In the proof of Lemma 3.6, a reference is made to the thesis of N. Oudjane (p. 66). To apply this result directly, one needs that the measure λ we use is a probability measure on $C_{k}(\Delta)$. This is not the case as we took λ to be the Lebesgue measure. There are two remedies.

1. The best way would be to rewrite everything, this time with taking not $d x^{\prime}$ in the second line of (3), but a probability measure. The second line of (3) can be replaced by $\Psi_{k+1}^{\Delta}\left(x^{\prime}\right) Q\left(x_{0}, d x^{\prime}\right)$ for some arbitrary x_{k} in $C_{k}(\Delta)$. The whole computation will run in the same way (with modified ξ_{1}, ξ_{2} which will even be simpler than in the present form of the paper).
2. One can also point a minimal transformation : the $C_{k}(\Delta)$'s are of finite diameter $\left(\leq b_{0}+2 b_{1} \Delta\right.$ by (H2)) so if we rewrite carefully the proof of Lemma 3.6, we will end with $\alpha(\Delta)\left(1+\left(b_{0}+2 b_{1} \Delta\right)^{d}\right) \times$ (some constant) instead of $\alpha(\Delta)$, which is not as good as before but should all the same go to 0 as $\Delta \rightarrow+\infty$.
