a metallic boundary condition, whereas we impose 
an impedance boundary condition on the top of the chamber. 
As a result, the whole boundary value problem for each trans-
mitting antenna, , , ,Nj 1 f=  is to find jE  such that
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Now, let ( , ),  on ,V v H v n 0curl c#! X C= =" ,         where ( , ) ( ) , ( )H v L v Lcurl 2
3

2
3#d! !X X X= " ,

( , ) ( ) , ( )H v L v Lcurl 2
3

2
3#d! !X X X= " , is the space of square inte-

grable functions whose curl is also square integrable. For each 
transmitting antenna, , , ,Nj 1 f=  the variational form of prob-
lem (6) is: find E Vj !  such that
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HIGH-ORDER EDGE FINITE ELEMENTS
For using a finite element discretization of the variational 
problem, we introduce a tetrahedral mesh Th of the domain Ω 
and a finite dimensional subspace, ( , ).V H curlh 1 X  A simple 
conformal discretization for space ( , )H curl X  is given by low-
order, Nédélec edge finite elements of polynomial degree 
r 1=  [6].

To have a higher numerical accuracy with the same total 
number of unknowns, we consider a high-order edge element 
discretization, choosing the high-order extension of Nédélec 
elements presented in [7].

We implemented edge elements of degrees r r2 3and= =  
in FreeFem++, an open-source domain-specific language 
specialized for solving boundary value problems by using 
variational discretizations (finite elements, discontinuous 
Galerkin, hybrid methods, and more) [8]. High-order ele-
ments can be used by loading the plugin Element Mixte3d 
and declaring the finite element space fespace using the 
keywords Edge13d and Edge23d, respectively (standard edge 
elements of degree r 1=  are already present in FreeFem++ 
and called Edge03d).

DOMAIN DECOMPOSITION PRECONDITIONING
The discretization of the problem presented in the section 
“Forward Modeling” using the high-order edge finite elements 
described in the section “High-Order Edge Finite Elements” 
produces a linear system:

	 ,Au bj j= 	 (8)

for each transmitting antenna .j  Direct solvers are not suited 
for such large linear systems arising from complex three-
dimensional (3-D) models because of their high memory cost. 

Air
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FIGURE 3. The BRIMG1: A side sketch. (Image courtesy of 
EMTensor GmbH.) 
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However, matrices resulting from high-order discretizations 
are ill conditioned as shown numerically in [6] for similar 
problems, and preconditioning becomes necessary when using 
iterative solvers. Parallel solvers for electromagnetic (EM) 
problems can be based, for example, on parallel fast Fourier 
transforms [9] or nonoverlapping ([10] and references therein) 
or overlapping domain decomposition, which are considered 
in this article.

Domain decomposition preconditioners are naturally suited 
to parallel computing and make it possible to deal with smaller 
subproblems [11]. The domain decomposition precondition-
er that we employ is called Optimized Restricted Additive 
Schwarz (ORAS) [12]:

	 ,M R D A Rs
T

s s s
s

N
1 1

1
ORAS

sub

=- -

=

/ 	 (9)

where Nsub  is the number of overlapping subdomains, 
,sX  into which the domain, ,X  is decomposed (Fig-

ure 4). Here, the matrices, ,As  are the local matrices of 
the subproblems with impedance boundary conditions 
( ) ( )E n i n E n# # # #d ~-  as transmission conditions at 
the interfaces between subdomains. This preconditioner 
is an extension of the restricted additive Schwarz method 
proposed by Cai and Sarkis [13] but with more efficient 
transmission conditions between subdomains than Dirichlet 
conditions [14].

To describe the matrices Rs  and ,Ds  let N  be an 
ordered set of the unknowns of the whole domain, and let 
N Ns

N
s1

sub,= =  be its decomposition into the (nondisjoint) 
ordered subsets corresponding to the different (overlapping) 
subdomains .sX  The matrix Rs  is the restriction matrix 
from Ω to the subdomain :sX  it is a N Ns #  Boolean matrix, 
and its ,i j^ h entry is equal to one if the ith unknown in Ns  
is the jth one in .N  Notice that Rs

T  is then the extension 
matrix from the subdomain sX  to Ω. The matrix Ds  is an 
N Ns s#  diagonal matrix that gives a discrete partition of 
unity, i.e., ;IR D Rs

N
s
T

s s1
subR ==  in particular, the matrices D  

deal with the unknowns that belong to the overlap between 
subdomains.  The preconditioner without the partition of 
unity matrices ,Ds  ,M R A ROAS s

N
s
T

s s
1

1
1subR=-

=
-  which  is called 

Optimized Additive Schwarz, would be symmetric for 
symmetric problems, but, in practice, it gives a slower con-
vergence with respect to M 1

ORAS
-  [15]. These domain decom-

position preconditioners are implemented in the HPDDM 
library [16], an open-source high-performance unified 
framework for domain decomposition methods. HPDDM 
can be interfaced with various programming languages and 
open-source finite element libraries such as FreeFem++, 
which we use in the simulations.

NUMERICAL RESULTS

COMPARISON WITH EXPERIMENTAL MEASUREMENTS
The measured physical quantities are the S parameters of the 
scattering matrix, which are the complex reflection and trans-
mission coefficients measured by the 160 receiving antennas 

when a signal is transmitted by one of the 160 transmitting 
antennas. A set of measurements then consists in a complex 
matrix of size 160 × 160. To compute the numerical counter-
parts of these reflection and transmission coefficients, we use 
the following formula, which is appropriate in the case of open-
ended waveguides:

	
.
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where E j  is the solution of the problem (6) when the jth 
waveguide antenna transmits the signal, and Ei

0  is the 
TE10  fundamental mode of the ith receiving waveguide 
( E jr  denotes the complex conjugate of E j ). The Sij  with 
i j!  denote the transmission coefficients, and Sii  the 
reflection coefficients.

For a comparison of the computed coefficients Sij  with 
the measured ones, the imaging chamber is filled with a 
homogenous matching solution to reduce the return loss of 
the ceramic-loaded waveguide antennas and to match with the 
average brain tissues. The relative complex permittivity of the 
matching solution chosen for the experiments and numerical 
solution at frequency f 1=  GHz is .i44 20matching

rf = +  The 
relative permittivity inside the ceramic-loaded waveguides is 

,59ceramics
rf =  assuming a lossless ceramic material.

For this test case, the set of experimental data in S 
parameters consists of the 160 receiving antennas when 
each antenna from the second ring from the top is trans-
mitting. Figure 4 shows the normalized magnitude (in 
decibels) and phase (in degrees) of the complex coefficients, 

,Sij  corresponding to a transmitting antenna in the second 
ring from the top and to the 31 receiving antennas in the 
middle ring (note that measured coefficients are available 
only for 17 receiving antennas). The computed coefficients 
are obtained by solving the direct problem with edge finite 
elements of polynomial degree, .r 2=  The normalization is 
done by dividing every transmission coefficient by the trans-
mission coefficient corresponding to the receiving antenna 

FIGURE 4. The computational domain divided into 128 
subdomains.
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directly opposite of the transmitting antenna, which is thus 
set to one. Since we normalize with respect to the coeffi-
cient having the lowest expected magnitude, the magnitude 
of the transmission coefficients shown in Figure 5 is larger 
than 0 dB. We can see that the transmission coefficients 
computed from the simulation are in very good agreement 
with the measurements.

HIGH-ORDER ELEMENT EFFICIENCY
The goal of the following numerical experiments is to assess 
the efficiency of the high-order finite elements described in 
the section “High-Order Edge Finite Elements” compared to 
the classical lowest-order edge elements in terms of accuracy 
and computing time, which are of great importance for such 
an application for brain imaging. For this test case, a nondissi-
pative, plastic-filled cylinder with a 6-cm diameter and a rela-
tive permittivity of 3cyl

rf =  is inserted in the imaging chamber 
with the same background matching medium as defined in 
the section “Comparison with Experimental Measurements.” 
We consider the 32 antennas of the second ring as transmit-
ting antennas at a frequency of f 1=  GHz, and all of the 160 
antennas are receiving.

We evaluate the error on the reflection and transmission 
coefficients, ,Sij  with respect to the coefficients, ,Sij

ref  com-
puted from a reference solution. The error is calculated with the 
following formula:

	 .
S

S S

err

,

,

ij
j i

ij ij
j i

2

2

ref

ref

=

-

/

/
	 (11)

The reference solution is computed on a fine mesh of approxi-
mately 18 million tetrahedra using edge finite elements of degree 

,r 2=  resulting in 114 million unknowns. The section in 
Figure 6 shows the computational domain and the magnitude 
of the real part of the total field, ,E  over the cross section when 
one antenna of the second ring from the top is transmitting. 
We compare the computing time and the relative error (11) for 
different numbers of unknowns corresponding to several mesh 
sizes, for approximation degrees, r 1=  (15 points per )m  and 
r 2=  (ten points per )m  (Table 1), where m  is the wavelength in 
the ceramic .590m m=^ h  We report the results in Figures 7 
and 8. All of these simulations are carried out using 512 subdo-
mains with one message passing interface (MPI) process and two 
OpenMP threads per subdomain, for a total of 1,024 cores on 
the Curie supercomputer.

The higher-order approximation r 2=^ h allows a given 
accuracy with much fewer unknowns and much less com-
putation time than the lowest-order approximation .r 1=^ h  
For example, at a given accuracy err of . ,E 0 1.  the finite 
element discretization of degree r 1=  requires 21  million 
unknowns and a computing time of 130 s, while the high-
order finite element discretization r 2=^ h  only needs 
5 million unknowns, with a corresponding computing time 
of 62 s. It turns out that we obtain the same accuracy with 
ten points per wavelength with a degree of r 2=  than with 
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20 points per wavelength with a degree of .r 1=  Moreover, 
note that greater accuracy could be achieved by using high-
order geometric tetrahedral elements to reduce the geometric 
approximation error of the circular boundary of the chamber. 
However, we can deduce from Table 1 that the geometric 
approximation error is largely dominated by the finite ele-
ment approximation error, as the error on the computed Sij  is 
significantly smaller using degree r 2=  edge elements com-
pared to degree r 1=  edge elements, for a fixed number of 
degrees of freedom, even though meshes for degree r 2=  
are coarser (leading to larger geometric approximation errors). 
We also report here additional information for a representa-
tive run since it can be useful to the community. For the test 
case corresponding to 27 million unknowns using degree 
r 2=  edge elements, the average and maximum subdomain 

size is 124,300 and 162,410 degrees of freedom, respectively. 
The total memory consumption for this run is approximately 
2 TB. To give an idea of the parallel performance of the algo-
rithm, the problem was solved using 512 cores. The comput-
ing time using 512 cores (256 subdomains with two  threads 
per subdomain) was 366 s compared to 236 s using 1,024 
cores (512 subdomains with two threads per subdomain), 
yielding a speedup of 1.55.

INVERSE PROBLEM

MATHEMATICAL FORMULATION
The inverse problem that we consider consists of finding 
the complex relative permittivity, ( ),xrf  in ,X  such that the 
solutions, ( ), , , , ,j NE x 1 2j f=  of problem (10) lead to cor-
responding scattering parameters S (13) that coincide with the 
measured scattering parameters Sij

meas  for , , , .i j N1 f=

Let ( )k k xr
2

0
2l f= =  be the unknown complex parameter 

of the inverse problem, and let us denote by ( )E j l  the solution 
of the direct problem (6) with the complex dielectric permittiv-
ity .f  The corresponding scattering parameters will be denoted 
by ( )Sij l  for , , , , .i j N1 2 f=
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TABLE 1. THE TOTAL NUMBER OF UNKNOWNS, GENERALIZED MINIMAL RESIDUAL METHOD 
(GMRES) ITERATIONS, COMPUTING TIME, AND RELATIVE ERROR ON COMPUTED Sij.

Degree 1 Degree 2

Unknowns Iterations Time (s) Error Unknowns Iterations Time (s) Error

2,373,214 35 22 0.384 1,508,916 29 39 0.242

8,513,191 46 53 0.184 5,181,678 34 62 0.099

21,146,710 60 130 0.117 12,693,924 41 122 0.057

42,538,268 70 268 0.083 26,896,130 47 236 0.036

73,889,953 86 519 0.068 45,781,986 57 396 0.019
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The misfit of the parameter l  to the data can be defined 
with the following cost functional:
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Solving the inverse problem involves minimizing the functional 
J  with respect to the parameter .l  Computing the differential 
of J  in a given arbitrary direction dl  yields
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for C!dl  and where ( )E jd l  is the solution of the following 
linearized problem:
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We now use the adjoint approach to simplify the expression of 
DJ. This will allow us to compute the gradient efficiently after 
discretization, with a number of computations independent of 
the size of the parameter space.

Introducing the solution ( )Fj l  of the following adjoint 
problem:
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we get, after some integration by parts (not detailed here),
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Finally, the differential of J  can be computed as

	 ( , ) . .ReDJ E Fj j
j
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1
l dl dl=

X
=

8 B/ # 	 (17)

We can then compute the gradient to use in a gradient-based 
local optimization algorithm. The numerical results presented 
in the section “High-Order Element Efficiency” are obtained 
using a limited-memory Broyden–Fletcher–Goldfarb–Shanno 
(L-BFGS) algorithm [17]. Note that every evaluation of J  
requires the solution of the state problem (6) while the compu-
tation of the gradient requires the solution of (6) as well as the 
solution of the adjoint problem (15). Moreover, the state and 

adjoint problems use the same operator. Therefore, the compu-
tation of the gradient only needs the assembly of one matrix and 
its associated domain decomposition preconditioner.

The numerical results for the reconstruction of a 
hemorrhagic stroke from synthetic data are presented in the 
next section. The cost functional J  considered in the numeri-
cal results is slightly different from (12) because we add a 
normalization term for each pair ,i j^ h as well as a Tikhonov 
regularization term [18]:
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where Sempty
ij  (respectively S ,meas empty

ij ) refers to the computed 
coefficients (respectively measured) with empty chamber, only 
filled with the homogeneous matching solution, as described in 
the previous section, with no object. In this way, the contribu-
tion of each ,i j^ h pair in the cost functional is normalized and 
does not depend on the amplitude of the coefficient, which can 
vary greatly between ,i j^ h pairs, as shown in Figure 5. More-
over, normalizing both sides by the incident field S parameters 
helps eliminate multiplicative systematic errors, such as phase 
shifts [19]. The Tikhonov regularization term aims at reduc-
ing the effects of noise in the data. For now, the regularization 
parameter, ,a  is chosen empirically so as to obtain a visually 
good compromise between reducing the effects of noise and 
keeping the reconstructed image pertinent. All calculations car-
ried out in this section can be accommodated in a straightfor-
ward manner to the definition (18) of the cost functional.

Finally, we can exhibit an additional level of parallelism by 
performing the reconstruction cross section by cross section. 
For the actual imaging system, one cross section corresponds 
to one of the five rings of 32 antennas, and we can define and 
solve an inverse problem independently for each of the five rings 
in parallel. We impose absorbing boundary conditions on the 
artificial boundaries of the truncated computational domain. 
Therefore, we are able to define five independent smaller 
inverse problems by reducing the computational complexity in 
terms of degrees of freedom and the number of relevant trans-
mitters that must be simulated for each problem. Each of the 
five inverse problems takes into account 32 transmitters and (at 
most) 96 receivers. The reconstructed images obtained in this 
way are essentially identical to the images obtained by solving 
the full inverse problem, but they are performed faster.

NUMERICAL RESULTS
The results in this article were obtained on a Curie super-
computer (http://www-hpc.cea.fr/fr/complexe/tgcc-curie 
.htm), a system comprising 5,040 nodes composed of two 
eight-core Intel Sandy Bridge processors clocked at 2.7 GHz. 
The interconnect is an InfiniBand quad data rate full fat 
tree, and the MPI implementation used was BullxMPI 
version 1.2.8.4. Intel compilers and Math Kernel Library 
in their version 16.0.2.181 were used for all binaries and 
shared libraries and as the linear algebra backend for dense 
computations. One-level preconditioners such as (9) assem-
bled by HPDDM require the use of a sparse direct solver. 
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HPDDM is interfaced with various direct solvers, such 
as PARDISO [20] from Intel MKL or MUMPS [21]. All 
numerical experiments reported in this article were per-
formed with MUMPS. The GMRES algorithm is stopped 
once the unpreconditioned relative residual is lower than 
10−8. The linear systems with multiple right-hand sides (one 
per transmitter) are solved using a pseudoblock method, 
where multiple operations are fused to achieve higher arith-
metic intensity. In the inverse problem, during successive 
iterations of the minimization algorithm, the GMRES solu-
tion for each transmitter is initialized with the solution for 
this transmitter at the previous iteration. Moreover, block 
methods and Krylov subspace recycling techniques have 
been recently implemented in HPDDM. They are not used 
in the results presented in this article, but incorporating 
these techniques in the inversion algorithm to speed up 
computations is an ongoing work.

VIRTUAL HEAD MODEL
We want to assess the feasibility of the microwave imag-
ing technique presented in this article for stroke detection 
and monitoring through a numerical example in a realistic 
configuration. Therefore, we use synthetic data correspond-
ing to an accurate numerical model of a human head with a 
simulated hemorrhagic stroke as input for the inverse prob-
lem. The numerical model of the virtual head comes from CT 
and MRI scans and consists of a complex permittivity map 
of 362 × 434 × 362 data points with a spatial resolution of 
500 μm. In the simulation, the head is immersed in the imag-
ing chamber, as shown in Figure 9.

RECONSTRUCTIONS OF A HEMORRHAGIC STROKE
To simulate the evolution of a hemorrhagic stroke, we use 
a synthetic ellipsoid-shaped stroke whose size (principal 
axes) increases over time, from 3.9 cm × 2.3 cm × 2.3 cm 
(small stroke) to 7.7 cm × 4.6 cm × 4.6 cm (large stroke). 
For this test case, the relative complex permittivity of 
the ellipsoid is assumed to be inhomogeneous, where the 
relative complex permittivity at each quadrature point of 
the mesh is taken as the mean value between the original 
healthy brain permittivity values (baseline values) and the 
permittivity of blood i68 44blood

rf = +^ h  at f 1=  GHz. 
The imaging chamber is filled with the matching solu-
tion .i44 20matching

rf = +  In a real experiment, a special 
membrane fitting the shape of the head is used to isolate 
the head from the matching medium (Figure  3). We do 
not take this membrane into account in this synthetic test 
case. The synthetic data are obtained by solving the direct 
problem using a mesh composed of 17.6 million tetrahedra 
(corresponding to approximately 20 points per wavelength) 
and consist in the computed transmission and reflection 
coefficients, .Sij  We subsequently add noise to the real and 
imaginary parts of the coefficients, ,Sij  using a kind of mul-
tiplicative white Gaussian noise. We independently apply 
Gaussian noise to the real and imaginary parts of each Sij  
coefficient as

	 ( ( )),S S p G jG1corrupted Re Im
ij ij ij ij= + + 	 (19)

where GRe
ij  and GIm

ij  are independent and identically distributed 
random variables drawn from the standard normal distribution  

, .0 1N^ h  In this experiment, we corrupt the data with 10% 
noise, i.e., . .p 0 1=

The corrupted data, ,Scorrupted
ij  are then used as input for 

the inverse problem. Furthermore, we do not assume any 
prior knowledge on the input data, and we set the initial guess 
for the inverse problem as the homogeneous matching solu-
tion everywhere inside the chamber. We use a piecewise lin-
ear approximation of the unknown parameter, ,l  defined on 
the same mesh used to solve the state and adjoint problems. 
For the purpose of parallel computations, the partitioning 
introduced by the domain decomposition method is also used 
to compute and store locally in each subdomain every entity 
involved in the inverse problem, such as the parameter l  and 
the gradient.

In the following, we only show reconstructed images cor-
responding to a cross section where the stroke is located due 
to space limitations; although, we are able to reconstruct the 
permittivity of the head in the whole chamber. Figures 10 and 11 
show the real and imaginary parts of the reconstructed relative 
permittivity, respectively, for the three evolution steps of the 
hemorrhagic stroke, from a healthy brain to a brain with a small 
stroke and then a large stroke. Increasing the size of the ellip-
soid simulates the evolution of the stroke. Each reconstruction 
corresponds to the solution of an inverse problem in the trun-
cated domain containing only the first two rings of antennas 
from the top. The transmitting antennas are on the first ring 
and receiving antennas on first and second rings. Therefore, 
the scattering matrix contains only 64 × 32 Sij  coefficients. 
Each reconstruction starts from an initial guess consisting of 
the homogeneous matching solution. The solution is obtained 
at about 30 iteration steps when reaching the convergence 
criterion of 10−2 for the value of the cost functional using the 
L-BFGS algorithm. Subsequent iterations do not decrease the 
cost functional nor improve the reconstructed image, due to the 
level of noise and Tikhonov regularization.

44

33

22

11

0

FIGURE 9. An imaginary part of the relative complex 
permittivity of the virtual head model immersed in the 
imaging chamber with a simulated ellipsoid-shaped 
hemorrhagic stroke.
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The evolution of the stroke can be visually monitored 
from the real and imaginary parts of the reconstructed 
complex permittivity. Nevertheless, the threshold to firmly 
conclude must only be determined from clinical studies 
on a large number of patients. One important point is to 
discriminate a hemorrhagic from an ischemic stroke. For 
this study case, the reconstructed values show an increase 
of the complex permittivity allowing the assumption of 
a hemorrhagic stroke versus an ischemic one. The dis-
tribution of the relative error on the real and imaginary 
parts of the reconstructed complex permittivity for the 
small stroke case is shown in Figure 12. We compute the 
relative error using (20) for each pixel ,n m^ h of the recon-
structed relative complex permittivity. This error can be 
positive or negative:

	 ( , )
( , )

( , ) ( , ) .m n
m n

m n m nerrrelative exact

reconstructed exact

r

r r

f

f f
=

- 	 (20)

We note that the lowest errors are located outside the brain 
and in the stroke. This can be expected, as the inversion 
algorithm performs better for homogeneous media, such as 
the matching liquid, but also for the stroke, as the complex 
permittivity value of the stroke is calculated as the mean 
value between the healthy tissues and the blood. This pro-
cess tends to average the values, which is more favorable 
for the inversion algorithm. But even if the brain is highly 

heterogeneous, the stroke can be detected and monitored 
with the proposed algorithm.

We now calculate the L2  norm of the error of the recon-
structed images in such manner as (11). Results are shown in 
Table 2.

The L2  norm is interesting, as it gives a global quantitative 
criterion for estimating the performance of the reconstructed 
values. The L2  norm confirms the results shown in Figure 12 
for the small stroke. The error on the real part of the complex 
relative permittivity is lower than on the imaginary part. It is of 
the order of 10% for the real part whereas it is about 20% for the 
imaginary part.

It turns out that reconstructed images differ very slightly 
when using different discretization orders and mesh sizes in the 
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FIGURE 12. A small stroke: the distribution of the relative error on the real and imaginary parts of the reconstructed complex 
permittivity. (a) The real part of the reconstructed complex permittivity in a healthy brain. (b) The real part of the reconstructed 
complex permittivity in a brain with a small stroke. (c) The real part of the reconstructed complex permittivity in a brain with 
a large stroke. (d) The imaginary part of the reconstructed complex permittivity in a healthy brain. (e) The imaginary part of 
the reconstructed complex permittivity in a brain with a small stroke. (f ) The imaginary part of the reconstructed complex 
permittivity in a brain with a large stroke.

TABLE 2. THE AVERAGE ERROR ON 
THE RECONSTRUCTED VALUES (THE 

REAL AND IMAGINARY PARTS OF THE 
COMPLEX PERMITTIVITY).

Relative Error Real Part Imaginary Part

Healthy brain 8.95% 20.74%

Brain with small stroke 8.92% 20.72%

Brain with large stroke 8.53% 18.92%
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inverse problem. In our case, elements of degree r 1=  with ten 
points per m  are sufficient for detecting the stroke. It is gener-
ally assumed that the most accurate forward model provides 
the best result combined with a given inverse algorithm. In 
this article, we have shown that it is not straightforward in this 
particular case with such a regularization technique. Recon-
structed images for each test case shown in Figures 10 and 
11 are obtained with a total computing time of less than 2 min 
(94 s for the large stroke case) using 4,096 cores of Curie.

Figure 13 shows the results of a strong scaling experiment 
for the large stroke case, which include solutions of the inverse 
problem corresponding to the top ring with an increasing 
number of MPI processes. We report the total computing time 
needed to obtain the reconstructed image. These preliminary 
results are very encouraging, as we are already able to achieve 
a satisfactory reconstruction time in the perspective of using 
such an imaging technique for monitoring. This allows clini-
cians to obtain almost instantaneous images 24/7 or on demand. 
Although the reconstructed images do not feature the complex 
heterogeneities of the brain, which is in accordance with what 
we expect from microwave imaging methods, they allow the 
characterization of the stroke and its monitoring.

CONCLUSIONS
The idea behind this article comes from the paradigm to 
develop a (portable/transportable) microwave imaging system 
whose raw data are wirelessly transferred to an HPC. The HPC 
machine will then compute the 3-D image of the patient’s brain. 
Once reconstructed, the image is quickly transmitted from the 
computing center to the hospital for stroke detection (including 
ischemic/hemorrhagic discrimination) and monitoring dur-
ing treatment. We have developed a tool that reconstructs a 
tomographic microwave image of the brain in 94 s on 4,096 
computing cores. This computational time corresponds to clini-
cian acceptance for rapid diagnosis or medical monitoring at the 
hospital. These images were obtained from corrupted synthetic 

data from a very accurate model of the complex permittivity of 
the brain. To our knowledge, this is the first time that such a 
realistic study (operational acquisition device, highly accurate 
3-D synthetic data, 10% noise) shows the feasibility of micro-
wave imaging. This study has been possible with the use of mas-
sively parallel computers and facilitated by the HPDDM and 
FreeFem++ tools that we developed. The next step will be the 
validation of these results on clinical data.
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