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Abstract. This paper uses two simple variational data assimilation problems with the 1D viscous Burgers’
equation on a periodic domain to investigate the impact of various diagonal-preconditioner update and scaling
strategies, both on the limited-memory BFGS (Broyden, Fletcher, Goldfarb and Shanno) inverse Hessian ap-
proximation and on the minimization performance. These simple problems share some characteristics with the
large-scale variational data assimilation problems commonly dealt with in meteorology and oceanography.

The update formulae studied are those proposed by Gilbert and Lemar´echal (Math. Prog., vol. 45, pp. 407–
435, 1989) and the quasi-Cauchy formula of Zhu et al. (SIAM J. Optim., vol. 9, pp. 1192–1204, 1999). Which
information should be used for updating the diagonal preconditioner, the one to be forgotten or the most recent one,
is considered first. Then, following the former authors, a scaling of the diagonal preconditioner is introduced for
the corresponding formulae in order to improve the minimization performance. The large negative impact of such
a scaling on the quality of the L-BFGS inverse Hessian approximation led us to propose an alternate updating and
scaling strategy, that provides a good inverse Hessian approximation and gives the best minimization performance
for the problems considered. With this approach the quality of the inverse Hessian approximation improves
steadily during the minimization process. Moreover, this quality and the L-BFGS minimization performance
improves when the amount of stored information is increased.
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1. Introduction

Numerical simulations in meteorology and oceanography consist essentially in integrating
a discretized version of the system of partial derivative equations (PDEs) modeling the
evolution of the atmosphere and/or the ocean. This system of PDEs comprises a dynamical
core derived from Navier-Stokes equations using relevant approximations, an equation of
state for the fluid of interest, an equation representing the first law of thermodynamics,
and physical parameterizations modeling subgrid-scale processes (convection, radiation,
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precipitation, turbulence, surface drag, etc.). To perform this numerical integration, one
needs to provide an initial state and possibly boundary conditions. It is the purpose of
the so-called “data assimilation” discipline to merge the information coming from the ob-
servations with that from the physical laws governing the fluid evolution (available under
the form of a numerical model), in order to infer the initial and boundary conditions that
will lead to the best-quality simulation or prediction. The so-called “variational data as-
similation (VDA) method” tries to achieve this using optimal-control techniques (fitting
the model trajectory to the observations), weighting both sources of information by their
respective error covariances. Because the dimension of the model state vector is usually
large (105–109) and the relation between the model variables are complex, it is not possible
in practice to handle the covariance matrix of forecast errors used to weight the information
coming from the model (1010–1018 scalar components). Instead, the corresponding linear
operator is modeled as the composition of operators that can be managed with current par-
allel computers. As a result the specified error covariance information is almost always
climatologic and does not depend on the underlying dynamics. This is a major deficiency of
current implementations of VDA. Recently Veers´e proposed a method to specify dynamical
forecast error covariances using limited-memory quasi-Newton operators (Veers´e, 1999, to
appear). For such a method to be efficient in practice, it is required that the limited-memory
inverse Hessian approximation be of good quality. This motivated a study for assessing
this quality using a simple model sharing some characteristics with atmospheric models.
Not surprisingly the way the limited-memory BFGS (L-BFGS) diagonal preconditioner is
specified became a touchstone in this study. This led us to assess some of the diagonal
preconditioners proposed in the literature (Nocedal, 1980; Gilbert and Lemar´echal, 1989;
Liu and Nocedal, 1989; Zhu et al., 1999) and to propose some alternatives.

L-BFGS implements a limited-memory version of the Broyden-Fletcher-Goldfard-
Shanno update formula for the inverse Hessian (Broyden, 1969; Dennis and Mor´e, 1977;
Gilbert and Lemar´echal, 1989):

H+ = U (H, y, s) =
(

I − s⊗ y
〈y, s〉

)
H
(

I − y⊗ s
〈y, s〉

)
+ s⊗ s
〈y, s〉 (1)

whereH+ is the updated inverse Hessian,s = x+ − x is the difference between the new
iterate and the previous one, andy = g+− g is the corresponding gradient increment. Here
〈 , 〉 is the scalar product with respect to which the gradient is defined and the minimization
is to be performed;u⊗v is the linear operator that to a vectord associate the vector〈v, d〉u.
In the limited version (Nocedal, 1980; Gilbert and Lemar´echal, 1989; Liu and Nocedal,
1989) aimed at large-scale unconstrained minimization problems, one can afford to store
saym couples of vectors(s, y). The above update formula is used for the firstm iterations.
For the subsequent ones, the following algorithm is used:

Ho
k = Dk,

H i+1
k = U

(
H i

k, yk−m+i , sk−m+i
)
, for 0≤ i ≤ m− 1, (2)

Hk = Hm
k

The starting matrixDk is diagonal and several formulations have been proposed and tested
in Gilbert and Lemar´echal (1989) and by Liu and Nocedal (1989). Recently Zhu et al.
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(1999) proposed a variant, based on the quasi-Cauchy relation〈Dy, y〉 = 〈y, s〉 that the
experiments of Gilbert and Lemar´echal (1989) showed it was beneficial to enforce (by
rescaling the diagonal matrixD before updating it). The M1QN3 minimization code from
the INRIA MODULOPT library either specifiesDk as the identity matrix multiplied by the
Oren-Spedicato factor〈yk−1, sk−1〉/〈yk−1, yk−1〉, or updatesDk using a scaled version of a
“diagonalized” BFGS formula (Eq. (4.9) in Gilbert and Lemar´echal (1989)). In our study
the focus is put on the latter case, as it is usually more efficient.

During the minimization only the multiplication of the approximate inverse Hessian
matrix by a given vector is needed and is performed efficiently using a two-loop recursion
proposed by Nocedal (1980), and the corresponding matrices are never formed. It is
precisely this aspect that makes the limited-memory inverse BFGS algorithm suitable for
large-scale VDA in meteorology and oceanography, as the size of the corresponding matrices
may typically reach 105× 105.

The paper is organized as follows. In the next section, the simple VDA problems used
in this study are presented. Section 3 details the updating formulae for the diagonal pre-
conditionerDk, that are assessed. The following two sections present the results from
numerical experiments for a quadratic and a non-quadratic VDA problem respectively. A
brief discussion based on the present case study is then proposed.

2. The variational data assimilation case study

4D variational data assimilation (4D-Var) may be expressed as the minimization of a cost
functionJ (x) which measures the misfit of a model state vectorx to a set of observations
yo and an a priori (background) estimatexb of the true vectorxt . The cost function may be
written as

Jx(x) = (x− xb)
TB−1(x− xb)+ (H(x)− yo)

TO−1(H(x)− yo). (3)

The matricesB and O are the covariance matrices for random errors in(xt − xb) and
(H(xt ) − yo) respectively.H is an operator which, applied tox produces an estimate of
the observation vector. In 4D-Var, the observations are spread over a period of time from
t0 to t0+ T , while the control vector represents the state of the atmosphere or the ocean at
time t0. ThereforeH includes an integration of the model to the observation times and an
interpolation to the observation locations.

A useful degree of preconditioning is achieved by rewriting the problem in terms of the
transformed control vectorχ = L−1(x− xb), whereB = LL T . Since the dimension of the
control vectorχ is typically much larger than the dimension of the observation vectoryo,
this transformation gives a Hessian matrix which has many eigenvalues equal to one. The
transformed problem is then written as

Jχ (χ) = χTχ + δTO−1δ (4)

where

δ = (H(x)− yo). (5)
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For the atmosphere and the ocean at basin scales the spatial error correlations of the
background (a priori) estimate imply that the observations have little influence on the
solution(calledanalysis)at the smallest scales, provided the observations are well separated.
For this reason, and to reduce the computational burden of computing the analysis in
operational numerical weather prediction, the minimization problem is usefully modified
to its incremental version (Courtier et al., 1994):

J inc
χ (χ) = χTχ + δTO−1δ (6)

where

δ = (H(xb)+H′S(Sxb) · (x− xb)− yo). (7)

Here,χ = L−1S(x− xb) whereS is a simplification operator (e.g. a projection to a lower
spatial resolution) andH′S(Sxb) is the derivative of the simplified equivalent ofH evaluated
at the simplified background state,Sxb.

In this simple case study, the evolution model is the viscous Burgers’ equation over a
one-dimensional cyclic domain:

∂x

∂t
+ 1

2

∂x2

∂s
− ν ∂

2x

∂s2
= 0 (8)

wheres represents the distance in meters around the 45◦N constant-latitude circle. The
period of the domain is roughly 28.3× 106 m. The diffusion coefficient is set to 105 m2 s−1,
as in the experiments by Fisher and Courtier (1995).

The corresponding numerical model used in the calculation ofH(x) representsx as a
vector of discrete Fourier coefficients. The nonlinear term is calculated using the transform
method on a non-aliasing grid. A conditionally stable (Matsuno) predictor-corrector scheme
is used for the time integration.

For each element of the vector of observations,yo, the corresponding element ofH(x)
(resp. H′S(Sxb) · (x − xb)) is the result of a model (resp. linearized model) integration
followed by an inverse Fourier transform, followed by linear interpolation from the two
grid points closest to the observation.

The observations are specified at regular time intervals at fixed locations which are
chosen randomly, but with a probability distribution resembling the longitudinal density
of radiosonde stations between 30◦N and 60◦N. The observed values are calculated by
applyingH to xt and then adding a random error. The observation errors are normally
distributed, uncorrelated and all observation errors have the same variance. The covariance
matrix of observation error,O, is therefore proportional to the identity matrix.

The specification of the preconditioning operatorL defining the background error co-
variance matrixB is chosen to resemble that formerly used operationally at M´etéo-France
and ECMWF (Courtier et al., 1993).

The scalar product〈,〉 used for the definition of the gradient and to perform the mini-
mization is given by

〈x1, x2〉 = xT
1 Px2 (9)
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whereP is a diagonal matrix with diagonal elements equal to 2, except that corresponding
to the constant term of the Fourier decomposition, which is set to 1.

3. Update formulae

This section details the four diagonal-preconditioner update formulae studied: three of
them are taken from Gilbert and Lemar´echal (1989), and the remaining one is a generalized
version of the quasi-Cauchy update formula (Zhu et al., 1999).

Inverse BFGS formula

The inverse BFGS diagonal-preconditioner update formula is given by Eq. (4.6) in Gilbert
and Lemar´echal (1989). Thei-th updated diagonal component is:

D(i )
+ = D(i ) +

(
1

〈y, s〉 +
〈Dy, y〉
〈y, s〉2

)
〈s, ei 〉2− 2D(i )〈y, ei 〉〈s, ei 〉

〈y, s〉 (10)

It is obtained as thei-th diagonal component of the matrix resulting from updatingD
with the inverse BFGS formula. Here(ei )1≤i≤n is an orthonormal basis ofRn for the scalar
product〈,〉.

Direct BFGS formula

The direct BFGS diagonal-preconditioner update formula corresponds to Eq. (4.7) in Gilbert
and Lemar´echal (1989):

D(i )
+ =

(
1

D(i )
+ 〈y, ei 〉2
〈y, s〉 −

(〈s, ei 〉/D(i ))2

〈D−1s, s〉
)−1

(11)

It results from taking the inverse of the diagonal of the matrix obtained by updatingD−1

with the direct BFGS formula.

Inverse DFP formula

The inverse DFP diagonal-preconditioner update formula is given by Eq. (4.8) in Gilbert
and Lemar´echal (1989):

D(i )
+ = D(i ) + 〈s, ei 〉2

〈y, s〉 −
(D(i )〈y, ei 〉)2
〈Dy, y〉 (12)

It is the diagonal of the matrix obtained by updatingD with the inverse DFP formula.
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Quasi-Cauchy formula

The quasi-Cauchy diagonal-preconditioner update formula is an extension of Eq. (9) in
Zhu et al. (1999) to the case of a general metric defined by the scalar product〈,〉. It may
be written as

D+ =
{

D if 〈Dy, y〉 = 〈y, s〉
(I + νG)−2D if 〈Dy, y〉 6= 〈y, s〉 (13)

whereG is the diagonal matrix whosei-th diagonal component is〈y, ei 〉2, andν is the
largest solution ofF(ν) = 〈y, s〉 with

F(ν) = 〈(I + νG)−2Dy, y〉. (14)

This diagonal-preconditioner update formula is obtained by solving the minimization
problem

min〈w,w〉 such that〈(D1/2+Ä)2y, y〉 = 〈y, s〉 (15)

whereÄ is a diagonal matrix whose nonzero components are given by the corresponding
components of the vectorw.

Scaling

As shown in Gilbert and Lemar´echal (1989), a large number of iterations and func-
tion/gradient evaluations may be saved by scaling the diagonal matrixD before updating
it, that is multiplying it by〈y, s〉/〈Dy, y〉 so that the diagonal matrix to be updated satisfies
the quasi-Cauchy relation.

The impact of this scaling on the quality of the L-BFGS inverse Hessian approxima-
tion will be assessed for the first three diagonal-preconditioner update formulae. This is
irrelevant for the quasi-Cauchy diagonal-preconditioner update formula (13): scaling the
diagonal to be updated would result in using the identity matrix multiplied by the Oren-
Spedicato factor at each iteration.

4. The quadratic case

The quality of the L-BFGS inverse Hessian approximation is first studied for the incre-
mental formulation of 4D-Var (Eq. (6)), an unconstrained quadratic minimization problem.
The simplification operator consists in using a lower spectral truncation (number of terms
retained in the discrete Fourier series). To enable a large number of computations, the
dimension of the high-resolution fieldsx is taken to be 258. The low-resolution fields
Sx and the control variable have dimension 130. Other parameters are summarized in
Table 1. Some values need some comments:εm is the machine epsilon, approximatively
equal to 2.220× 10−16 since all the studies are performed using IEEE 64-bit floating-point
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Table 1. Parameters for the quadratic problem.

Parameter Value

Number of (s, y) couples 5

Minimum l∞ distance between successive iterates εm

Wolfe’s line-search parameters α = 10−4

β = 0.9

Max. number of iterations 120

Max. number of function/gradient evaluations 144

Expected decrease at first iteration J inc
χ (0)/2

Minimum expected final/initial gradient norm ratio
√
εm

arithmetic. The expected decrease at the first iteration is used to obtain an estimate of the
step-size at the first iteration, taken equal to 2 times this value divided by the initial-gradient
norm squared (defined by the scalar product〈,〉 mentioned in Section 2). The minimum
ratio of the final to the initial gradient norms is the convergence criterion used for the
minimization.

The quality of the L-BFGS inverse Hessian approximation is assessed by computing the
eigen-spectrum of

H−1
true− H−1

L-BFGS (16)

whereH−1
true is the true Hessian computed using a second-order adjoint method (Wang et al.,

1992; Le Dimet et al., 1997), andH−1
L-BFGS is the L-BFGS Hessian approximation built as

in Veersé (to appear).
In order to have a relative measure of this quality, the eigen-spectrum of

I − H−1
trueHL-BFGS (17)

is also computed. SinceH−1
true andHL-BFGS are symmetric to a high accuracy, the eigen-

spectrum ofI −HL-BFGSH−1
true is almost identical to the latter one, to which we thus restrict

our attention.
Both eigen-spectra are computed using an Implicit Restarted Arnoldi method (Lehoucq

et al., 1997).
Although we are interested primarily in the quality of the L-BFGS inverse Hessian

approximation, the efficiency of the minimization algorithm is also of concern and will be
measured by the number of iterations needed to achieve convergence and the corresponding
number of simulations (evaluations of the cost function and its gradient).

4.1. The full-memory case

Before studying the limited-memory versions, the convergence of the full-memory BFGS
was checked. This was done by using L-BFGS with a value of the storing indexm greater
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Figure 1. Eigen-spectra of operators for various iteration numbers of the minimization algorithm in the full-
memory case. (a) Hessian difference operatorH−1

true− H−1
L-BFGS. (b) Relative operatorI − H−1

trueHL-BFGS.

than the total number of iterations required (equal to 40). Figure 1 shows the eigen-spectra
of (16) and (17) for various iteration indices; the convergence is evidenced.

4.2. Choice of the (s, y) pair

A degree of freedom is given for the choice of the vectorssandy used to update the diagonal
preconditioner. The L-BFGS algorithm (Eq. (2)) shows that the diagonal preconditioner
should resembleHk−m−1 as much as possible. This suggests to use the pair that is about to be
dropped—hereafter called theoldest pair—(sk−m, yk−m) for updating the diagonal matrix
Dk in order to obtainDk+1. For the firstm iterations the initial diagonal matrix (usually the
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identity matrix scaled by the Oren-Spedicato factor) is to be used. This is consistent with
the fact that all the curvature information from the lastm iterations is completely retained
in the(s, y) couples. However one of us advocated that the diagonal preconditioner should
be updated with the newly computed couple of vectors(sk, yk)—hereafter calledthe newest
pair. This puts more weight onto the most recent curvature information, whose quality will
improve as the minimization proceeds in the non-quadratic case.

To study the impact of both choices on the quality of the inverse Hessian approximation,
the update formulae of Section 3 are implemented without scaling. The corresponding
eigen-spectra are shown in figure 2. It is clear that the use of the newest pair provides
an inverse Hessian approximation of far better quality than does that of the oldest pair.
Moreover the panel (d) suggests that the direct BFGS and quasi-Cauchy update formulae
are more accurate than the other two.

Table 2 shows the corresponding number of iterations and simulations (joint evaluations
of the function and its gradient) needed to achieve convergence. Except for the direct
BFGS update formula, using the newest pair increases the number of simulations, even if

Figure 2. Eigen-spectra of the Hessian difference operatorH−1
true− H−1

L-BFGS for various update formulae using
(a) the oldest and (b) newest pair respectively. (c) and (d) show the corresponding eigen-spectra of the relative
operatorI − H−1

trueHL-BFGS for the oldest-pair and newest-pair cases respectively.
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Table 2. Performance without scaling, using the oldest or newest pair for updating the diagonal preconditioner
(# iterations/# simulations).

Formula Oldest pair used Newest pair used

Direct BFGS 77/78 40/52

Inverse BFGS 69/70 42/84

Inverse DFP 68/69 42/84

Quasi-Cauchy 96/103 120/130

it reduces the number of iterations for inverse BFGS and inverse DFP. The quasi-Cauchy
update formula has the poorest performance on this quadratic problem. Using the newest
pair with direct BFGS is beneficial both for approximating the inverse Hessian and for the
minimization.

4.3. Impact of scaling

Gilbert and Lemar´echal (1989) show that scaling the diagonal matrix to force it to satisfy the
quasi-Cauchy relation may lead to a better performance of the minimization. The M1QN3
minimization code of the MODULOPT library from INRIA implements the direct BFGS
formula using the newest pair and scaling the diagonal before updating it. This leads to the
equivalent scaled formula (4.9) in Gilbert and Lemar´echal (1989).

The impact of such a scaling for our case-study problem is now assessed for the first
three diagonal-preconditioner update formulae of Section 3. This scaling is irrelevant for the
quasi-Cauchy update formula, as already mentioned. Both options of scaling the diagonal
matrix before or after updating it are studied. Figure 3 shows the eigenspectra of (16) and
(17) for both cases. A comparison with the panels (b) and (d) of figure 2 clearly shows, for
both options, a detrimental impact of the scaling onto the quality of the L-BFGS inverse
Hessian approximation.

The impact in terms of minimization performance may be assessed from Table 3. Scaling
leads to some reduction in the number of function and gradient evaluations needed to
converge. Scaling the diagonal preconditioner after updating it is more efficient than doing
it before, especially for the inverse BFGS formula. All three methods perform more or less
equivalently when the scaling is done after updating, with a slight advantage for the direct
BFGS diagonal-preconditioner update formula.

Table 3. Performance using the newest pair, when scaling the diagonal preconditioner before or after updating
it (# iterations/# simulations).

Formula Scaling before updating Scaling after updating

Direct BFGS 47/49 47/49

Inverse BFGS 55/60 51/53

Inverse DFP 52/53 50/52
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Figure 3. Eigen-spectra of the Hessian difference operatorH−1
true− H−1

L-BFGSwhen scaling the diagonal precon-
ditioner (a) before updating it and (b) after updating it. (c) and (d) show the eigen-spectra of the relative operator
I − H−1

trueHL-BFGScorresponding to (a) and (b) respectively.

4.4. A new approach

Let us summarize our findings up to now. To obtain a good approximation of the inverse
Hessian the newest pair should be used to update the diagonal preconditioner. But this
reduces the minimization performance, except for direct BFGS. It is recommended to scale
the diagonal preconditioner after updating, as this always leads to some improvements for
the minimization. However the quality of the L-BFGS inverse Hessian approximation is
then largely damaged.

It is natural therefore to consider a new approach where a scaled diagonal preconditioner
is used for the minimization but the original (unscaled) one is updated. Figure 4 shows
the corresponding eigenspectra of (16) and (17). As could be expected, an inverse Hessian
quality similar to that of panels (b) and (d) in figure 2 is recovered. The possible differences
between both figures may be explained by the different sequences of iterates generated.

Table 4 gives the corresponding impact on the minimization performance, in terms of iter-
ations and simulations. This approach gives a further improvement in terms of simulations
required for all three update formulae. All three perform nicely, with a slight advantage for
the direct BFGS one.
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Figure 4. Eigen-spectra of (a) the Hessian difference operatorH−1
true − H−1

L-BFGS and (b) the relative operator
I − H−1

trueHL-BFGS when a scaled diagonal preconditioner is used for the minimization but the unscaled one is
updated.

4.5. Impact of m

The focus is now put on how the quality of the L-BFGS inverse Hessian approximation and
the minimization performance are affected by a change in the numberm of (s, y) couples
used. This is studied using our best configuration, namely updating the unscaled diagonal
preconditioner with direct BFGS using the newest pair but using its scaled version for the
minimization. Figure 5 shows the corresponding eigenspectra. There is not much difference
on the quality of the L-BFGS inverse Hessian approximation for different values ofm.
However the approximation tends to improve with increasing values of the storing index.

The corresponding minimization performance are given in Table 5. The performance
increases with increasing values of the storing index and the usual optimum value between
3 and 20 is not found with this diagonal-preconditioner update strategy. This is related to
the corresponding increase in the quality of the L-BFGS inverse Hessian approximation.
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Table 4. Performance using the newest pair, when using a scaled diagonal preconditioner for the minimization
but updating the original unscaled one.

Formula Iterations/Simulations

Direct BFGS 40/43

Inverse BFGS 44/46

Inverse DFP 43/46

Figure 5. Eigen-spectra of (a) the Hessian difference operatorH−1
true − H−1

L−BFGS and (b) the relative operator

I − H−1
trueHL−BFGS for different values of the storing indexm. The diagonal-preconditioner update formula is

direct BFGS with the new approach.

4.6. Evolution during the minimization

In variational data assimilation, an approximation of the error covariances of the sought
initial condition of the model is provided by the inverse Hessian at the minimum (Veers´e,
1999, to appear). However due to the corresponding computational burden for realistic
VDA problems in meteorology and oceanography the minimization is usually stopped
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Table 5. Minimization performance for various storing indices. The diagonal preconditioner is updated using
the direct BFGS formula with the new approach.

m Iterations/Simulations

2 44/48

3 42/46

5 40/43

10 36/38

20 35/37

Figure 6. Eigen-spectra of (a) the Hessian difference operatorH−1
true − H−1

L-BFGS and (b) the relative operator
I − H−1

trueHL-BFGS for different values of the iteration index. The diagonal preconditioner is updated using direct
BFGS with the new approach.
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before reaching convergence, after a few tens of iterations have been performed. For this
reason, it is interesting to see how the quality of the L-BFGS inverse Hessian approx-
imation evolves with increasing iteration indices. Figure 6 shows the evolution of the
corresponding eigen-spectra, using our best-case diagonal-preconditioner update formula
with m = 5(s, y) couples. Clearly, the quality of the approximation improves as the
minimization proceeds. This is a natural evolution since the dimension of the subspace
explored during the minimization increases whereas the true Hessian is constant for the
present quadratic problem.

5. The non-quadratic problem

All the experiments of the previous section have been performed again using the stan-
dard formulation of 4D-Var (4), a non-quadratic minimization problem. The dimension
of the control variable is 258, identical to the model phase space dimension. Now the
Hessian depends on the point where it is evaluated. The quality of the various L-BFGS
inverse Hessian approximations was assessed with respect to the Hessians computed with
second-order adjoint techniques at the corresponding computed optimal points. The pa-
rameters used for the minimization are again those of Table 1, except the maximum
numbers of iterations and simulations allowed have been increased to 200 and 250 re-
spectively. The results do not differ qualitatively from those of the quadratic case and the
plots of the corresponding eigen-spectra (not shown) are similar to those of the previous
section.

A significant difference however is the failure of the first three diagonal-preconditioner
update methods when the newest pair is used but no scaling is applied. This occurs at
the second iteration during the model intergration used for the cost-function and gradient
computations. A likely explanation is the generation of an iterate during the minimization
that after a few time steps leads to a violation of the stability condition of the model, which
then explodes numerically.

The minimization performance may be assessed from Table 6. The standard (non-
quadratic) 4D-Var cost function (Eq. (4)) requires a few more iterations and simulations to
be minimized than its incremental (quadratic) approximation (Eq. (6)). The main conclu-
sion is the same as for the quadratic case: using the direct BFGS diagonal-preconditioner
update formula with the new scaling approach provides both the best performance for the
minimization and the best inverse Hessian approximation.

Table 6. Minimization performance for the non-quadratic cost function (# iterations/# simulations).

No scaling No scaling Scaling before Scaling after New approach
Formula oldest pair newest pair newest pair newest pair newest pair

Direct BFGS 78/79 Failed 52/56 47/49 43/45

Inverse BFGS 76/77 Failed 63/67 69/71 48/52

Inverse DFP 74/75 Failed 55/57 56/58 48/51

Quasi-Cauchy 98/1391 188/2482
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6. Discussion

A simple variational data assimilation problem was used as a case-study to assess the impact
of various strategies for scaling and updating the L-BFGS diagonal preconditioner, both
on the quality of the L-BFGS inverse Hessian approximation and on the minimization
performance. The former was evaluated from comparison with the Hessian provided by
second-order adjoint techniques, using eigen-decompositions. This approach is feasible
only with relatively small-size problems, due to the computational burden of computing
these eigen-decompositions.

The minimization performance was measured in terms of number of iterations and sim-
ulations required to achieve convergence. Both points of view lead to a few constatations:

– Using the newest(s, y) pair to update the diagonal preconditioner gives a better inverse
Hessian approximation and, except for quasi-Cauchy, requires less simulations. One
should be reminded however that the corresponding computations failed for the non-
quadratic problem in the absence of scaling.

– The quasi-Cauchy diagonal-preconditioner update formula was first implemented using
Newton-Raphson’s unidimensional root-finding algorithm, but there were some failures
related to the difficulty of specifying a good problem-independent first estimate of the
root. As in Zhu et al. (1999), it was finally implemented using bisection.
Quasi-Cauchy performs worse in this case study than the formulae proposed in Gilbert
and Lemar´echal (1989). This suggests that the latter was able to accumulate some useful
information on the inverse Hessian.

– As in Gilbert and Lemar´echal (1989) scaling the diagonal preconditioner so that it satis-
fies the quasi-Cauchy relation improves the performance of the minimization, especially
when this scaling is done after updating it. However the inverse Hessian approximation
is largely damaged by such a scaling.

This fact led us to propose a new approach, where a scaled version of the diagonal pre-
conditioner is used for the minimization but the original (unscaled) one is updated, using
the newest pair. This approach allows a good approximation of the inverse Hessian while
improving further the minimization performance. It has also some “natural” properties:
increasing the storage leads to better minimization performance and inverse Hessian ap-
proximation, and the latter improves steadily during the minimization process. These results
were obtained both for the quadratic and for the non-quadratic variational data assimilation
problems.

However the improvements of the L-BFGS inverse-Hessian quality and the reduction of
simulations needed to achieve convergence may well be specific to the problems studied.
The proposed approach was also assessed for a large number of unconstrained problems.
An improvement was obtained for the MODULOPT and MINPACK-2 problems, but the
tests with the CUTE library evidenced a lack of robustness of the method (Veers´e and
Auroux, 2000).

Our original concern was the quality of the L-BFGS inverse Hessian approximation.
Not surprisingly the diagonal-preconditioners that provide good-quality inverse Hessian
approximations are also those that lead to good minimization performances, when the
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proposed scaling approach is used. The methodology employed in the present study may
thus be worthwhile when designing future diagonal-preconditioner update formulae.
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