
The Lüroth problem

Arnaud Beauville

Abstract The Lüroth problem asks whether every unirational variety is rational.
After a historical survey, we describe the methods developed in the 70’s to get a
negative answer, and give some easy examples. Then we discuss a new method
introduced last year by C. Voisin.

1 Some history

1.1 Curves and surfaces

In 1876 appears a three pages note by J. Lüroth [L], where he proves that if a com-
plex algebraic curve C can be parametrized by rational functions, one can find an-
other parametrization which is generically one-to-one. In geometric language, if we
have a dominant rational map f : P1 99KC , then C is a rational curve.

By now this is a standard exercise : we can assume that C is smooth projective,
then f is a morphism, which induces an injective homomorphism f ∗ : H0(C,Ω 1

C)→
H0(P1,Ω 1

P1) = 0. Thus C has no nontrivial holomorphic 1-form, hence has genus
0, and this implies C ∼= P1 .

Actually Lüroth does not mention at all Riemann surfaces, but uses instead an
ingenious and somewhat sophisticated algebraic argument. I must say that I find
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UMR 7351 du CNRS
Parc Valrose
F-06108 Nice cedex 2, France e-mail: arnaud.beauville@unice.fr

1



2 Arnaud Beauville

somewhat surprising that he did not consider applying Riemann’s theory, which had
appeared 20 years before.

Anyhow, clearly Lüroth’s paper had an important impact. When Castelnuovo
and Enriques develop the theory of algebraic surfaces, in the last decade of the
19th century, one of the first questions they attack is whether the analogous state-
ment holds for surfaces. Suppose we have a smooth projective surface S (over
C ) and a dominant rational map f : P2 99K S . As in the curve case, this im-
plies H0(S,Ω 1

S ) = H0(S,KS) = 0 (note that f is well-defined outside a finite
subset). At first Castelnuovo hoped that this vanishing would be sufficient to
characterize rational surfaces, but Enriques suggested a counter-example, now
known as the Enriques surface. Then Castelnuovo found the right condition, namely
H0(S,Ω 1

S ) = H0(S,K2
S ) = 0; this is satisfied by our surface S , and Castelnuovo

proves that it implies that S is rational. After more than one century, even if the
proof has been somewhat simplified, this is still a highly nontrivial result.

1.2 Attempts in dimension 3

At this point it becomes very natural to ask what happens in higher dimension.
Let us first recall the basic definitions (see §3 for a more elaborate discussion): a
complex variety X of dimension n is unirational if there is a dominant rational
map Pn 99K X ; it is rational if there is a birational such map. The Lüroth problem
asks whether every unirational veriety is rational.

In 1912, Enriques proposed a counter-example in dimension 3 [E], namely a
smooth complete intersection of a quadric and a cubic in P5 – we will use the
notation V2,3 for such a complete intersection. Actually what Enriques does in this
two pages paper is to prove the unirationality of V2,3 , in a clever (and correct) way;
for the non-rationality he refers to a 1908 paper by Fano [F1].

In the course of his thorough study of what we now call Fano manifolds, Fano
made various attempts to prove that some of them are not rational [F2, F4]. Unfortu-
nately the birational geometry of threefolds is considerably more complicated than
that of surfaces; while the intuitive methods of the Italian geometers were sufficient
to handle surfaces, they could not treat adequately higher-dimensional manifolds.
None of Fano’s attempted proofs is acceptable by modern standards.

A detailed criticism of these attempts can be found in the book [R]. It is amusing
that after concluding that none of them can be considered as correct, Roth goes on
and proposes a new counter-example, which is not simply connected and therefore
not rational (the fundamental group is a birational invariant). Alas, a few years later
Serre (motivated in part by Roth’s claim) proved that a unirational variety is simply
connected [S].
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1.3 The modern era

Finally, in 1971-72, three different (indisputable) counter-examples appeared. We
will discuss at length these results in the rest of the paper; let us indicate briefly here
the authors, their examples and the methods they use to prove non-rationality :

Authors Example Method

Clemens-Griffiths V3 ⊂ P4 JV

Iskovskikh-Manin some V4 ⊂ P4 Bir(V )

Artin-Mumford specific Tors H3(V,Z)

More precisely :

• Clemens-Griffiths [C-G] proved the longstanding conjecture that a smooth cu-
bic threefold V3 ⊂ P4 is not rational – it had long been known that it is unirational.
They showed that the intermediate Jacobian of V3 is not a Jacobian (Clemens-
Griffiths criterion, see Theorem 1 below).

• Iskovskikh-Manin [I-M] proved that any smooth quartic threefold V4 ⊂ P4 is
not rational. Some unirational quartic threefolds had been constructed by B. Segre
[Sg2], so these provide counter-examples to the Lüroth problem. They showed that
the group of birational automorphisms of V4 is finite, while the corresponding group
for P3 is huge.

• Artin-Mumford [A-M] proved that a particular double covering X of P3 ,
branched along a quartic surface in P3 with 10 nodes, is unirational but not ra-
tional. They showed that the torsion subgroup of H3(X ,Z) is nontrivial, and is a
birational invariant.

These three papers have been extremely influential. Though they appeared around
the same time, they use very different ideas; in fact, as we will see, the methods tend
to apply to different types of varieties. They have been developed and extended, and
applied to a number of interesting examples. Each of them has its advantages and
its drawbacks; very roughly:

• The intermediate Jacobian method is quite efficient, but applies only in dimen-
sion 3;
• The computation of birational automorphisms leads to the important notion of

birational rigidity. However it is not easy to work out; so far it applies essentially
to Fano varieties of index 1 (see 2.3), which are not known to be unirational in
dimension > 3.
• Torsion in H3 gives an obstruction to a property weaker than rationality, called

stable rationality (§5). Unfortunately it applies only to very particular varieties, and
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not to the standard examples of unirational varieties, like hypersurfaces or complete
intersections. However we will discuss in §7 a new idea of C. Voisin which extends
considerably the range of that method.

They are still essentially the basic methods to prove non-rationality results. A
notable exception is the method of Kollár using reduction modulo p ; however it
applies only to rather specific examples, which are not known to be unirational. We
will describe briefly his results in (4.2).

A final remark : at the time they were discovered the three methods used the
difficult resolution of indeterminacies due to Hironaka. This is a good reason why
the Italian algebraic geometers could not succeed! It was later realized that the bira-
tional invariance of TorsH3(V,Z) can be proved without appealing to the resolution
of singularities, see (6.4) – but this still requires some highly nontrivial algebraic ap-
paratus.

2 The candidates

In this section we will introduce various classes of varieties which are natural can-
didates to be counter-examples to the Lüroth problem.

2.1 Rationality and unirationality

Let us first recall the basic definitions which appear in the Lüroth problem. We work
over the complex numbers. A variety is an integral scheme of finite type over C .

Definition 1. 1) A variety V is unirational if there exists a dominant rational map
Pn 99KV .

2) V is rational if there exists a birational map Pn ∼99K V .

In the definition of unirationality we can take n = dimV : indeed, if we have
a dominant rational map PN 99K V , its restriction to a general linear subspace of
dimension dim(V ) is still dominant.

We may rephrase these definitions in terms of the function field C(V ) of V :
V is unirational if C(V ) is contained in a purely transcendental extension of C ;
V is rational if C(V ) is a purely transcendental extension of C . Thus the Lüroth
problem asks whether every extension of C contained in C(t1, . . . , tn) is purely
transcendental.
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2.2 Rational connectedness

Though the notion of unirationality is quite natural, it is very difficult to handle. The
crucial problem is that so far there is no known method to prove non-unirationality,
like the ones we mentioned in (1.3) for non-rationality.

There is a weaker notion which behaves much better than unirationality, and
which covers all varieties we will be interested in :

Definition 2. A smooth projective variety V is rationally connected (RC for short)
if any two points of V can be joined by a rational curve.

It is enough to ask that two general points of V can be joined by a rational curve,
or even by a chain of rational curves. In particular, rational connectedness is a bira-
tional property.

In contrast to unirationality, rational connectedness has extremely good proper-
ties (see for instance [Ar] for proofs and references) :

a) It is an open and closed property; that is, given a smooth projective morphism
f : V → B with B connected, if some fiber of f is RC, all the fibers are RC.

b) Let f : V 99K B be a rational dominant map. If B and the general fibers of f
are RC, V is RC.

c) If V is RC, all contravariant tensor fields vanish; that is, H0(V,(Ω 1
V )
⊗n) = 0

for all n . It is conjectured that the converse holds; this is proved in dimension ≤ 3.

Neither a) nor b) are expected to hold when we replace rational connectedness
by unirationality or rationality. For a) , it is expected that the general quartic three-
fold is not unirational (see [R, V.9]), though some particular V4 are; so unirationality
should not be stable under deformation. Similarly it is expected that the general cu-
bic fourfold is not rational, though some of them are known to be rational.

Projecting a cubic threefold V3 from a line contained in V3 gives a rational dom-
inant map to P2 whose generic fiber is a rational curve, so b) does not hold for
rationality. The same property holds more generally for a general hypersurface of
degree d in P4 with a (d−2)-uple line; it is expected that it is not even unirational
for d ≥ 5 [R, IV.6].

2.3 Fano manifolds

A more restricted class than RC varieties is that of Fano manifolds – which were
extensively studied by Fano in dimension 3. A smooth projective variety V is Fano
if the anticanonical bundle K−1

V is ample. This implies that V is RC; but contrary
to the notions considered so far, this is not a property of the birational class of V .
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A Fano variety V is called prime if Pic(V ) = Z (the classical terminology is
“of the first species”). In that case we have KV = L−r , where L is the positive
generator of Pic(V ) . The integer r is called the index of V . Prime Fano varieties are
somehow minimal among RC varieties : they do not admit a Mori type contraction
or morphisms to smaller-dimensional varieties.

In the following table we list what is known about rationality issues for prime
Fano threefolds, using their classification by Iskovskikh [I1] : for each of them,
whether it is unirational or rational, and, if it is not rational, the method of proof and
the corresponding reference. The only Fano threefolds of index ≥ 3 are P3 and the
smooth quadric V2 ⊂ P4 , so we start with index 2, then 1:

variety unirational rational method reference

V6 ⊂ P(1,1,1,2,3) ? no Bir(V ) [Gr]

quartic double P3 yes no JV [V1]

V3 ⊂ P4 ” no JV [C-G]

V2,2 ⊂ P5 , X5 ⊂ P6 ” yes

sextic double P3 ? no Bir(V ) [I-M]

V4 ⊂ P4 some no Bir(V ) [I-M]

V2,3 ⊂ P5 yes no (generic) JV , Bir(V ) [B1, P]

V2,2,2 ⊂ P6 ” no JV [B1]

X10 ⊂ P7 ” no (generic) JV [B1]

X12,X16,X18,X22 ” yes

X14 ⊂ P9 ” no JV [C-G] + [F3]1

A few words about notation : as before Vd1,...,dp denotes a smooth complete in-
tersection of multidegree (d1, . . . ,dp) in Pp+3 , or, for the first row, in the weighted
projective space P(1,1,1,2,3) . A quartic (resp. sextic) double P3 is a double cover
of P3 branched along a smooth quartic (resp. sextic) surface. The notation Xd ⊂ Pm

means a smooth threefold of degree d in Pm . The mention “(generic)” means that
non-rationality is known only for those varieties belonging to a certain Zariski open
subset of the moduli space.

1 Fano proved in [F3] that the variety X14 is birational to a smooth cubic threefold.
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2.4 Linear quotients

An important source of unirational varieties is provided by the quotients V/G ,
where G is an algebraic group (possibly finite) acting linearly on the vector space
V . These varieties, and the question whether they are rational or not, appear natu-
rally in various situations. The case G finite is known as the Noether problem (over
C ); we will see below (6.4) that a counter-example has been given by Saltman [Sa],
using an elaboration of the Artin-Mumford method. The case where G is a con-
nected linear group appears in a number of moduli problems, but there is still no
example where the quotient V/G is known to be non-rational – in fact the general
expectation is that all these quotients should be rational, but this seems out of reach
at the moment.

A typical case is the moduli space Hd,n of hypersurfaces of degree d ≥ 3 in Pn ,
which is birational to H0(Pn,OPn(d))/GLn+1 – more precisely, it is the quotient of
the open subset of forms defining a smooth hypersurface. For n = 2 the rationality
is now known except for a few small values of d , see for instance [BBK] for an
up-to-date summary; for n≥ 3 there are only a few cases where Hd,n is known to
be rational. We refer to [D] for a survey of results and problems, and to [C-S] for a
more recent text.

3 The intermediate Jacobian

In this section we discuss our first non-rationality criterion, using the intermediate
Jacobian. Then we will give an easy example of a cubic threefold which satisfies
this criterion, hence gives a counter-example to the Lüroth problem.

3.1 The Clemens-Griffiths criterion

In order to define the intermediate Jacobian, let us first recall the Hodge-theoretic
construction of the Jacobian of a (smooth, projective) curve C . We start from the
Hodge decomposition

H1(C,Z)⊂ H1(C,C) = H1,0⊕H0,1

with H0,1 = H1,0 . The latter condition implies that the projection H1(C,R)→H0,1

is a (R -linear) isomorphism, hence that the image Γ of H1(C,Z) in H0,1 is a lattice
(that is, any basis of Γ is a basis of H0,1 over R ). The quotient JC := H0,1/Γ is a
complex torus. But we have more structure. For α,β ∈H0,1 , put H(α,β )= 2i

∫
C ᾱ∧β .



8 Arnaud Beauville

Then H is a positive hermitian form on H0,1 , and the restriction of Im(H) to
Γ ∼= H1(C,Z) coincides with the cup-product

H1(C,Z)⊗H1(C,Z)→ H2(C,Z) = Z ;

thus it induces on Γ a skew-symmetric, integer-valued form, which is moreover uni-
modular. In other words, H is a principal polarization on JC (see [B-L], or [B5] for
an elementary treatment). This is equivalent to the data of an ample divisor Θ ⊂ JC
(defined up to translation) satisfying dimH0(JC,OJC(Θ)) = 1. Thus (JC,Θ) is a
principally polarized abelian variety (p.p.a.v. for short), called the Jacobian of C .

One can mimic this definition for higher dimensional varieties, starting from the
odd degree cohomology; this defines the general notion of intermediate Jacobian. In
general it is only a complex torus, not an abelian variety. But the situation is much
nicer in the case of interest for us, namely rationally connected threefolds. For such
a threefold V we have H3,0(V ) = H0(V,KV ) = 0, hence the Hodge decomposition
for H3 becomes :

H3(V,Z)tf ⊂ H3(V,C) = H2,1⊕H1,2

with H1,2 = H2,1 (H3(V,Z)tf denotes the quotient of H3(V,Z) by its torsion sub-
group). As above H1,2/H3(V,Z)tf is a complex torus, with a principal polarization
defined by the hermitian form (α,β ) 7→ −2i

∫
V ᾱ ∧β : this is the intermediate Jaco-

bian JV of V .

We will use several times the following well-known and easy lemma, see for
instance [V2, Thm. 7.31] :

Lemma 1. Let X be a complex manifold, Y ⊂ X a closed submanifold of codi-
mension c, X̂ the variety obtained by blowing up X along Y . There are natural
isomorphisms

H p(X̂ ,Z) ∼−→ H p(X ,Z)⊕
c−1

∑
k=1

H p−2k(Y,Z) .

Theorem 1 (Clemens-Griffiths criterion). Let V be a smooth rational projective
threefold. The intermediate Jacobian JV is isomorphic (as p.p.a.v.) to the Jacobian
of a curve or to a product of Jacobians.

Sketch of proof : Let ϕ : P3 ∼99K V be a birational map. Hironaka’s resolution of
indeterminacies provides us with a commutative diagram

P
b

��

f

��
P3 ϕ // V

where b : P→ P3 is a composition of blowing up, either of points or of smooth
curves, and f is a birational morphism.
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We claim that JP is a product of Jacobians of curves. Indeed by Lemma 1, blow-
ing up a point in a threefold V does not change H3(V,Z) , hence does not change
JV either. If we blow up a smooth curve C ⊂V to get a variety V̂ , Lemma 1 gives
a canonical isomorphism H3(V̂ ,Z) ∼= H3(V,Z) ⊕ H1(C,Z) , compatible in an ap-
propriate sense with the Hodge decomposition and the cup-products; this implies
JV̂ ∼= JV × JC as p.p.a.v. Thus going back to our diagram, we see that JP is iso-
morphic to JC1× . . .× JCp , where C1, . . . ,Cp are the (smooth) curves which we
have blown up in the process.

How do we go back to JV ? Now we have a birational morphism f : P→V , so we
have homomorphisms f ∗ : H3(V,Z)→H3(P,Z) and f∗ : H3(P,Z)→H3(V,Z) with
f∗ f ∗ = 1, again compatible with the Hodge decomposition and the cup-products in
an appropriate sense. Thus H3(V,Z) , with its polarized Hodge structure, is a direct
factor of H3(P,Z) ; this implies that JV is a direct factor of JP ∼= JC1× . . .× JCp ,
in other words there exists a p.p.a.v. A such that JV ×A∼= JC1× . . .× JCp .

How can we conclude? In most categories the decomposition of an object as
a product is not unique (think of vector spaces!). However here a miracle occurs.
Let us say that a p.p.a.v. is indecomposable if it is not isomorphic to a product of
nontrivial p.p.a.v.

Lemma 2. 1) A p.p.a.v. (A,Θ) is indecomposable if and only if the divisor Θ is
irreducible.

2) Any p.p.a.v. admits a unique decomposition as a product of indecomposable
p.p.a.v.

Sketch of proof : We start by recalling some classical properties of abelian varieties,
for which we refer to [M]. Let D be a divisor on an abelian variety A ; for a ∈ A
we denote by Da the translated divisor D+ a . The map ϕD : a 7→ OA(Da−D) is
a homomorphism from A into its dual variety Â , which parametrizes topologically
trivial line bundles on A . If D defines a principal polarization, this map is an iso-
morphism.

Now suppose our p.p.a.v. (A,Θ) is a product (A1,Θ1)× . . .× (Ap,Θp) . Then
Θ =Θ (1)+ . . .+Θ (p) , with Θ (i) := A1× . . .Θi× . . .×Ap ; we recover the summand
Ai ⊂ A as ϕ

−1
Θ

(ϕ
Θ (i)(A)) . Conversely, let (A,Θ) be a p.p.a.v., and let Θ (1), . . . ,Θ (p)

be the irreducible components of Θ (each of them occurs with multiplicity one,
since otherwise one would have h0(A;OA(Θ)) > 1). Putting Ai := ϕ

−1
Θ

(ϕ
Θ (i)(A))

and Θi :=Θ
(i)
|Ai

, it is not difficult to check that (A,Θ) is the product of the (Ai,Θi)

– see [C-G], Lemma 3.20 for the details. ut

Once we have this, we conclude as follows. The Theta divisor of a Jacobian JC is
the image of the Abel-Jacobi map C(g−1)→ JC , and therefore is irreducible. From
the isomorphism JV ×A∼= JC1× . . .×JCp and the Lemma we conclude that JV is
isomorphic to JCi1 × . . .× JCir for some subset {i1, . . . , ir} of [1, p] . ut
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Remark .− One might think that products of Jacobians are more general than Jaco-
bians, but it goes the other way around: in the moduli space Ag of g -dimensional
p.p.a.v., the boundary J̄grJg of the Jacobian locus is precisely the locus of prod-
ucts of lower-dimensional Jacobians.

3.2 The Schottky problem

Thus to show that a threefold V is not rational, it suffices to prove that its inter-
mediate Jacobian is not the Jacobian of a curve, or a product of Jacobians. Here
we come across the classical Schottky problem : the characterization of Jacobians
among all p.p.a.v. (the usual formulation of the Schottky problem asks for equations
of the Jacobian locus inside the moduli space of p.p.a.v.; here we are more inter-
ested in special geometric properties of Jacobians). One frequently used approach is
through the singularities of the Theta divisor : the dimension of Sing(Θ) is ≥ g−4
for a Jacobian (JC,Θ) of dimension g , and g−2 for a product. However control-
ling Sing(Θ) for an intermediate Jacobian is quite difficult, and requires a lot of
information on the geometry of V . Let us just give a sample :

Theorem 2. Let V3 ⊂ P4 be a smooth cubic threefold. The divisor Θ ⊂ JV3 has
a unique singular point p, which is a triple point. The tangent cone PTp(Θ) ⊂
PTp(JV3)∼= P4 is isomorphic to V3 .

This elegant result, apparently due to Mumford (see [B2] for a proof), implies both
the non-rationality of V3 (because dimSing(Θ) = 0 and dimJV3 = 5) and the
Torelli theorem : the cubic V3 can be recovered from its (polarized) intermediate
Jacobian.

There are actually few cases where we can control so well the singular locus of
the Theta divisor. One of these is the quartic double solid, for which Sing(Θ) has a
component of codimension 5 in JV [V1]. Another case is that of conic bundles, that
is, threefolds V with a flat morphism p : V → P2 , such that for each closed point
s ∈ P2 the fiber p−1(s) is isomorphic to a plane conic (possibly singular). In that
case JV is a Prym variety, associated to a natural double covering of the discrim-
inant curve ∆ ⊂ P2 (the locus of s ∈ P2 such that p−1(s) is singular). Thanks to
Mumford we have some control on the singularities of the Theta divisor of a Prym
variety, enough to show that JV is not a Jacobian (or a product of Jacobians) if
deg(∆)≥ 6 [B1, thm. 4.9].

Unfortunately, apart from the cubic, the only prime Fano threefold to which this
result applies is the V2,2,2 in P6 . However, the Clemens-Griffiths criterion of non-
rationality is an open condition. In fact, we have a stronger result, which follows
from the properties of the Satake compactification of Ag [B1, lemme 5.6.1] :
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Lemma 3. Let π : V → B be a flat family of projective threefolds over a smooth
curve B. Let o ∈ B; assume that :
• The fiber Vb is smooth for b 6= o ;
• Vo has only ordinary double points;
• For a desingularization Ṽo of Vo , JṼo is not a Jacobian or a product of Jaco-

bians.
Then for b outside a finite subset of B, Vb is not rational.

From this we deduce the generic non-rationality statements of (2.3) [B1, Thm. 5.6] :
in each case one finds a degeneration as in the Lemma, such that Ṽo is a conic bundle
with a discriminant curve of degree ≥ 6, hence the Lemma applies.

3.3 An easy counter-example

The results of the previous section require rather involved methods. We will now
discuss a much more elementary approach, which unfortunately applies only to spe-
cific varieties.

Theorem 3. The cubic threefold V ⊂P4 defined by ∑
i∈Z/5

X2
i Xi+1 = 0 is not rational.

Proof : Let us first prove that JV is not a Jacobian. Let ζ be a primitive 11-th root
of unity. The key point is that V admits the automorphisms

δ : (X0,X1,X2,X3,X4) 7→ (X0,ζ X1,ζ
−1X2,ζ

3X3,ζ
6X4) ,

σ : (X0,X1,X2,X3,X4) 7→ (X1,X2,X3,X4,X0) ,
which satisfy δ 11 = σ5 = 1 and σδσ−1 = δ−2 .

They induce automorphisms δ ∗,σ∗ of JV . Suppose that JV is isomorphic (as
p.p.a.v.) to the Jacobian JC of a curve C . The Torelli theorem for curves gives an
exact sequence

1→ Aut(C)→ Aut(JC)→ Z/2 ;

since δ ∗ and σ∗ have odd order, they are induced by automorphisms δC,σC of C ,
satisfying σCδCσ

−1
C = δ

−2
C .

Now we apply the Lefschetz fixed point formula. The automorphism δ of
V fixes the 5 points corresponding to the basis vectors of C5 ; it acts trivially
on H2i(V,Q) for i = 0, . . . ,3. Therefore we find Tr δ ∗|H3(V,Q)

= −5 + 4 = −1.

Similarly σ fixes the 4 points (1,α,α2,α3,α4) of V with α5 = 1, α 6= 1, so
Tr σ∗|H3(V,Q)

=−4+4 = 0.
Applying now the Lefschetz formula to C , we find that σC has two fixed points

on C and δC three. But since σC normalizes the subgroup generated by δC , it
preserves the 3-points set Fix(δC) ; since it is of order 5, it must fix each of these 3
points, which gives a contradiction.
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Finally suppose JV is isomorphic to a product A1× . . .×Ap of p.p.a.v. By the
unicity lemma (Lemma 2), the automorphism δ ∗ permutes the factors Ai . Since
δ has order 11 and p ≤ 5, this permutation must be trivial, so δ ∗ induces an au-
tomorphism of Ai for each i , hence of H1(Ai,Q) ; but the group Z/11 has only
one nontrivial irreducible representation defined over Q , given by the cyclotomic
field Q(ζ ) , with [Q(ζ ) : Q] = 10. Since dim(Ai) < 5 we see that the action of
δ ∗ on each Ai , and therefore on JV , is trivial. But this contradicts the relation
Tr δ ∗|H3(V,Q)

=−1. ut

Remarks .− 1) The cubic V is the Klein cubic threefold; it is birational to the moduli
space of abelian surfaces with a polarization of type (1,11) [G-P]. In particular it
admits an action of the group PSL2(F11) of order 660, which is in fact its automor-
phism group [A]. From this one could immediately conclude by using the Hurwitz
bound #Aut(C)≤ 84(g(C)−1) (see [B4]).

2) This method applies to other threefolds for which the non-rationality was not
previously known, in particular the S7 -symmetric V2,3 given by ∑Xi = ∑X2

i =

∑X3
i = 0 in P6 [B4] or the S6 -symmetric V4 with 30 nodes given by ∑Xi =

∑X4
i = 0 in P5 [B6].

4 Two other methods

In this section we will briefly present two other ways to get non-rationality results
for certain Fano varieties. Let us stress that in dimension ≥ 4 these varieties are not
known to be unirational, so these methods do not give us new counter-examples to
the Lüroth problem.

4.1 Birational rigidity

As mentioned in the introduction, Iskovskikh and Manin proved that a smooth quar-
tic threefold V4 ⊂ P4 is not rational by proving that any birational automorphism of
V4 is actually biregular. But they proved much more, namely that V4 is birationally
superrigid in the following sense :

Definition 3. Let V be a prime Fano variety (2.3). We say that V is birationally
rigid if :

a) There is no rational dominant map V 99K S with 0 < dim(S) < dim(V ) and
with general fibers of Kodaira dimension −∞ ;

b) If V is birational to another prime Fano variety W , then V is isomorphic to
W .
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We say that V is birationally superrigid if any birational map V ∼99K W as in b) is
an isomorphism.

(The variety W in b) is allowed to have certain mild singularities, the so-called
Q -factorial terminal singularities.)

After the pioneering work [I-M], birational (super)rigidity has been proved for a
number of Fano varieties of index 1. Here is a sample; we refer to the surveys [P]
and [Ch] for ideas of proofs and for many more examples.

• Any smooth hypersurface of degree n in Pn is birationally superrigid [dF].
• A general V2,3 in P5 is birationally rigid. It is not birationally superrigid, since

it contains a curve of lines, and each line defines by projection a 2-to-1 map to P3 ,
hence a birational involution of V2,3 .
• A general Vd1,...,dc in Pn of index 1 (that is, ∑di = n ) with n > 3c is bira-

tionally superrigid.
• A double cover of Pn branched along a smooth hypersurface of degree 2n is

birationally superrigid.

4.2 Reduction to characteristic p

Theorem 4. [K] For d ≥ 2dn+3
3
e , a very general hypersurface Vd ⊂ Pn+1 is not

ruled, and in particular not rational.

A variety is ruled if it is birational to W ×P1 for some variety W . “Very general”
means that the corresponding point in the space parametrizing our hypersurfaces
lies outside a countable union of strict closed subvarieties.

The bound d ≥ 2dn+3
3
e has been lowered to d ≥ 2dn+2

3
e by Totaro [T]; this

implies in particular that a very general quartic fourfold is not rational. More im-
portant, by combining Kollár’s method with a new idea of Voisin (see §7), Totaro
shows that a very general Vd ⊂ Pn+1 with d as above is not stably rational (§5).

Let us give a very rough idea of Kollár’s proof, in the case d is even. It starts
from the well-known fact that the hypersurface Vd specializes to a double covering
Y of a hypersurface of degree d/2. This can be still done in characteristic 2, at the
price of getting some singularities on Y , which must be resolved. The reward is that
the resolution Y ′ of Y has a very unstable tangent bundle; more precisely, Ω

n−1
Y ′

(∼= TY ′⊗KY ′) contains a positive line bundle, and this prevents Y ′ to be ruled. Then
a general result of Matsusaka implies that a very general Vd cannot be ruled.
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5 Stable rationality

There is an intermediate notion between rationality and unirationality which turns
out to be important :

Definition 4. A variety V is stably rational if V ×Pn is rational for some n≥ 0.

In terms of field theory, this means that C(V )(t1, . . . , tn) is a purely transcendantal
extension of C .

Clearly, rational ⇒ stably rational ⇒ unirational. We will see that these
implications are strict. For the first one, we have :

Theorem 5. [BCSS] Let P(x, t) = x3 + p(t)x+ q(t) be an irreducible polynomial
in C[x, t] , whose discriminant δ (t) := 4p(t)3 +27q(t)2 has degree ≥ 5 . The affine
hypersurface V ⊂ C4 defined by y2 − δ (t)z2 = P(x, t) is stably rational but not
rational.

This answered a question asked by Zariski in 1949 [Sg1].
The non-rationality of V is proved using the intermediate Jacobian, which turns

out to be the Prym variety associated to an admissible double covering of nodal
curves. The stable rationality, more precisely the fact that V ×P3 is rational, was
proved in [BCSS] using some particular torsors under certain algebraic tori. A
slightly different approach due to Shepherd-Barron shows that actually V ×P2 is
rational [SB]; we do not know whether V ×P1 is rational.

To find unirational varieties which are not stably rational, we cannot use the
Clemens-Griffiths criterion since it applies only in dimension 3. The group of bira-
tional automorphisms is very complicated for a variety of the form V ×Pn ; so the
only available method is the torsion of H3(V,Z) and its subsequent refinements,
which we will examine in the next sections.

Remark .− There are other notions lying between unirationality and rationality. Let
us say that a variety V is
• retract rational if there exists a rational dominant map PN 99KV which admits

a rational section;
• factor-rational if there exists another variety V ′ such that V ×V ′ is rational.
We have the implications :

rational ⇒ stably rational ⇒ factor-rational ⇒ retract rational ⇒ unirational.
Unfortunately at the moment we have no examples (even conjectural) of varieties

which are retract rational but not stably rational. For this reason we will focus on the
stable rationality, which seems at this time the most useful of these notions. Indeed
we will see now that there are some classes of linear quotients V/G (see 2.4) for
which we can prove stable rationality.
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Let G be a reductive group acting on a variety V . We say that the action is almost
free if there is a nonempty Zariski open subset U of V such that the stabilizer of
each point of U is trivial.

Proposition 1. Suppose that there exists an almost free linear representation V of
G such that the quotient V/G is rational. Then for every almost free representation
W of G, the quotient W/G is stably rational.

The proof goes as follows [D] : let V o be a Zariski open subset of V where
G acts freely. Consider the diagonal action of G on V o×W ; standard arguments
(the “no-name lemma”) show that the projection (V o×W )/G→ V o/G defines a
vector bundle over V o/G . Thus (V ×W )/G is birational to (V/G)×W (which is a
rational variety), and symmetrically to V × (W/G) , so W/G is stably rational. ut

For many groups it is easy to find an almost free representation with rational
quotient : this is the case for instance for a subgroup G of GLn such that the quotient
GLn/G is rational (use the linear action of GLn on Mn(C) by multiplication). This
applies to GLn , SLn , On (GLn/On is the space of non-degenerate quadratic forms),
SOn , Spn etc.

This gives many examples of stably rational varieties. For instance, the mod-
uli space Hd,n of hypersurfaces of degree d in Pn (2.4) is stably rational when
d ≡ 1 mod. (n+ 1) : the standard representation ρ of GLn+1 on H0(Pn,OPn(d))
is not almost free, but the representation ρ⊗detk , with k = 1−d

n+1 , is almost free and
gives the same quotient.

6 The torsion of H3(V,Z) and the Brauer group

6.1 Birational invariance

Artin and Mumford used the following property of stably rational varieties :

Proposition 2. Let V be a stably rational projective manifold. Then H3(V,Z) is
torsion free.

Proof : The Künneth formula gives an isomorphism

H3(V ×Pm,Z)∼= H3(V,Z) ⊕ H1(V,Z) ;

since H1(V,Z) is torsion free the torsion subgroups of H3(V,Z) and H3(V×Pm,Z)
are isomorphic, hence replacing V by V ×Pm we may assume that V is rational.
Let ϕ : Pn ∼99K V be a birational map. As in the proof of the Clemens-Griffiths
criterion, we have Hironaka’s “little roof”
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P
b

~~

f

��
Pn ϕ // V

where b : P→ Pn is a composition of blowing up of smooth subvarieties, and f is
a birational morphism.

By Lemma 1, we have H3(P,Z)∼= H1(Y1,Z)⊕ . . .⊕H1(Yp,Z) , where Y1, . . . ,Yp

are the subvarieties successively blown up by b ; therefore H3(P,Z) is torsion free.
As in the proof of Theorem 1, H3(V,Z) is a direct summand of H3(P,Z) , hence is
also torsion free. ut

We will indicate below (6.4) another proof which does not use Hironaka’s diffi-
cult theorem.

6.2 The Brauer group

The torsion of H3(V,Z) is strongly related to the Brauer group of V . There is a
huge literature on the Brauer group in algebraic geometry, starting with the three
“exposés” by Grothendieck in [G]. We recall here the cohomological definition(s)
of this group; we refer to [G] for the relation with Azumaya algebras.

Proposition 3. Let V be a smooth variety. The following definitions are equivalent,
and define the Brauer group of V :

(i) Br(V ) = Coker c1 : Pic(V )⊗Q/Z→ H2(V,Q/Z);
(ii) Br(V ) = H2

ét(V,Gm) (étale cohomology).

Proof : Let n∈N . The exact sequence of étale sheaves 1→Z/n→Gm
×n−→Gm→ 1

gives a cohomology exact sequence

0→ Pic(V )⊗Z/n
c1−→ H2(V,Z/n)−→ Br(V )

×n−→ Br(V ) .

(Note that the étale cohomology H∗ét(V,Z/n) is canonically isomorphic to the clas-
sical cohomology).

Taking the direct limit with respect to n gives an exact sequence

0→ Pic(V )⊗Q/Z c1−→ H2(V,Q/Z)−→ TorsBr(V )→ 0 ; (1)

it is not difficult to prove that Br(V ) is a torsion group [G, II, Prop. 1.4], hence the
equivalence of the definitions (i) and (ii). ut
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Remark .− If V is compact, the same argument shows that Br(V ) is also isomor-
phic to the torsion subgroup of H2(V,O∗h ) , where Oh is the sheaf of holomorphic
functions on V (for the classical topology).

Proposition 4. There is a surjective homomorphism Br(V )→ TorsH3(V,Z) , which
is bijective if c1 : Pic(V )→ H2(V,Z) is surjective.

The latter condition is satisfied in particular if V is projective and H2(V,OV )= 0.

Proof : The exact sequence 0→ Z→ Q→ Q/Z→ 0 gives a cohomology exact
sequence

0→ H2(V,Z)⊗Q/Z−→ H2(V,Q/Z)−→ TorsH3(V,Z)→ 0 .

Together with (1) we get a commutative diagram

0−→ Pic(V )⊗Q/Z //

c1

��

H2(V,Q/Z) // Br(V )−→ 0

0−→ H2(V,Z)⊗Q/Z // H2(V,Q/Z) // TorsH3(V,Z)−→ 0

which implies the Proposition. ut

We will now describe a geometric way to construct nontrivial elements of the
Brauer group.

Definition 5. Let V be a complex variety. A Pm -bundle over V is a smooth map
p : P→V whose geometric fibers are isomorphic to Pm .

An obvious example is the projective bundle PV (E) associated to a vector bundle
E of rank m+ 1 on V ; we will actually be interested in those Pm -bundles which
are not projective.

It is not difficult to see that a Pm -bundle is locally trivial for the étale topology.
This implies that isomorphism classes of Pn−1 -bundles over V are parametrized by
the étale cohomology set H1(V,PGLn) , where for an algebraic group G we denote
by G the sheaf of local maps to G . The exact sequence of sheaves of groups

1→Gm→ GLn→ PGLn→ 1

gives rise to a sequence of pointed sets

H1(V,GLn)
π−→ H1(V,PGLn)

∂−→ H2(V,Gm)

which is exact in the sense that ∂−1(1) = Im π . Thus ∂ associates to each Pn−1 -
bundle p : P→ V a class in H2(V,Gm) , which is trivial if and only if p is a pro-
jective bundle. Moreover, by comparing with the exact sequence
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0→ Z/n→ SLn→ PGLn→ 1 we get a commutative diagram

H1(V,SLn) //

��

H1(V,PGLn) // H2(V,Z/n)

��
H1(V,GLn) // H1(V,PGLn)

∂ // H2(V,Gm)

which shows that the image of ∂ is contained in the n -torsion subgroup of Br(V ) .

6.3 The Artin-Mumford example

The Artin-Mumford counter-example is a double cover of P3 branched along a
quartic symmetroid, that is, a quartic surface defined by the vanishing of a symmetric
determinant.

We start with a web Π of quadrics in P3 ; its elements are defined by quadratic
forms λ0q0 + . . .+λ3q3 . We assume that :

(i) Π is base point free;
(ii) If a line in P3 is singular for a quadric of Π , it is not contained in another

quadric of Π .
Let ∆ ⊂Π be the discriminant locus, corresponding to quadrics of rank ≤ 3. It

is a quartic surface (defined by det(∑λiqi) = 0); under our hypotheses, its has 10
ordinary double points, corresponding to quadrics of rank 2, and no other singularity
(see for instance [Co]). Let π : V ′→ Π be the double covering branched along ∆ .
Again V ′ has 10 ordinary double points; blowing up these points we obtain the
Artin-Mumford threefold V .

Observe that a quadric q ∈Π has two systems of generatrices (= lines contained
in q ) if q ∈ Π r∆ , and one if q ∈ ∆ rSing(∆) . Thus the smooth part V o of V
parametrizes pairs (q,λ ) , where q ∈Π and λ is a family of generatrices of q .

Theorem 6. The threefold V is unirational but not stably rational.

Proof : Let G be the Grassmannian of lines in P3 . A general line is contained in
a unique quadric of Π , and in a unique system of generatrices of this quadric; this
defines a dominant rational map γ : G 99KV ′ , thus V is unirational. We will deduce
from Proposition 2 that V is not stably rational, by proving that H3(V,Z) contains
an element of order 2. This is done by a direct calculation in [A-M] and, with a
different method, in [B3]; here we will use a more elaborate approach based on the
Brauer group.

Consider the variety P ⊂ G×Π consisting of pairs (`,q) with ` ⊂ q . The pro-
jection P→Π factors through a morphism p′ : P→V ′ . Put V o :=V ′rSing(V ′) ,
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and Po := p′−1(V o) . The restriction p : Po→ V o is a P1 -bundle: a point of V o is
a pair (q,σ) , where q is a quadric in Π and σ a system of generatrices of q ; the
fiber p−1(q,σ) is the smooth rational curve parametrizing the lines of σ .

Proposition 5. The P1 -bundle p : Po→V o does not admit a rational section.

Proof : Suppose it does. For a general point q of Π , the section maps the two points
of π−1(q) to two generatrices of the quadric q , one in each system. These two gen-
eratrices intersect in one point s(q) of q ; the map q 7→ s(q) is a rational section of
the universal family of quadrics Q→Π , defined by Q := {(q,x)∈Π×P3 | x∈ q} .
This contradicts the following lemma:

Lemma 4. Let Π ⊂ P(H0(Pn,OPn(d)) be a base point free linear system of hy-
persurfaces, of degree d ≥ 2 . Consider the universal family p : H → Π , with
H := {(h,x) ∈Π ×Pn | x ∈ h} . Then p has no rational section.

Proof : Since Π is base point free, the second projection q : H →Pn is a projective
bundle, hence H is smooth. If p has a rational section, the closure Z ⊂H of
its image gives a cohomology class [Z] ∈ H2n−2(H ,Z) such that p∗([Z]) = 1 in
H0(Π ,Z) . Let us show that this is impossible.

We have dim(Π)≥ n , hence 2n−2 < n−1+dim(Π) = dim(H ) . By the Lef-
schetz hyperplane theorem, the restriction map H2n−2(Π ×Pn,Z)→H2n−2(H ,Z)
is an isomorphism. Thus H2n−2(H ,Z) is spanned by the classes p∗hi

Π
· q∗hn−1−i

P
for 0 ≤ i ≤ n− 1, where hΠ and hP are the hyperplane classes. All these classes
go to 0 under p∗ except q∗hn−1

P , whose degree on each fiber is d . Thus the image
of p∗ : H2n−2(H ,Z)→ H0(Π ,Z) = Z is dZ . This proves the lemma, hence the
Proposition. ut

Thus the P1 -bundle p over V o is not a projective bundle, hence gives a nonzero
2-torsion class in Br(V o) . In the commutative diagram

Pic(V )
c1 //

��

H2(V,Z)

r
��

Pic(V o)
c1 // H2(V o,Z)

the top horizontal arrow is surjective because H2(V,OV ) = 0. Since Q :=V rV o is
a disjoint union of quadrics, the Gysin exact sequence

H2(V,Z) r−→ H2(V o,Z)→ H1(Q,Z) = 0

shows that r is surjective. Therefore the map c1 : Pic(V o)→H2(V o,Z) is surjective,
and by Proposition 4 we get a nonzero 2-torsion class in H3(V o,Z) . Using again
the Gysin exact sequence
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0→ H3(V,Z)→ H3(V o,Z)→ H2(Q,Z)

we find that TorsH3(V,Z) is isomorphic to TorsH3(V o,Z) , hence nonzero. ut

6.4 The unramified Brauer group

An advantage of the group Br(V ) is that it can be identified with the unramified
Brauer group Brnr(C(V )) , which is defined purely in terms of the field C(V ) ; this
gives directly its birational invariance, without using Hironaka’s theorem. Let us
explain briefly how this works.

Proposition 6. Let V be a smooth projective variety, and D be the set of integral
divisors on V . There is an exact sequence

0→ Br(V )→ lim−→
U

Br(U)→
⊕
D∈D

H1
ét(C(D),Q/Z)

where the direct limit is taken over the set of Zariski open subsets U ⊂V .

Proof : Let D be an effective reduced divisor on V , and let U = V rD . Since
Sing(D) has codimension ≥ 2 in V , the restriction map

H2(V,Q/Z)→ H2(V rSing(D),Q/Z)

is an isomorphism. Thus, putting Dsm := Dr Sing(D) , we can write part of the
Gysin exact sequence as

H0(Dsm,Q/Z)→ H2(V,Q/Z)→ H2(U,Q/Z)→ H1(Dsm,Q/Z) .

Comparing with the analogous exact sequence for Picard groups gives a commuta-
tive diagram

H0(Dsm,Z)⊗Q/Z //

o
��

Pic(V )⊗Q/Z //

��

Pic(U)⊗Q/Z //

��

0

H0(Dsm,Q/Z) // H2(V,Q/Z) // H2(U,Q/Z) // H1(Dsm,Q/Z)

from which we get an exact sequence 0→ Br(V )→ Br(U)→ H1(Dsm,Q/Z) .
Let D1, . . . ,Dk be the irreducible components of Dsm ; we have H1(Dsm,Q/Z) =

⊕H1(Dsm∩Di,Q/Z) , and the group H1(Dsm∩Di,Q/Z) embeds into the étale co-
homology group H1

ét(C(Di),Q/Z) . Thus we can write our exact sequence

0→ Br(V )→ Br(U)→⊕
i

H1
ét(C(Di),Q/Z) .
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Passing to the limit over D gives the Proposition. ut

Let K be a field. For each discrete valuation ring (DVR) R with quotient field K
and residue field κR , there is a natural exact sequence [G, III, Prop. 2.1] :

0→ Br(R)→ Br(K)
ρR−→ H1

ét(κR,Q/Z) .

The group Brnr(K) is defined as the intersection of the subgroups Ker ρR , where R
runs through all DVR with quotient field K .

Now consider the exact sequence of Proposition 6. The group lim−→
U

Br(U) can be

identified with the Brauer group Br(C(V )) , and the homomorphism Br(C(V ))→
H1

ét(C(D),Q/Z) coincides with the homomorphism ρOV,D
associated to the DVR

OV,D . Thus we have Brnr(C(V ))⊂ Br(V ) . But if R is any DVR with quotient field
C(V ) , the inclusion SpecC(V ) ↪→ V factors as SpecC(V ) ↪→ SpecR→ V by the
valuative criterion of properness, hence Br(V ) is contained in the image of Br(R)
in Br(K) , that is, in Ker ρR . Thus we have Br(V ) = Brnr(C(V )) as claimed.

The big advantage of working with Brnr(K) is that to compute it, we do not need
to find a smooth projective model of the function field K . This was used first by
Saltman to give his celebrated counter-example to the Noether problem [Sa] : there
exists a finite group G and a linear representation V of G such that the variety V/G
is not rational. In such a situation Bogomolov has given a very explicit formula for
Brnr(C(V/G)) in terms of the Schur multiplier of G [Bo].

The idea of using the unramified Brauer group to prove non-rationality results
has been extended to higher unramified cohomology groups, starting with the paper
[C-O]. We refer to [C] for a survey about these more general invariants.

7 The Chow group of 0-cycles

In this section we discuss another property of (stably) rational varieties, namely the
fact that their Chow group CH0 parametrizing 0-cycles is universally trivial. While
the idea goes back to the end of the 70’s (see [Bl]), its use for rationality questions
is recent [V4].

This property implies that H3(X ,Z) is torsion free, but not conversely. Moreover
it behaves well under deformation, even if we accept mild singularities (Proposition
9 below).

In this section we will need to work over non-algebraically closed fields (of char-
acteristic 0). We use the language of schemes.

Let X be a smooth algebraic variety over a field k , of dimension n . Recall that
the Chow group CH p(X) is the group of codimension p cycles on X modulo lin-
ear equivalence. More precisely, let us denote by Σ p(X) the set of codimension p
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closed integral subvarieties of X . Then CH p(X) is defined by the exact sequence⊕
W∈Σ p−1(X)

k(W )∗ −→ Z(Σ p(X)) −→CH p(X)→ 0 , (2)

where the first arrow associates to f ∈ k(W )∗ its divisor [Fu, 1.3].
We will be particularly interested in the group CH0(X) :=CHn(X) of 0-cycles.

Associating to a 0-cycle ∑ni[pi] (ni ∈ Z, pi ∈ X ) the number ∑ni[k(pi) : k] defines
a homomorphism deg : CH0(X)→ Z . We denote its kernel by CH0(X)0 .

Proposition 7. Let X be a smooth complex projective variety, of dimension n, and
let ∆X ⊂ X×X be the diagonal. The following conditions are equivalent :

(i) For every extension C→ K , CH0(XK)0 = 0 ;
(ii) CH0(XC(X))0 = 0 ;
(iii) There exists a point x ∈ X and a nonempty Zariski open subset U ⊂ X such

that ∆X −X×{x} restricts to 0 in CH(U×X);
(iv) there exists a point x ∈ X , a smooth projective variety T of dimension < n

(not necessarily connected), a generically injective map i : T →X , and a cycle class
α ∈CH(T ×X) such that

∆X −X×{x}= (i×1)∗α in CH(X×X) . (3)

When these properties hold, we say that X is CH0 -trivial.

Proof : The implication (i) ⇒ (ii) is clear.

(ii) ⇒ (iii) : Let η be the generic point of X . The point (η ,η) of {η}×X = XC(X)

is rational (over C(X)), hence is linearly equivalent to (η ,x) for any closed point
x ∈ X . The class ∆X −X×{x} restricts to (η ,η)− (η ,x) in CH0(η×X) , hence to
0. We want to show that this implies (iii).

An element of Σ p(η×X) extends to an element of Σ p(U×X) for some Zariski
open subset U of X ; in other words, the natural map lim−→

U
Σ p(U×X)→ Σ p(η×X)

is an isomorphism. Thus writing down the exact sequence (2) for U×X and passing
to the direct limit over U we get a commutative diagram of exact sequences

lim−→
U

⊕
W∈Σ p−1(U×X)

k(W )∗ //

��

lim−→
U

Z(Σ p(U×X)) //

��

lim−→
U

CH p(U×X) //

��

0

⊕
W∈Σ p−1(η×X)

k(W )∗ // Z(Σ p(η×X)) // CH p(η×X) // 0
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where the first two vertical arrows are isomorphisms; therefore the third one is also
an isomorphism. We conclude that the class ∆ −X ×{x} is zero in CHn(U ×X)

for some U .

(iii) ⇒ (iv) : Put T ′ := X rU . The localization exact sequence [Fu, Prop. 1.8]

CH(T ′×X)→CH(X×X)→CH(U×X)→ 0

implies that ∆ −X ×{x} comes from the class in CH(T ′×X) of a cycle ∑niZ′i .
For each i , let T ′i be the image of Zi in T ′ , and let Ti be a desingularization of T ′i .
Since Z′i is not contained in the singular locus Sing(T ′i )×X , it is the pushforward
of an irreducible subvariety Zi ⊂ Ti×X . Putting T =

∐
Ti and α = ∑ni[Zi] does

the job.

(iv) ⇒ (i) : Assume that (3) holds; then it holds in CH(XK×XK) for any extension
K of C , so it suffices to prove CH0(X)0 = 0.

Denote by p and q the two projections from X×X to X , and put n := dim(X) .
Any class δ ∈ CHn(X × X) induces a homomorphism δ∗ : CH0(X)→ CH0(X) ,
defined by δ∗(z) = q∗(δ · p∗z) . Let us consider the classes which appear in (3). The
diagonal induces the identity of CH0(X) ; the class of X×{x} maps z ∈CH0(X) to
deg(z) [x] , hence is 0 on CH0(X)0 .

Now consider δ := (i×1)∗α . Let p′,q′ be the projections from T ×X to T and
X . Then, for z ∈CH0(X) ,

δ∗z = q∗((i×1)∗α · p∗z) = q′∗(α · p′∗i∗z) .

Since dimT < dimX , i∗z is zero, hence also δ∗z . We conclude from (3) that
CH0(X)0 = 0. ut

Example .− The group CH0(X) is a birational invariant [Fu, ex. 16.1.11], thus the
above properties depend only on the birational equivalence class of X . In particular
a rational variety is CH0 -trivial. More generally, since CH0(X×Pn)∼=CH0(X) for
any variety X , a stably rational variety is CH0 -trivial.

Despite its technical aspect, Proposition 7 has remarkable consequences (see e.g.
[B-S]) :

Proposition 8. Suppose X is CH0 -trivial.
1) H0(X ,Ω r

X ) = 0 for all r > 0 .
2) The group H3(X ,Z) is torsion free.

Proof : The proof is very similar to that of the implication (iv) ⇒ (i) in the previous
Proposition; we use the same notation. Again a class δ in CHn(X ×X) induces
a homomorphism δ ∗ : Hr(X ,Z)→ Hr(X ,Z) , defined by δ ∗z := p∗(δ · q∗z) . The
diagonal induces the identity, the class [X ×{p}] gives 0 for r > 0, and the class
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(i× 1)∗α gives the homomorphism z 7→ i∗p′∗(α · q′∗z) . Thus formula (3) gives for
r > 0 a commutative diagram

H∗(T,Z)
i∗

&&
Hr(X ,Z)
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Id // Hr(X ,Z) .

(4)

On each component Tk of T the homomorphism i∗ : H∗(Tk,C)→ H∗(X ,C) is a
morphism of Hodge structures of bidegree (c,c) , with c := dimX − dimTk > 0.
Therefore its image intersects trivially the subspace Hr,0 of Hr(X ,C) . Since i∗ is
surjective by (4), we get Hr,0 = 0.

Now we take r = 3 in (4). The only part of H∗(T,Z) with a nontrivial contribu-
tion in (4) is H1(T,Z) , which is torsion free. Any torsion element in H3(X ,Z) goes
to 0 in H1(T,Z) , hence is zero. ut

Observe that in the proof we use only formula (3) in H∗(X × X) and not in
the Chow group. The relation between these two properties is discussed in Voisin’s
papers [V3, V4, V5].

As the Clemens-Griffiths criterion, the triviality of CH0(X) behaves well under
deformation (compare with Lemma 3) :

Proposition 9. [V4] Let π : X → B be a flat, proper family over a smooth variety
B, with dim(X)≥ 3 . Let o ∈ B; assume that :

• The general fiber Xb is smooth;
• Xo has only ordinary double points, and its desingularization X̃o is not

CH0 -trivial.
Then Xb is not CH0 -trivial for a very general point b of B.

Recall that ‘very general’ means ‘outside a countable union of strict subvarieties
of B ’ (4.2).

We refer to [V4] for the proof. The idea is that there cannot exist a decomposition
(3) of Proposition 7 for b general in B , because it would extend to an analogous de-
composition over X , then specialize to Xo , and finally extend to X̃o . One concludes
by observing that the locus of points b ∈ B such that Xb is smooth and CH0 -trivial
is a countable union of subvarieties.

Corollary 1. The double cover of P3 branched along a very general quartic surface
is not stably rational.

Proof : Consider the pencil of quartic surfaces in P3 spanned by a smooth quartic
and a quartic symmetroid, and the family of double covers of P3 branched along
the members of this pencil. By Proposition 8.2), the Artin-Mumford threefold is
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not CH0 -trivial. Applying the Proposition we conclude that a very general quartic
double solid is not CH0 -trivial, hence not stably rational. ut

More generally, Voisin shows that the desingularization of a very general quartic
double solid with at most seven nodes is not stably rational.

Voisin’s idea has given rise to a number of new results. Colliot-Thélène and
Pirutka have extended Proposition 9 to the case where the singular fiber Xo has (suf-
ficiently nice) non-isolated singularities, and applied this to prove that a very general
quartic threefold is not stably rational [C-P1]. I proved that a very general sextic dou-
ble solid is not stably rational [B7]. As already mentioned, combining the methods
of Kollár and Colliot-Thélène-Pirutka, Totaro has proved that a very general hyper-
surface of degree d and dimension n is not stably rational for d ≥ 2d n+2

3 e [T];
Colliot-Thélène and Pirutka have extended this to certain cyclic coverings [C-P2].
Hassett, Kresch and Tschinkel have shown that a conic bundle (see 3.2) with dis-
criminant a very general plane curve of degree ≥ 6 is not stably rational [HKT].
Finally, using the result of [HKT], Hassett and Tschinkel have proved that a very
general Fano threefold which is not rational or birational to a cubic threefold is not
stably rational [HT].

We do not know whether there exist smooth quartic double solids which are CH0 -
trivial. In contrast, Voisin has constructed families of smooth cubic threefolds wich
are CH0 -trivial [V5] – we do not know what happens for a general cubic threefold.
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des nombres (Paris 1949), 135–138. CNRS, Paris, 1950.

[Sg2] B. Segre : Variazione continua ed omotopia in geometria algebrica. Ann. Mat. Pura Appl.
(4) 50 (1960), 149–186.

[S] J.-P. Serre : On the fundamental group of a unirational variety. J. London Math. Soc. 34
(1959), 481–484.

[T] B. Totaro : Hypersurfaces that are not stably rational. Preprint arXiv:1502.04040.
J. Amer. Math. Soc., to appear.

[V1] C. Voisin : Sur la jacobienne intermédiaire du double solide d’indice deux. Duke Math. J.
57 (1988), no. 2, 629–646.

[V2] C. Voisin : Hodge theory and complex algebraic geometry I, II. Cambridge University
Press, New York, 2002-2003.

[V3] C. Voisin : Abel-Jacobi map, integral Hodge classes and decomposition of the diagonal. J.
Algebraic Geom. 22 (2013), no. 1, 141–174.

[V4] C. Voisin : Unirational threefolds with no universal codimension 2 cycle. Invent. math.
201 (2015), no. 1, 207–237.

[V5] C. Voisin : On the universal CH0 group of cubic hypersurfaces. Preprint arXiv:
1407.7261. J. Eur. Math. Soc., to appear.


