Recent progress on rationality problems

Arnaud Beauville

Université Côte d'Azur

Duke Math. J. Conference, April 2018

Theorem (Lüroth, 1875)

C plane curve, defined by polynomial f(x, y) = 0, which can be parametrized by rational functions :

$$t\mapsto (x(t),y(t)) : f(x(t),y(t)) = 0.$$

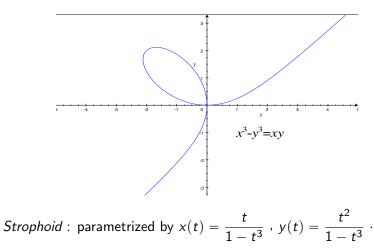
Then there exists another parametrization $u \mapsto (x(u), y(u))$ such that $u \in \mathbb{C} \xleftarrow{1:1} (x, y) \in C$, with finitely many exceptions.

In geometric terms : "map" $\mathbb{C} \dashrightarrow C$, $t \mapsto (x(t), y(t))$

= rational map (well-defined outside finite subset of C),
dominant (surjective except for finite subset of C)

 \implies \exists $\mathbb{C} \xrightarrow{\sim} C$ birational (1-to-1 except for finite subsets;

 $\iff \exists \text{ inverse rational map } C \xrightarrow{\sim} \mathbb{C}).$



(Here $t \mapsto (x(t), y(t))$ is birational: inverse $(x, y) \mapsto \frac{y}{x}$).

About the proof

Lüroth gives a clever, but somewhat mysterious algebraic proof.

(Modern) proof : $C \setminus \text{Sing}(C) \subset \overline{C}$ compact Riemann surface.

$$\mathbb{C} \qquad \xrightarrow{-- \twoheadrightarrow C \setminus \operatorname{Sing}(C)} \\ \cap \qquad \cap \\ \mathbb{P}^1 := \mathbb{C} \cup \infty \quad \xrightarrow{f} \quad \stackrel{\frown}{\bar{C}}$$

Riemann: $\overline{C} \cong \mathbb{P}^1 \iff$ any holomorphic form ω on \overline{C} is zero. Here: $f^*\omega = 0 \implies \omega = 0 \implies \overline{C} \cong \mathbb{P}^1$.

Castelnuovo-Enriques

In the years 1890-1900, Castelnuovo and Enriques develop the theory of algebraic surfaces.

Starting from a rather primitive stage, they obtain in a few years a rich harvest of results, culminating with an elaborate classification – called nowadays the Enriques classification.

"An entirely new and beautiful chapter of geometry was opened" (Lefschetz, 1968).

Castelnuovo's theorem

or:

One of the first questions Castelnuovo considers is the analogue of the Lüroth theorem for surfaces :

Theorem (Castelnuovo, 1893)

S algebraic surface, $\exists \mathbb{C}^2 \dashrightarrow S \implies \exists \mathbb{C}^2 \dashrightarrow S$.

"S unirational" \implies "S rational".

 At first Castelnuovo tried to prove that the vanishing of holomorphic 1- and 2-forms characterizes rational surfaces, but he could not eliminate one particular type of surfaces. He asked Enriques, who found a non-rational surface with no holomorphic form, now called the Enriques surface :

" Guarda un po' se fosse tale una superficie del 6° ordine avente como doppi i 6 spigoli d'un tetraedro (se esiste)? "

These surfaces play an important role in the Enriques classification.

An Enriques surface

Then Castelnuovo found the correct characterization (again, in modern terms) :

Theorem

S rational \iff no (holomorphic) 1-form and quadratic 2-form.

Quadratic 2-form = in local coordinates, $f(x, y) (dx \wedge dy)^2$.

A unirational surface has no such forms, hence is rational.

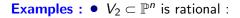
This is a major step in the classification of surfaces; even today, with our powerful modern methods, it is still a highly nontrivial theorem.

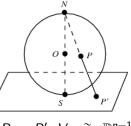
Definitions

Definition

X complex algebraic variety

- X rational if $\exists \mathbb{C}^n \xrightarrow{\sim} X$;
- X unitational if $\exists \mathbb{C}^n \dashrightarrow X$.

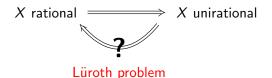




 $P \mapsto P', V_2 \xrightarrow{\sim} \mathbb{P}^{n-1}$

• $V_3 \subset \mathbb{P}^n$ is unirational for $n \ge 3$, rational for n = 3.

The Lüroth problem



A parenthesis for algebraists :

The rational functions $X \dashrightarrow \mathbb{C}$ form a field $\mathbb{C}(X)$.

X rational
$$\iff \exists \mathbb{C}^n \xrightarrow{\sim} X \iff \mathbb{C}(X) \xrightarrow{\sim} \mathbb{C}(t_1, \ldots, t_n);$$

 $X \text{ unirational} \iff \exists \mathbb{C}^n \dashrightarrow X \iff \mathbb{C}(X) \hookrightarrow \mathbb{C}(t_1, \dots, t_n).$

Lüroth problem: $\mathbb{C} \subset \mathcal{K} \subset \mathbb{C}(t_1, \ldots, t_n) \implies \mathcal{K} \cong \mathbb{C}(u_1, \ldots, u_p)$?

But in dimension ≥ 2 , this formulation does not help (no known algebraic proof of Castelnuovo's theorem).

Does "unirational \implies rational" hold in dimension ≥ 3 ? In 1912, Enriques claims to give a counter-example: a smooth complete intersection of a quadric and a cubic $V_{2,3} \subset \mathbb{P}^5$. Actually he proves that it is unirational, and relies on an earlier paper of Fano (1908) for the non-rationality.

But Fano's analysis is incomplete. The geometry in dimension ≥ 3 is much more complicated than for surfaces; the intuitive methods of the Italian geometers were insufficient.

Fano made various other attempts (1915, 1947); in the last one he claims that a smooth $V_3 \subset \mathbb{P}^4$ is not rational, a longstanding conjecture.

But none of these attempts are acceptable by modern standards.

A detailed criticism of Fano's attempts appears in the 1955 book *Algebraic threefolds, with special regard to problems of rationality* by the British mathematician Leonard Roth, who concludes that none of these can be considered as correct. Roth goes on giving a counter-example of his own, by mimicking in dimension 3 the construction of Enriques' surface.

He shows that his example is unirational, and not simply-connected – hence not rational, because a rational (smooth, projective) variety is simply-connected.

Alas, 4 years later Serre showed that a *unirational* variety is simply-connected, so Roth also was wrong...

In 1971 appeared almost simultaneously 3 indisputable examples of unirational, non rational varieties, using modern technology:

Authors	Example	le Method	
Clemens-Griffiths	$V_3 \subset \mathbb{P}^4$	Hodge theory (<i>JV</i>)	
Iskovskikh-Manin	some $V_4 \subset \mathbb{P}^4$	Fano's idea $(\operatorname{Bir}(V))$	
Artin-Mumford	specific	Tors $H^3(V,\mathbb{Z})$	

A brief overview of the methods

• Clemens and Griffiths associate to a 3-fold V with no holomorphic 3-form a complex torus [= $\mathbb{C}^g/lattice$], the **intermediate** Jacobian JV, with a distinguished hypersurface $\Theta \subset JV$ – generalizing the classical Jacobian of a curve. They prove:

V rational $\Rightarrow (JV, \Theta)$ is the Jacobian of a curve.

This is not the case for $V = V_3 \subset \mathbb{P}^4$: one can show $\operatorname{Sing}(\Theta) = \{ \text{pt} \}$ and dim JV = 5, while dim $\operatorname{Sing}(\Theta) \ge g - 4$ for the Jacobian of a curve of genus g (Riemann).

• Iskovskikh and Manin, using one of Fano's ideas, prove that any birational map $V_4 \xrightarrow{\sim} V_4$ is actually an automorphism, hence $\operatorname{Bir}(V_4)$ is finite. Since $\operatorname{Bir}(\mathbb{P}^3)$ is enormous, V_4 is not rational.

• The Artin-Mumford method (discussed later) is the only one to give examples (quite particular) in dimension > 3. In contrast, the first two methods give many examples in dimension 3.

Examples: complete intersections

e.g. for $V_{d_1...d_{n-3}} \subset \mathbb{P}^n$ with no holomorphic 3-forms ($\Leftrightarrow \sum d_i \leqslant n$):

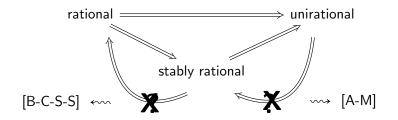
Variety	Unirational	Rational	Method
$V_3 \subset \mathbb{P}^4$	yes	no	JV
$V_4 \subset \mathbb{P}^4$	some	no	$\operatorname{Bir}(V)$
$V_{2,2} \subset \mathbb{P}^5$	yes	yes	
$V_{2,3} \subset \mathbb{P}^5$	yes	no (generic)	$JV, \operatorname{Bir}(V)$
$V_{2,2,2} \subset \mathbb{P}^6$	yes	no	JV

So most of these are unirational, not rational.

More generally, Fano studied a class of threefolds, now called *Fano threefolds*, which are good candidates for being unirational. Most of them are unirational, not rational.

This leads to search for an intermediate notion :

X stably rational if $X \times \mathbb{P}^m$ rational for some m (Zariski, 1949).



Artin and Mumford gave an example of a unirational, non stably rational variety V (hence same for $V \times \mathbb{P}^n$). They prove:

$$V$$
 stably rational \implies Tors $H^3(V, \mathbb{Z}) = 0$.

Start from: $L = (L_{ij})$ symmetric 4×4 matrix of linear forms in \mathbb{P}^3 . det(L) = 0: surface $\Delta \subset \mathbb{P}^3$ with 10 nodes (quartic symmetroid). (node = ordinary double point $\cong_{loc} x^2 + y^2 + z^2 = 0$ in \mathbb{C}^3 .) X defined by $w^2 = \det(L)$: $X \xrightarrow{2:1} \mathbb{P}^3$ branched along Δ . X has 10 nodes; the desingularization \tilde{X} has Tors $H^3(\tilde{X}, \mathbb{Z}) = \mathbb{Z}/2$. Till 3 years ago, very few examples of unirational varieties V

with Tors $H^3(V,\mathbb{Z}) \neq 0$.

The situation changed dramatically 3 years ago with a new idea of Claire Voisin:

Theorem 1 (Voisin, 2015)

A double covering of \mathbb{P}^3 branched along a **general** quartic surface is not stably rational.

- general := outside a countable union of strict subvarieties of the moduli space
- Known to be unirational, not rational (AB 77, Voisin 86)

Elaborations of Voisin's idea give the non-stable rationality of the general (*in chronological order*):

•
$$V_4 \subset \mathbb{P}^4$$
 (Colliot-Thélène-Pirutka).

$$V_d \subset \mathbb{P}^{n+1}, \ d \ge 2 \left\lceil \frac{n+2}{3} \right\rceil \ (\text{Totaro}); \text{ improved as:}$$

•
$$V_d \subset \mathbb{P}^{n+1}$$
, $d \ge \log_2 n + 2$ (Schreieder, 01/2018).

 The remaining complete intersection threefolds V_{2,3}, V_{2,2,2} (Hassett-Tschinkel; more generally, all the non-rational *Fano threefolds*) except the cubic threefold V₃ ⊂ P⁴. The most spectacular consequence :

Theorem 2 (Hassett-Pirutka-Tschinkel, 2016)

Let $(V_b)_{b\in B}$ be the family of smooth fourfolds $V_{2,2,2} \subset \mathbb{P}^7$.

- For general b, V_b is not rational (not even stably);
- Prevention of the exists a dense subset B_{rat} ⊂ B such that V_b is rational for b ∈ B_{rat}.

The existence of a family containing both rational and non rational smooth varieties was unknown, and is still unknown in dimension 3. However, Hassett-Kresch-Tschinkel have constructed a family of smooth 3-folds containing both **stably rational** and non stably rational varieties (02/2018).

The degeneration argument

Idea : degenerate general quartic into symmetroid: $B = \{b(X, Y, Z, T) \mid deg(b) = 4\}. \ b \iff surface \ b = 0 \text{ in } \mathbb{P}^3.$ $X_b := \{w^2 = b\} = double \text{ covering of } \mathbb{P}^3 \text{ branched along } \{b = 0\}.$ For $o \in B \iff$ quartic symmetroid, X_o has 10 ordinary double points, desingularization \tilde{X}_o satisfies Tors $H^3(\tilde{X}_o, \mathbb{Z}) \neq 0.$

Theorem 3 (Voisin)

 $(X_b)_{b\in B}$ family of projective varieties, B smooth, X_b smooth for b general, $o \in B$. Assume:

(i) $X_{\rm o}$ has only ordinary double points;

(ii) A desingularization \tilde{X}_{o} of X_{o} satisfies Tors $H^{3}(\tilde{X}_{o},\mathbb{Z}) \neq 0$.

Then X_b is not stably rational for general b.

 \Rightarrow Theorem 1.

Comments

• For $(X_b)_{b\in B}$ family of projective threefolds, $J\tilde{X}_o$ not Jacobian \implies for general *b*, JX_b not Jacobian $\implies X_b$ not rational. This is how one proves the "generic" non-rationality results.

• Here Tors $H^3(X_b, \mathbb{Z}) = 0$ for general *b*, so need a more subtle argument, using **decomposition of the diagonal** in $CH(X_b)$.

• Stronger results last year by Nicaise-Shinder, then Kontsevich-Tschinkel :

Theorem 4

 $(X_b)_{b\in B}$ family as above.

- $X_{\rm o}$ not rational $\implies X_b$ not rational for general b.
- X_{o} not stably rational $\Longrightarrow X_{b}$ not stably rational for general b.

The proof uses ideas from motivic integration.

The mistery of the cubic hypersurface

Why such an interest for cubic hypersurfaces?

- They are very simple to define;
- In dimension 2, 3 and 4, they have a beautiful geometry.

Conjecture (folklore)

The general cubic *n*-fold is not rational for $n \ge 3$.

- Some known rational smooth cubic *n*-folds for *n* even; no known example for *n* odd.
- Smooth cubic 3-folds are not rational (Clemens-Griffiths); but for n ≥ 4, no example of a non-rational cubic known.
- Much studied for cubic 4-folds $V_3 \subset \mathbb{P}^5$ (discussed below).
- Stable rationality: nothing known, even for cubic 3-folds. (Nodal cubics are rational, so the above methods do not apply).

The cubic fourfold

Moduli space $C := \{\text{smooth } V_3 \subset \mathbb{P}^5\}/\text{PGL}(6)$, of dimension 20. For some V_3 's, $H^4(V_3, \mathbb{Z}) \sim H^2(S, \mathbb{Z})$ for a certain K3 surface S: we say that V is associated to S (Hassett). But K3s depend on 19 parameters.

Fact : In C, the cubics associated to a K3 form a countable union of hypersurfaces $C_1 \cup C_2 \cup \ldots$ (defined in terms of $H^4(V_3, \mathbb{Z})$). For instance, $C_1 = \{ pfaffian \ cubics \}$ defined by Pf(L) = 0, with L a 6×6 skew-symmetric matrix of linear forms.

Conjecture (Kuznetsov + Hassett, ...)

 $V_3 \subset \mathbb{P}^5$ rational $\iff V_3$ has an associated K3 surface. (equivalently, $[V_3] \in \mathcal{C}_1 \cup \mathcal{C}_2 \cup \ldots$)

- \Rightarrow : nothing known.
- $\Leftarrow: \text{ known for } \mathcal{C}_1 \text{ (Fano), } \mathcal{C}_2 \text{ and } \mathcal{C}_3 \text{ (Russo-Staglianò, July 2017).}$

Conclusion

Conclusion : We know only the tip of the iceberg. Many beautiful open problems!

