Dossier

Mdp: Ajustements affines pour une série statistique à deux variables.

1 Enoncés d'exercices

1.1 Peut-on ajuster?

Le tableau ci-dessous donne les effectifs d'une série statistique double.

x_i	2	7	19	13	15	10	22	17	28
y_i	4	5	1	2	1.5	1	5	2.5	4

Un ajustement affine de cette série est-il possible? Justifiez votre réponse.

On pourra faire une représentation graphique du nuage des points.

1.2 Température extérieure et chauffage intérieur

Chaque semaine, pendant 6 semaines, le gestionnaire d'un lycée note la température extérieure moyenne *x* en degrés Celsius et la consommation de Fioul de la chaudière *y* en litres. Il obtient les résultats suivants:

Semaine <i>n</i> ^o	x en °C	y en l
1	-11	510
2	-6	400
3	-3	350
4	0	320
5	6	220
6	8	180

- 1. Placez les 6 points de cette série statistique dans un repère où, en abscisses, 1 cm représente 2 °C et, en ordonnées, 1 cm représente 100L.
- 2. Calculez les coordonnées du point moyen G de ce nuage de points. Placez G dans le repère précédent.
- 3. On choisit pour droite d'ajustement du nuage de points la droite (AG) où A est le point de coordonnées (12;114).
 - (a) Placez le point A et tracez la droite (AG).
 - (b) Déterminez une équation de la droite (AG). Arrondissez à 0.1 le coefficient directeur et à l'unité l'ordonnée à l'origine.
- 4. On admet que cet ajustement est valable pour les températures comprises entre $-15\,^{o}C$ et $10\,^{o}C$.
 - (a) Déterminez graphiquement la température moyenne extérieure d'une semaine où la consommation de fioul s'est élevé à 250L.
 - (b) Déterminez, par le calcul, la consommation hebdomadaire prévisible de fioul pour une température moyenne extérieure de $-15\,^{o}C$.

1.3 Pile ou Face

On jette une pièce dix fois de suite. On note y_k le nombre de piles obtenues au bout de k lancers . Notez les résultat obtenus: $(y_1, y_2, \dots, y_{10})$. (Pour obtenir cette série statistique, on pourra utiliser la fonction aléatoire de sa calculatrice).

- 1. Inscrivez vos résultats dans un tableau.
- 2. Expliquez pourquoi $y_1 \le y_2 \le \cdots \le y_{10}$.
- 3. Calculez la moyenne et l'écart type de cette série statistique.
- 4. Représentez graphiquement le nuage de points de coordonnées (k, y_k) .
- 5. Tracez directement, avec une régle transparente, une droite qui semble approcher au mieux le nuage de points.
- 6. Calculez les coordonnées *G* du point moyen du nuage. Votre droite passe t'elle par *G*? Si, ce n'est pas le cas, tracez une autre droite qui semble approcher au mieux le nuage de points et qui passe par *G*.
- Calculez les coordonnées de G₁, le point moyen du nuage de points correspondants aux 5 premiers lancers, et de G₂, le point moyen du nuage de points correspondants aux 5 derniers lancers.
 Tracez la droite de Mayer (G₁G₂).
 Donnez une équation de la droite (G₁G₂).
- 8. A l'aide des trois droites précédentes, estimez le nombre de piles que l'on obtiendrait au bout de 100 lancers. Comparez et commentez les diverses valeurs obtenues.

1.4 Méthode des moindres carrés

Le tableau ci-dessous donne pour une grande entreprise industrielle la relation entre sa charge mensuelle en milliers d'heures de travail et sa production mensuelle en milliers de produits.

Production, x_i	20	50	80	90	100	120	160	180
Charge, y _i	60	85	90	105	115	125	144	160

- 1. Représentez le nuage de points de coordonnées $(x_i, y_i)_{1 \le i \le 8}$ dans un repère orthogonal.
- 2. Tracez une droite d'ajustement qui a la même direction que le nuage de points et qui occupe une position centrale à l'aide d'une règle.
- 3. Pour une production de 300 unités estimez la charge nécessaire à l'aide de votre droite d'ajustement affine. On pourra calculez une équation de la droite ou choisir une échelle judicieuse pour sa représentation graphique.
- 4. Calculez le point moyen du nuage (G) de coordonnées (\bar{x}, \bar{y}) .
- 5. On va cherchez une droite d'équation y = ax + b, qui va minimiser la somme des écarts suivant:

$$f(a) := \sum_{i=1}^{8} (ax_i + b - y_i)^2.$$

- (a) On veut que cette droite passe par le point moyen. Montrez que $b = \overline{y} a\overline{x}$, que l'équation de la droite peut s'écrire $y = a(x \overline{x}) + \overline{y}$, et que $f(a) := \sum_{i=1}^8 (a(x_i \overline{x}) (y_i \overline{y}))^2$.
- (b) Explicitez f(a), à l'aide des valeurs numériques sous la forme d'un trinôme du second degré.
- (c) Etudiez le sens de variation de la fonction f. En déduire qu'il faut choisir a tel que f'(a) = 0.
- (d) Calulez b, puis estimez la charge nécessaire à une production de 300 unités.

1.5 Equation de la droite de Mayer

Par application de la méthode de Mayer les coordonnées des points G_1 et G_2 sont les suivantes:

$$G_1: \left\{ \begin{array}{lll} \overline{x_1} & = & 2 \\ \overline{y_1} & = & 2.5 \end{array} \right. \qquad G_2: \left\{ \begin{array}{ll} \overline{x_2} & = & 5 \\ \overline{y_2} & = & 4 \end{array} \right. .$$

Déterminer l'équation de la droite (G_1G_2) d'ajustement affine.

1.6 La droite de Mayer passe par le point moyen

Le tableau ci-dessous donne les effectifs d'une série statistique double.

x_i	14	20	28	30	36	45	50
y_i	8	10	17	23	29	32	40

- 1. Appliquer la méthode de Mayer pour déterminer, un ajustement affine de cette série statistique double.
- 2. Tracer cette droite de Mayer
- 3. Calculez les coordonnées G du point moyen du nuage.
- 4. Vérifier que G appartient à la droite (G_1G_2) .

2 Travail demandé au candidat

- 1. Parmis tous les exercices proposés, choisir au moins trois exercices pertinent relevant de ce dossier.
- 2. Le candidat justifiera son choix d'exercices. Il expliquera aussi pourquoi il a préféré prendre tel exercice plutôt que tel autre.
- 3. Il sera demandé au candidat d'expliquer au jury le lien entre les statistiques et les probabilités aux travers de certains de ces exercices.
- 4. Le candidat est libre de proposer en plus des exercices issues d'ouvrages du secondaire.