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Abstract

We consider the Euler approximation of stochastic differential equations
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1 Introduction

Recently various Lévy processes have been used as the driving process in stock price
modeling as an alternative to the Wiener process and simulation of Lévy processes
has received new attention. Rydberg (1997) used a Normal inverse Gaussian Lévy
process, which is of type G, as a model for financial data. A more extensive treatment
of Normal inverse Gaussian processes can be found in Barndorff-Nielsen (1998) (see
also Barndorff-Nielsen & Pérez-Abreu, 1999).

We consider the Euler approximation of a stochastic differential equation (SDE)
driven by a Lévy process. This scheme is possible to perform only if the driving
process can be simulated, this is the case for example for a Brownian motion or for a
stable process in R. The rate of convergence for the Euler scheme has been studied
in Jacod & Protter (1998), Jacod (2002). If the driving process cannot be simulated
exactly, one has to resort upon an approximation for it, usually using a large number
of simulations for a good approximation. The error induced by this procedure adds
up with the error due to the Euler scheme and the rate of convergence (expressed in
term of the number of actually simulated random variables) becomes slower. This
is indeed shown in Rubenthaler (2001), where the simulated approximation of the
driving process is based upon a compound Poisson approximation neglecting the
small jumps of the process. If we want a difference of order ¢ between the exact
solution and the approximated solution, the amount of work needed in the scheme in
Rubenthaler (2001) is of order ¢~ for some o which can be very large for unfavorable
cases, but the method works for all Lévy processes.

We here try to improve the above result by finding a better approximation of
the driving process under some extra assumptions on the probabilistic structure of
the driving process. That is, we try to find a scheme whose complexity is of order
e~ for an error of order € with 0’ < o as € tends to zero.

2 Main results

2.1 Setting and notation
We consider the following stochastic differential equation (SDE) :

X=Xo+ [ (X0 av.. (2.1)
0

where X is random variable in R? (d > 1). X takes values in R? and f denotes
a C' function taking values in Mg, (¢ > 1, where M, is the set of real matrices
with d rows and ¢ columns) with f and f’ bounded and where Y is given by :

Yy =W+ bt + Z(V;) on [0, 1]

where oW, is a q-dim Brownian motion with covariance oo’ (o7 being the transpose
of the matrix o), b is a R%-valued constant, V' is a subordinator (taking values in R™)
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which we cannot simulate exactly and Z is a stable process of index v (0 < v < 2)
taking values in R?. The fact that Y has this particular form will allow us to build
an approximation of it in a special way. This special form has some connections
with mathematical finance where changed time Brownian motion are used (see for
example Geman, Madan & Yor (2002), Geman, Madan & Yor (2001)).

The process Y is defined on a filtered probability space (Q, F, (F;)o<i<1) We can
write f = (f1,..., f;) where fi, fa, ... are the column components of f. We will by
|...| denote the norm |(xy,...,zx)| = |21| + ...|zx| in any N-dimensional space on R
(including the matrices). We recapitulate the general form of the characteristic func-
tion of a g-dimensional y-stable random process Z, which can be found in Theorem
14.10 of Sato (1999). For any such non-trivial Z, there then exists a finite non-zero
measure \; on S? ' the unit sphere of R? and a vector 7 in R? and B € M, , such
that :

Be0) — oxp (= [ 10,91 (1= itan () sien(.) Mfds) + 06,7))
for v ¢ {1,2} (2.2
B0 — o (= [ (106,914 2109 tou(6,5)) ) Autas) + 16,7))
for v =1, (2.3)
E 0.2 — exp(—(0, BO) +1i(0, 7)) for v =2 (2.4)

The Euler approximation of X is the discretized process (X1, )o<i<1 where X"
is defined by : '

t

X" = X0+/ ¥ (X?M]_) 4y,
0

n

When we say that X7, , is an approzimation of X, we mean that X7, Jaw, (this

n—-+o00

is here the convergenge in law of a sequence of processes for the Skorohod topology
and it will be proved in Lemma 4.1). We also say that XT,, approrimates X. As

we have said, if the driving process Y cannot be simulatednexactly we cannot use
the traditional Euler scheme, so our aim is to define an Euler scheme based on some
approximation of the increments of Y. This is comparable to the case where want
to use higher order strong methods for SDE’s driven by Brownian motion and do
not have any exacts methods of simulating the iterated Ito integral we need for the
scheme (See e.g (Kloeden & Platen, 1995, Ch. 10.6) and Wiktorsson (2001a)).

We define X to be the solution of :

X' = X+ /O ' (Kb ) av? (2.5)

n

where Y is an approximation of Y. This approximation is such that :
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[nt]
V=) oYy
k=0

where the 57:’3 are i.i.d. and approximate the increments 0Y," = Yis1 — Y, 0 <
k < n — 1. Since we know how to simulate Z but in general not how to simulate
V', the approximation of 0Y} will be obtained by replacing V' by an approximation

V", that is : 6V, = o(Wiw — Wi) + 1p + Z(V'iar) — Z(V'e) will approximate
0V = o(Wen — W)+ 1b+ Z(Vi) — Z(Vi). The construction of Y will be given
in the next subsection. o

We notice that this setting implies that X, = X ln1 for all n and for all £. As we

will see, Y and the Y"’s are defined on a common probability space, so we can look
at the error at time ¢, which is :

& =X

where

We want to show that the sequences of processes (") and (€") are going to zero (in
law for the Skorohod topology) and we want to find their rates of convergence, that
is sequences (u,) and (u,) such that (u,e") is tight (for the Skorohod topology) with
some non null limit point and the same for (@,e"). This will be sufficient to obtain
that ((u, Au,)(€")); is tight for all ¢ (where for any process K, K} = supg,; | Kt|),
but not quite enough for u, A, to be the rate for (¢*). These are the main results
and they are stated in Theorems 2.2 and 2.4.

2.2 The approximation of the increments : series representa-
tions and approximation of subordinators

We propose a new approximation of 0Y," based on the series representations of
subordinators.

Using the ideas of Bondesson (1982) (see also Rosiniski, 2001, for a general dis-
cussion on series representations of Lévy processes) and adapting them to Lévy
processes, we can represent the jump part of V' as :

YAV, =) g(T)ly<, 0<t<1

0<s<t k=1

and so
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Vi=Dyt+» g(T)ly<, 0<t <1, (2.6)
k=1

where Dy is the drift of V and {Ty,k > 1} are the points of an homogeneous
Poisson process index by t € RT and {Uy, k > 1} is a sequence of i.i.d r.v. uniformly

distributed on (0, 1) and ¢ is the right-continuous inverse function of the tail-measure
Fy(z,00) defined as :

g(u) =1inf{t > 0: Fy(t,00) < u} (2.7)

where Fy, is the Lévy measure of 1}
The simple approximation of the increments of the subordinator can now be
expressed in term of the series representation for V. We have that Vi — Vi1 is

approximated as V' — V', where

n

V' =Dyt+ Y g(T)ly<, 0<t<1, (2.8)

k: Tk <an

and a,, is a sequence of truncation levels going to 400 chosen later. One interpreta-
tion of a,, is that on average we have to sum a,, terms to obtain this approximation
of V. V™ contains the jumps of V' which are bigger than g(a,) plus the drift. The
error Vt” =V, — V" is just the remaining terms in the series i.e.

Vi= Y g(Ti)lpe, 0<t<1 (2.9)

k:T>an

and so contains the jumps of V' smaller than g(a,). We set g, = g(a,). Approxi-
mating V by V" is natural and this is what is done in Rubenthaler (2001) but it
seems that

Vi=V'+EV" 0<t<1

would in most cases be a far better approximation of V. B
So we want to approximate V' by something which has the law of V' and so, we
want to have some i.i.d. r.v. (5Yn)1<k<n for each n, which have the law of Z(V1

E Vl ). It is easy to simulate independent variables having the law of Z (V1 +E V1 )

and so, from a practical point of view, we know enough about the 5Yk S 1:0 s1mulate
them. But as we want to study the difference X .; — X 1.y, we have to define the

(5?:’5 on the same probability space as Y. That is, we have to find a coupling
between the 6YZ’S and Y. This is the subject of the following.
For the approximation of the increments

Z(v) -z (i)
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it is at a first glance tempting to use the approximation

Z (V’;) .y (V"_) .

The problem is that the two processes obtained from these increments (the true and
the approximated) do not have simultaneous independent increments with respect
to any common filtration. This would cause considerably technical difficulties when
analyzing the error-process for the approximative Euler scheme. In order to avoid
this technical difficulties we instead propose another approximation which has the
same law but which retains the simultaneous independent increment property. We
do not believe that this new approximation is the best possible that retains the
simultaneous independent increment property, but we have not been able to find
any better approximation which covers the general case.

For the general case where the driving process also may have a Brownian part
and a drift we propose the approximation :

Y, = Z (vu FVE VR, + (Ef/f) A (17; - f/,@;)) —Z (vﬁ)
~ - ~ + 1
V7" ([EVf - (vg - V";)} ) to (Wﬁ - Wk;l) Y b (2.10)
n n n n n n
where {Z*(-)}7_, are independent processes, with the same distribution as the orig-
inal process Z, constructed on an extension of the original probability space. In this

setting, we have the following easy lemma (based on the fact that all the processes
used here have stationary and independent increments).

Lemma 2.1 The (6Y, )i<p<n are i.i.d. for each n and they have the law of
Z(VP +EVP) + o (Wﬁ - W@) +1p,

2.3 Main theorems

We use here the notations of Jacod (2002) to separate some cases. We set Fy to be
the Lévy measure of Y. We set for all 5 > 0 :

Oy (8) = Fv([B, +00)) ,

Oy (B) = Fy({z: [z[ = B})
andif¢g=1":
Oy-(3) = Fy([3,+00)) ,

0y (8) = Fy((—o0, =f]) .

We introduce the following assumptions :

Assumption (HO) : The process Y has a non-null Brownian part.
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Assumption (H1-a') : The process Y has no Brownian part and we have
Oy (B) < ﬁ—(i, for all § € (0, 1] (for some constant C'). (We notice that we always have

0,(0) < % and so o/ <2.)

Assumption (H2-o/) : We have ¢ = 1. The process Y has no Brownian
part and we have 365 (3) — 6f and 50, (3) — 6y as 3 — 0, and further
Oy = 6f + 6y > 0. We also set 0, = 65 — 65, and we observe that Oy (5) ~ %
when (§ — 0.

Assumption (H3) : The measure Fy is symmetrical about 0.

Assumption (H4) : The process Y has no drift part.

For convenience, we restate the definition of the sequence (u,) given in Jacod
(2002) :

e Case 0 : We have (HO), then u,, = /n.

1/a’
e Case 1 : We have (H1-/) for some o/ > 1, then u, = (107;”) :

e Case 2-a : We have (H1-d/) for o/ = 1, then u, =

_n _
(logn)?"

e Case 2-b : We have (H1-/) for o/ = 1 and (H3), then u,, =

logn~

e Case 3-a : We have (H1-o') for some o/ < 1, then u,, = n.

e Case 3-b : We have (H1-o') for some o/ < 1 and (H3) and (H4), then
1/a’
Un = <logn>

We introduce the following assumption on Z and V' :

Assumption (Z0) : One of the following conditions holds :
o y>1
e v =1 and the measure \; is symmetrical about 0

e v < 1 and Z has no drift (i.e. 7=0)

Assumption (VO0) : The Lévy measure of V satisfies : lim,_o % [, 2°Fy (dx).

We set i, = E|V? — EVP|. We recall that Z is stable with index . We define

the sequences (v,,), (Z}n) by
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1
Un = 1
(nfin )
(W, log(w,) = L ify=1
\JnE((f/I—Ef/I) )
w, = 1 - ify<1
nE( VI-EVp )
()

(we do not use w,, then v > 1). And we define the sequence (u,) by :

_ Un, if (Z0) holds
Uy, =
v, Aw, if (Z0) does not hold
We have
~ ~ —~ gn
ni, =nE|VI —EVI| <2nEVT = 2/ xFy (dx) - 0
n n n 0 n—-+0o0o

and

~ ~ gn
nE((V?—EV{L)2):/ 2*Fy(dr) — 0
n n 0

n—-+o0o

and so U, —+> +00. We set u,, = u, Al,. In the following theorem, we speak of the
n—-roo

UT property, the reader can consult Subsection 5.1 for a more thorough description
of this property. We recall that for any process K : K; = sup,c(o 4 | Ks|-

Theorem 2.2 If either (HO) or (H1-o') holds and if (VO) holds and if the se-
quence (a,) is chosen such that :

1 g(an)
W/ 22 Fy(dx) > n, for all n (2.11)
n)” Jo

then the sequence une” is UT with respect to the the filtrations (F}') = (Fh,) and

) =
in particular, we have that the sequence of real random variables ((u,e™);) 'is tight
for all t.

Remark 2.3 For given Z and V, it is not straightforward to check whether'Y sat-
isfies assumption (H1-a'). That is why we have added some technical Lemmas in
Section 5 to show one can move back and forth between the assumptions on V and
onY.

We are not able to prove that (u,e") is tight as a process under the assumption
of Theorem 2.2 and so we cannot show that u, is the rate of convergence of (e").
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However, we have ¢" = " +2" and we show in the following that (u,e") and (u,e")
are tight.

If (HO) holds then (u,e™) is tight because it has a limit (described in Jacod &
Protter (1998)) and this limit is non-degenerate. If Y has no Brownian part, we
can apply Jacod (2002) to say that : (u,e") is tight under (H1-o/) and (u,e") has
a non-degenerate limit under (H2-o') (described in Jacod (2002)). The sequence
(une") is tight because of the following theorem.

We define Z as a stable process of index v such that E(ei®Z(1)) = ¢~ fsa-1 10:5)"Aa(ds)
For s € RY, we set s; to be the i:th coordinate of s. We define B( as a Brownian
motion with covariance matrix M., defined by :

Y = 2777 ifv#£1
v _(szsqls)\lds quls)\l(ds))1<J<q ifv=1

where 77" is the transposed vector of the column vector 7.

Theorem 2.4 If (VO) holds and if the sequence (a,) is chosen such that Equation

(2.11) holds then the sequence (une") is tight. If in addition, (Z0) holds or if (Z0)
does not hold and > — [ € [0,400] then u,e" l—+> U where U is defined on an
extension of the probability space as the unique solution of :

U, = Z/ Vfi(X, U, dY® /f (2.12)

where Ys(i) denotes the i:th coordinate of Y, and

- (Z if (Z0) holds
Z= l\/lZ+ (IA1)BY  if (Z0) does not hold and 2> — [ € [0,+o0] ,

Wn p—+too

and where Z and BY) are independent of each other and of Y.

Remark 2.5 If (Z0) does not hold then we can describe the limit of (u,e") only if
2 has a limit. We recall that the sequences (v,,) and (w,) are determined by the

Wn

choice of (ay,).

Let us now explain how we will proceed to prove Theorem 2.2 and Theorem 2.4.
We have for all (z,y):

@)~ fly) = / Vf(t 4 (1— ) (x —y) dt.

We set : ¢(z fo Vf(tx+ (1 —1t)y) dt. We have that ¢ is a bounded continuous
function. If we erte f with its column functions as f(z) = [fi(x) - - f,(z)] we can
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then identify the result of the linear operator f’(u) applied on a column vector v
as the d x g-matrix where the i:th column is given by V f;(u)v. And so we have

o(u, uv = f'(u)v =30, Vfi(u)v.
We have :

t t
@ = | A ) Ve - [ () Vi

t
= / gb(y?[l’ﬂ_s]_, X?ns] )(7@ — X ns] dY [ns / f [ns ns] — Y['ns
0 n e n -

v

n

t
- / gb(X@—’ [ns} et Clus) _ dY[”S / f(X ns] nsl —Y[m> :
0

In view of this equation, some results on the stability of the solutions of SDE’s will
allow us to say that the rate of convergence of (€¢") is equal to the rate of convergence
of Y[n Y[n (the results about the stability of SDE’s can be found in Subsection

5.1). "The rate of convergence of (¢") can be found in Jacod (2002) and Jacod &
Protter (1998). Then we can use these results to prove Theorem 2.2 and Theorem

2.4. So we devote the next section to the study of Y7 =Y — Ying.

3  Convergence rate for the process Y"
Recall that
N 1] B
IAREE I S
]

= ;Z<V5> =2 (Vs ) = 2 (Vies + v =V + (BT7) A (V2 - T2
w2 (i) - 2 ([e7 - (- 7))

[nt]

= > z2(Ve) -2 (Ve -05) - 7" (5.) (3.1)

~ ~ ~ ~ + ~ ~ ~ ~ -
where 3, = [vg —Vp, - E vg} and 3, = [vg —Vp, —EVP| and the Z¥’s
are independant copies of Z. We set u, = E HN/f — E‘N/f\ We denote the variance
by the symbol Var. We recall that if (Z0) does ot hold then Uy, = Uy, N\ Wy,

Proposition 3.1 If (VO)~holds and if the sequence (a,) is chosen such that Equa-
tion (2.11) holds then (u,Y™) is tight.
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e If, in addition, (Z0) holds, then YY" % 7 where Z is a symmetric stable

n—-—+0o
process with index v such that

B0, Z00) =exo (= [ 105)A(as))

o If, in addition, (Z0) does not hold and 2= — [ € [0, +o0] then

™ n—-4o00
g,y e 15 (IA1)BY
" n—+oo [V 1

where B and Z are independent.

In order to prove the proposition we first need two lemmas. The first one from
Marcus & Rosiniski (2001) we state without proof.

Lemma 3.2 (L' inequality)
If A is an infinitely divisible random variable with no Gaussian component, EA =
0 and E |A| < oo such that

Eexp(iA0) = exp/ (e —1 —ixzh) N(dx),

—00

then 0.25p < E|A| < 2.125p where p is the solution to the equation &(z) = 1 with
£(z) = [ min(z?/22, x/2) N(dz).

Using Lemma 3.2 on a Lévy measure with bounded support we obtain the fol-
lowing lemma.

Lemma 3.3 If M is the Lévy measure of a subordinator which satisfies :
R S A
lim — [ 2"M(dx) = +o0
e\o € 0
and if we choose a non-increasing truncation sequence (g,) going to 0 such that

1 [
— 2*M(dx) > n for all large enough n
45 Jo

and if we choose a family of subordinators Q", n > 1 with

E exp(iQ70) = exp ( /0 " (exp(if) — 1)M(dx))

we then have that for all n large enough :

SEQEQ(1/m)
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PROOF. The lower bound straightforward. For the upper bound we start by
noting that by Lemma 3.2, we have that for all n :

& <ElQL -BQl, (32)

where

fal) = = /0 " in (x—Q 5) M(dz) .

227 2

Let z =, /Var Q" . By construction, we have :
gn
22 = —/ w*M(dx) > ¢2 .
0

So :

2

gn(z) = l/an %M(dx} =1.

n

So, by Equation (3.2) :

MVarQ% o

4
ElQr —EQ1| ~

PROOF OF PROPOSITION 3.1. We set W;(0) = —log Eexp(i(f, Z1)). We intro-
duce the following convenient notations :

D,=V!—EV}
and

Ap = =R(Vz(n0))|Dn| — iS(V2(Unb)) Dy,

where R means the real part and & means the imaginary part. Due to our Lemma
2.1 and to Lemma 2.1 of Jacod (2002), the convergence of the sequence of R? valued

random variables (Y7") implies the convergence of the sequence of processes (i/v'”),
and the tightness of (Y]") implies the tightness of (Y™). So we look at :
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Eexp(iﬂnw,?ln» = (EeXp(mn<‘975?1n))n>
- E (E(exp(iﬂn<c9, Z(551)) — i, (0, ZD(5,,)))
= (Bexp(=VUz(u,0)0; — U 5(—1u,0)d;))"

_ (Eexp{_mz (@a6) Vit = EVT

—iSU, (1,0) ( ~evr)})’
= (Eexp {—RV¥z (u,0) |D,| — iSVz (u,0) D, })"
= (B(e?)".

5:,17 g;l))

We set : ¢, (u,0) = (Eexp {—RV  (0,0) |D,| — iSVy (u,0) D, }). To simplify nota-
tion we set

H(0) =— g (6, 5)[" A (ds) -

We first suppose that (Z0) holds.
To show that

lim ¢, (0u,)" = exp(—RV2(8)) = exp(f,(0)) ,

n—oo

we proceed in two steps. We note that this convergence holds if the following two
statements are true

Tim (1 = Rz (@,0) )" = exp(f,(0)), (3:3)
where p, = E Ve — EVf , and
lim [, (67,)" — (1 = R z(Wn0) )" = 0 . (3.4)

n—oo

To prove the statements we need two inequalities: First

|2" —w"| < nlz—w|ifw,z € Cwith 2] <1, Jw| <1 (3.5)

(this is a simple consequence of (Lemma 1 Billingsley , 1986, p. 369)), and secondly

lexp(z) — 1 — 2| < |2|?/2, if z € C with Rz <0 (3.6)
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As lim,, oo —np, RV £ (w,0) = f,(0), we have Equation (3.3).
For Equation (3.4), we proceed by using Equation (3.5) with z = ¢, (@,0) and
w = (1 — RV, (0u,)u,) to obtain

|on(01n)" — (1 = Rz (Un0) )" | < 0lipn(0n) — (1 = R (6 1) |-

Noting that

on(0T,) — (1 — RV, (0T) )| = |E[exp {—RU, (@,0) | Dn| — iSV (w@,0) Dy}
— (1= RV (@,0) | Dn| — i3V, (@,0) D,.)]|

< Elexp {~RUy (@,0) |D,| — iV, (@,0) Dy}
— (1= R (@,0) |Dy| — iSV; (@,0) D,)|

By using Equations (2.2), (2.3), (2.4), (3.6) and because (Z0) holds, we obtain that
for some constant C' :

|0 (0T)" — (1 — RV, (0T, ) p0)"| < gE(|§R\I/Z(ﬂn8)|Dn|+i%\llz(ﬂn9)Dn|2)
= Cnu2 E(|D,|?)

We now use Lemma 3.3 to see that

1

2
n

W

i B(| D) = —5 Var Vi <

n

which shows that

lim |, (0w,)" — (1 — RV (0w, )pn)"| =0 .

n—oo

So we have shown that @, Y" =% Z if (Z0) holds.

n—-+o0o

We now suppose that (Z0) does not hold.
In the following, C' is a constant which may change from line to line. We recall the
following inequality :

2
z
ef—1—z——

3
5 g%,ifze(jwith%zgo.

Using this inequality, we have :
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©on (0,)" — (E (1 — A, - A?i))n

IN

2
n E(eA")—E(l—An—%)‘

[Adf?
= 5V @O E(DP)
< Cnluy () V/E(DE) VE(D])

IN

In the same way as above, if we show that :

o« nE(4) ~ = (%) R(w(0))

Un

n—-+00
_ 2 .
~ () ey £ < 1
o nE(A2){ntee BRI
() 292 [0, )N ds) i = 1
o 0|V (@0)*VE(DI)VEDY) — 0,

this will finish the proof because : 2 — L o JA]and T8t A7,
Un potoo V1T Wn o 4o Wn logWn n 400

We have for all n :

nE(4,) = —nR(Vz(u,.0))E(|D,|)
= —wnR(Vz(0)) E(|D,|)

- - (%) w0

Un
and if v < 1:
nE(AY) o~ n(S(w.6)) E(D})
. (TP E(DY)
- (ﬂ—) ((6.7))"
Wp,
and if y=1:

nE(A2)  ~  n(SUy(u,0))* E(D?)

:\: n (;)2 ( /S (. 5) logmo, s)))\l(ds))Q B(D?)

() () (L)
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By using that for g(a,) < 1:

~ ~ N4 1 [9lan) ~\2 ~ ~ \2
E <Vf _E Vf) - / # Fy(dz) + 3 <Var Vf) < g(ay)? Var VI + 3 (\/ar Vf) ,
n n 0 n n n

n

and by Equation (2.11) and because @, < w,, we have :

n[W2(@.0)° VE(DZ)VE(DE) < n|¥z(w.0)]°/E(D2) \/g(an 2E(D7) + 3(E(D7))?
< 0Pz (@0) [ VE(D2)V/(E(D3))? + 3(E(D?))?

2n| W7 (1,0)*(E(D}))?

< {C’nu 3(E(D?)) ify<1
= | Cn(u, log®, )} (E(D2))s  ify =1
< 5

So, in all cases we have : n|V(u,0)*\/E(D2)\/E(D%) < % — 0 which finishes

- n—+o0o
the proof.
|

4 Convergence of the approximative Euler scheme

4.1 Proofs of Theorems 2.2 and 2.4

We will first prove Theorem 2.4 but before going into the proof of this theorem, we
need to prove an easy lemma.

Lemma 4.1 Under the assumptions of Proposition 3.1, we have :

(XEy X)) 2 (X, X) . (4.1)

n n—-—+0o

PROOF. The convergence in Equation (4.1) can be found in many papers (see
for example Jacod (2002) or Jacod & Protter (1998)) but we recall the proof in a
few words, as a part of it will soon be useful. We have that X7, is solution of the

equation :

t
Xty =Xo [ f(Xpa_) Vi (4.2
0 n
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We have that X [+ is the solution of :

n

t
Xt = Xo+ / f (7’@_) v’ . (4.3)
" 0

n

By Lemma 2.1 of Jacod (2002), we have that :

Yin ‘—} Y (4.4)

n oo

and that the sequence (Y.)) is UT w.r.t the filtrations (™). By Proposition 3.1, we

have that Yl — Y, —% 0. So, by Equation (4.4), (Y1, Vi) Law, (Y,Y). The

n N—-+00 n—-+o0o

sequence (Y [+1) is UT w.r.t the filtrations (F™) (by Lemma 2.1 of Jacod (2002)) and
so the sequence (?@,Ym) is UT w.r.t. the filtrations (F"). Thus, by Equations
(4.2) and (4.3) and Theorem 5.3, we have :

(X7, X)) 2% (X, X). O

n—-+o0o

PROOF OF THEOREM 2.4. We make the proof under the assumption (Z0).
If (Z0) does not hold, the proof is almost the same. For technical reasons, we
introduce :

[nt]
Y= Z(Via + Vi = VL) = Z(Via) .
=0 n n n n
We have :

g
Vi =32 (Ve = (Ve -Vi)) - 2 (va) -
n n 1 n n n n

law

We first want to show that }A/& — Y, — 0. Since the variables

n N—-+00

(Z (V% — (\7%1 — XN/,?_:» -7 (V;)) e, BT i.i.d. then by Lemma 2.1 Jacod (2002),

n

it is sufficient to look at the value at time 1.

wevo= 3z (- ) - 2(v)
law S T
# -3z (V)

= (7).
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We have ‘71 Law, N 0 and since Z has right continuous sample paths it follows that
n—-roo
law

Z <\N/1”> 1% 0 and thus we have that Y —Y@pm — 0.

n—-+o00 n n—-+o0o

We now want to show the 1ndependence of Y (g and Y I — Y. We note that

}A/[n is the sum of all increments of Z between Vi-: and [Vu + <V£ - Vs, )},

k

Il =

1,...,n. Moreover by Equation (3.1), Y. —Y =] is the sum of all increments of Z

n

between |:Vk — (17; — ‘71? ) EV1> } Vi, k= ,n, plus all the increments

nd
of Z¥) between 0 and (\75 -Ve, f) -

Now since

~ ~ ~ +
VE—<V£—V&—EVf> ZV@—F(VE"—V&),I{::L---,TL

and by the stationary independent increments property of Z and the independence
of [Vg — V&] and [Vg — V&] (k =1,...,n) it follows that Y is independent of
Y[m] — Y?n] .

From the independence of Y™ and YM Yl nl, Proposition 3.1 and the conver-

Jaw, 0, it then follows that :

gence Y" n.]
T n— 00

<ﬂn<YM—?7[1n_»]),Ym):<ﬂn<Y] ? >,?&+Ym—i}£]> 1a_w> (/Z\,Y)

n n—-+o0o

with Z and Y independent and 7 is a stable process of index v such that

Blexp(i(h. Z0)) =exp (= [ 10.50u(a)

By Equations (4.2) and (4.3), we have for all ¢ :

t
— — — ~n ~n — —
une?:un (X@ —XM> = / ¢<X@_,X{ns]_> unen dYM
n " 0 n n

n

e[ () a(m (- 7)) -0

By Lemma 2.1 p. 7 of Jacod (2002), the sequences <_ (Y[n Y[n )) and <YM>
are UT w.r.t the filtrations (F") and so, by Lemma 4.1 and Theorem 5.3 :

n

_ law +=
u,e’ — U .
n—-4oo

where U is the solution of Equation (2.12) with Z and Y independent.
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O
[n]
We set W = [, (f(Xs_) — (X ng= )) dY;. By Jacod (2002), we have :
t
Up€y = unth—i—/ qb(XM,X@) upes  dYing . (4.6)
0 n n n

So, in order to prove Theorem 2.2 using Lemma 5.4 (and using the fact that the
sum of two UT sequences is also UT), we first need to prove the following lemma.

Lemma 4.2 If (H1-o/) holds then the sequence (u,W") has the UT property with
respect to the filtrations (F").

PROOF. As shown in Jacod (2002), u,, W™ can be written w,W;* = Z[m] ¢J' with
some variables (' which are F:-measurable and such that :

|E(CPYepcalFon)| < B
E(I¢ Pl Fimr ) < &2 (4.7)
PG| > ylFim) < 2 vy > 1
with
limsup &, < oo, limsup¢, < oo, limsup lim & =0. (4.8)
n—-+o0 n— 400 y—+oo Moo

A careful reading of Jacod (2002) shows that Equation (4.7) holds for all y > 0 and
that sup,, &, , < oo for all y > 0. And so the result is a consequence of Theorem 1-4
(ii) of Mémin & Slominski (1991).

O

PROOF OF THEOREM 2.2. If (HO) holds then (u,e”) is UT with respect to the
filtration (F;) by Theorem 6.1 of Jacod & Protter (1998) and so (u,e™) is UT with
respect to the filtrations (F™).

If (H1-o') holds then by Theorem 1.1 of Jacod (2002), the sequence (u,e") is
tight. By Lemmas 4.2 and 5.4, the sequence (u,e™) is then UT with respect to the
filtrations (F™).

We now look at Equation (4.5). By Lemma 3.1 p. 7 of Jacod (2002), the se-
quences (U, (Y[, —7@)) and (Yp.)) are UT w.r.t (F"). So, by Lemma 5.2, the se-

quences (fo QS(X@_,Y%_)OZY[M]) (fo ns] )d(@, (Y, — Y In] ))) are UT

n n

19
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w.r.t (F"). As (u,e”) is tight by Theorem 2.4 then, by Lemma 5.4, (u,e") is UT w.r.t
(F™). So the sequence (u,e") is UT with respect to the filtrations (F"). Lemma
1.1 of Jakubowski, Mémin & Pagés (1989) now allows us to say that for all ¢, the
sequence ((u,e");) is tight.

O

4.2 The choice of the number of terms (a,) in the approxima-
tion of the increments and the amount of work needed to
generate the solution

In order to get non-trivial limit processes for both sequences (") and (e") we need
to balance their rates %, and u,, so that u, < @, (for two sequences of real (b,) and
(cn) going to 400, we write b, < ¢, if there exists constants C,C’ > 0 such that
Cb, < ¢, < C'b, for n large enough). This is done by choosing the sequence a,, or
equivalently by choosing the truncation sequence g, = g(a,) in an appropriate way.
We have that a, is the average number of terms in the approximation of the sub-
ordinator and therefore proportional to the amount of work needed to approximate
the increments of the driving process Y. The total amount of work is thus of the
order of a,, + n where n is the number of steps in the Euler scheme.

By now, we consider the following special case : we suppose that (Z0) holds and
that we are in case 1, 2b or 3b (with 0 < o/ < 2) and

B0y (8) v

This implies that lim, . u"/“g(u) = 9‘1// “. We suppose that a = o’/ and that
0 < a < 1; this can be the case under the assumptions of Lemma 5.6. We decide
to take :

= — (4.9)
(logn)z=
We will show that for such a,,, we have :
1 [
— 2?Fy(dz) > n (4.10)
9n Jo

and u, =< u,. Running the computations in the opposite way would easily show

24«
that if u,, < @, and Equation (4.10) holds then a,, <

—n®% __ However, we are not
(logn) =3

able to see whether there exists a,’s such that u, < u, and Equation (4.10) does
not hold.

Using an integration by parts formula, we obtain that :
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1 [ 6

— [ 2?Fy(dr) ~ ¥ ~ a,

9= Jo n—-+o00 gg n—-+o00
and, since the exponent of n in Equation (4.9) is bigger than 1, we have Equation
(4.10) for n large enough. So we can apply Lemma 3.3 to get that u, =< ,/Var \N/f

and by a change of variable, we get that :

~ 1 gn ) 0 ) a1—2/a 0‘1//04
Y n/o v F(da) n/an 9(u) AN, 1 -2/«

Thus :

1

1_1 a
T, = () ™7 = 07 (ad an‘éﬁ:( . )

From above and Jacod (2002), we recall that :

1 /
n fa
uTL = s
logn
and so u,, =< TU,.

We see that the amount of work is dominated by a, this since the exponent of
n in Equation (4.9) is bigger than 1 for all & > 0 and thus the asymptotic amount
of work to obtain the solution will be governed by a,. We now want to express u,
in term of the amount of work a,. Using that a function of the form

a

has an asymptotic inverse of the form

i.e.
FO@) g V) e
x x
we get that :
2 2 2 (—a) 2 o 242-
¢ o —o STe g -« 20" 24a
Uy = Q2% N 207 et a2 ante ? (2 o log an)

)
Q
3
—_
©)
0Q
Q
3
S~—
2
©
+
&
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The worst case, however not attainable since then V' is not a subordinator in that

case (but we can come arbitrarily close), is when a = 1. We see then that the rate
1

u,, drops to a2’ log(an)_%. So for v = 2, the rate drops to aé log(an)_% and this is

the lowest rate our scheme will have. The rate a./®log(a,) /¢ may seem rather low

but we should have in mind that for the comparable case the rate in Rubenthaler

(2001) dropped to al. Although that last rate was obtained with considerably less

assumptions on the probabilistic structure of the increments of Y.

5 Technical facts

5.1 The UT Property and stability of solutions of SDE’s.

We use several results about the UT (for Uniform Tightness) condition and stability
of solutions of SDE’s in the sequel and we write here the results we need. The
complete definitions and proofs can be found in Jakubowski, Mémin & Pagés (1989),
Kurtz & Protter (1990), Kurtz & Protter (1991a), Kurtz & Protter (1991b), Mémin
& Slominski (1991). Lemma 5.2 is (almost) Lemma 1-6 of Mémin & Slominski
(1991). Theorem 5.3 comes from Proposition 5.1 of Kurtz & Protter (1990). Lemma
5.4 comes from Corollary 6.20 p. 381 of Jacod & Shiryaev (2003). We recall here the
definition of the UT property found in Kurtz & Protter (1991b) (other equivalent
properties are given in this paper). For n = 1,2,..., let ©, = (,,G", (G")i>0, P") a
filtered probability space. We set :

p—1
H" = {Hn : th = Y'On_‘_zy'inl[ti,twﬂ(t)?
=1
with V" € G, pe N, 0=ty <t <..<t, <oo, |V <1}.

Definition 5.1 A sequence of semi-martingale (K™) defined on ©,, satisfies the UT
condition if for each t > 0 the set {fot HMK?, H"™ € H", n € N} is stochastically
bounded.

We see that the definition of the UT property is made with respect to some filtrations
(G™). In the following lemmas and theorems, the sequences of processes are supposed
to be defined on the same filtered probability spaces ©,, for each n. In this paper,
we use the UT property with respect to ©,, = (Q, F, (F;)o<i<1, P) for all n or with
respect to O, = (Q,F" (F)o<i<1,P) = (Q,F, (Fns )o<i<1, P) and we say that
the processes are UT with respect to the filtration (3’-}) or to the filtrations (F}")
depending on the case.

Lemma 5.2 If the sequence of semi-martingales (Z"),>o (taking values in R") sat-
isfies UT and if (H"),>0 is a sequence of predictable (relatively to the filtration in
which the Z™’s are given) and locally uniformly bounded processes (taking values in
M, (R)), then the sequence ([, H dZ!),>o satisfies UT.
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Theorem 5.3 Let (Z") and (H™) be two sequences of semi-martingales, Z™ taking
values in R® and H" taking values in R". Let 1 : R" — M, ; be a Lipschitz function,
and U™ be the solution of :

t
vp =+ [ e dzz.
0

If (Z", H™) Law, (Z>,H*) and if the sequence (Z") is UT, then

n—-+

(ur, zZ" H™) Jaw, (U=, Z>, H*®) where U™ is the solution of :

n—-+o00

t
U = H + / PU) A7,
0

Lemma 5.4 If we have two sequences of semi-martingales (U™) and (A™) (defined
in some filtration G" for each n) where A™ takes values in R® and U™ take values in
M, and such that (A™) is UT and (U™) is tight.

Then K™ = [, Ul dA} is UT.

5.2 Relations between 0 and 6y

We recall here that if 0 < v < 2 then 6(5) < C377 and that if y = 2 then 0;(3) =0
for all 5. We recall that Dy is the drift of IV and that 7 is the drift of Z. The reader
can consult Theorem 30.1 of Sato (1999) for the relation between the characteristics
of Y, Z V.

Lemma 5.5 We have for some constant C” :

712 <0 (41 5.)

PROOF. We set Z, = Z; — tt. By Proposition 4 p. 221 of Bertoin (1996), we
have that for some constant C' and for all 7 > 0 :

t

P(Z|2 8)=P(Zi| 2 pt77) < O

(this is stated in Bertoin (1996) for 0 < 7 < 2 but it is also true for v = 2). And
this finishes the proof. O

Lemma 5.6 If we have for some constant C' and some 0 < a < 1, for all 0 < 3 <
1:

Ov(B) <

2lQ
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then we have for some constant C' :

D
Oy (3) < C’ (5_3 + % + 1#0%) .

PROOF. By Theorem 30.1 of Sato (1999), we have that for all § > 0 :

w(o) = Do)+ [ bz = AR | (5.2

By using Lemma 5.5, we have that, for some constant C” :

,
o Ot

Ov(B) < Dybz(B3)+ 7
0

3 oo
Fy(dt) + 60y (C") + 1,4 /ﬁ Fy(dt).

We have that : 1,4 ,@ FFy(dt) < 1#0 54 for some constant C. Using the integra-
tion by parts formula for functions of bounded variation, we obtain :

y BY no 2
o, (ﬂ—)+ T ) = C—/C O (1) dt
0

Cl/ ﬁfy ﬁfy
c" (e c
< —
< m/0 =
< C
S G

for some constant C’, and as 3707((3) is bounded, this finishes the proof.

Lemma 5.7 If 7 = 0 and if we have for some constant C', for some 0 < o/ < 2,
forall0< (<1 :

Oy (B) < 500‘/ ,

then we have for some constant C' :
C

ov(B) < -
G
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PROOF. There exists C” > 0 such that P(|Z;| > C”) > 0. So we have for some
constant C' changing from line to line :

to P12 > C"FY)
wm:sé ST )

—+00 1
< c/ (2] > C" 35 Fy(dt)
B8

So, by Equation (5.2), we have for some constant C' changing from line to line :

0 (8) < COy(C"B7)
C

(1, :

G~

<

Lemma 5.8 We suppose that :
e 7 is 1-dimensional,
e 7=0
e Dy =0.

If we have for some 0 < a <1 and some Oy >0 :

B0y (5) s Oy ,

then we have for some 05,0y >0 :

G705 (5) s 05 . 3705 (3) 0

PROOF. We make the proof for the 6y part, the proof for 6 is the same. We
denote by fz, the density of Z;. Using the same properties as in the proofs of the
two preceding Lemmas, we get for all 5 > 0 :

+00
zwww>=ﬂw/ P(Z, > B)Fy(d)
0+OO 1
_ g / P(Z > Bt %) Fy(dt)
0

+00 +00
_ g / | fa(u) duFy(dt)
0 Bt
+oo

= B Jz, (u)0y (F7u™7) du
0
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By assumption, we have for some constant C” :

B8 B8
g /0 Fo () (B du < /0 () du— 0

B—0
We notice that :
+o0o ﬁ

+oo oy
St fz,(w)Oy (™) du = / U™ fz, (u)1y>p (—) Oy (B7u™) du .
B 0 U

By integration by parts, we get for some constant C' :

+0o0 “+o00
/ WL (0) du = P(Zy > 1)+ / ™ P(Zy > ) du
1 1

“+o00
< P(Z1>1)+ C’/ w1 du
1

< 00,

and so f0+oo u® fz, (u) du < oco. Since 1,4 (%)m Oy (Bu=") — Oy as § — 0 for all

u > 0 and t“0y (t) is uniformly bounded for ¢t < 1, then by bounded convergence :

+00 +oo
B9 fz,(w)0y (B u™7) du " / U fz,(u)0y du,
B - Jo
which finishes the proof. O
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