Nodal surfaces and Gauss genus theory

Arnaud Beauville

Université Côte d'Azur

Ischia, October 2021

Arnaud Beauville Nodal surfaces and Gauss genus theory

Gauss genus theory

Gauss genus theory deals with binary quadratic forms. I will only discuss one of its main consequences: the determination of $Cl(\mathbb{Q}(\sqrt{d}))[2]$, the 2-torsion of the ideal class group. **Set-up:** $d = +p_1 \dots p_s$, $K := \mathbb{Q}(\sqrt{d})$, $\mathcal{O} :=$ ring of integers. Ramification: $R = \{p_1, ..., p_s\} + \{2\}$ if $d \equiv 3 \pmod{4}$. #R := r. $K^*_{+} := \{ \alpha \in K \mid \sigma(\alpha) > 0 \ \forall \sigma : K \hookrightarrow \mathbb{R} \}$ ("totally positive"). $CI(K) := Pic(\mathcal{O}): K^* \to Div(\mathcal{O}) \to CI(K) \to 0.$ $Cl^+(K): K^*_{\perp} \to Div(\mathcal{O}) \to Cl^+(K) \to 0$ ("narrow class group"). $[CI^+(K) : CI(K)] = 1 \text{ or } 2.$ $(1 \Leftrightarrow d < 0 \text{ or } d > 0, \operatorname{Nm}(\mathcal{O}^*) = \{\pm 1\}.)$

Theorem (Gauss)

$$CI^+(K)[2] = (\mathbb{Z}/2)^{r-1}.$$

• The result is remarkable, because completely isolated: we know very little about *p*-torsion for p > 2, or 2-torsion of Cl(K) for deg(K) > 2 (bounds by Bhargava, Venkatesh, ...).

Some consequences $(h(d) := \# \operatorname{Cl}(\mathbb{Q}(\sqrt{d})) = \text{class number})$:

- d prime > 0 \Rightarrow h(d) odd.
- h(d) odd (in particular = 1) $\Rightarrow d = p_1$ or p_1p_2 .
- Recall: it is still unknown whether h(d) = 1 for ∞ d.
 Expected: h(p) = 1 for ~ 3/4 of primes p (Cohen-Lenstra).

Nodal surfaces

$$\begin{split} \Sigma_d \subset \mathbb{P}^3 \text{ degree } d, \ &\text{Sing}(\Sigma_d) = \mathscr{N} = \{\text{nodes}\}.\\ \textbf{Question: What is } \mu(d) := \max \# \mathscr{N}(\Sigma_d)?\\ &\text{Classical: } \mu(3) = 4, \ \text{max realized by Cayley surface: } \sum \frac{1}{X_i} = 0;\\ &\mu(4) = 16, \ \text{max realized by Kummer surfaces.}\\ &\text{Severi 1946: claims } \mu(d) \leqslant {\binom{d+2}{3}} - 4 \ \Rightarrow \ \mu(5) \leqslant 31. \end{split}$$

B. Segre 1947: counter-examples.

Theorem

 $\mu(5) = 31$ (AB 1979); $\mu(6) = 65$ (Jaffe-Ruberman 1986).

= realized by the **Togliatti quintic** and the **Barth sextic**. Wide open for $d \ge 7$; best bound $\mu(d) \le \frac{4}{9}d(d-1)^2$ (Miyaoka).

How to prove $\mu(5) = 31$?

Resolution $b: S \to \Sigma_5$. For $n \in \mathcal{N}$, $E_n := b^{-1}(n)$ rational curve; $E_n^2 = -2$, $(E_n \cdot E_p) = 0$. Thus $\#\mathcal{N} \leq b_2(S) = 53$, not good... Key observation: In $H^2(S, \mathbb{Z}/2)$, $\langle E_n \rangle$ totally isotropic subspace. Suppose $\#\mathcal{N} = 32$. $\varphi: (\mathbb{Z}/2)^{32} \xrightarrow{[E_n]} H^2(S, \mathbb{Z}/2)$, $K := \text{Ker } \varphi$. Then dim Im $\varphi \leq \frac{1}{2}b_2(S) = 26.5 \implies \text{dim } K \geq 6$. For $A \subset \mathcal{N}$, $\sum_{i \in A} e_i \in K \iff \sum_{i \in A} E_i = 2D$ in $\text{Pic}(S) \iff$ $\exists \pi: X \to S$ branched along $\bigcup E_i$. We say that $A \subset \mathcal{N}$ is even.

Proposition

A even $\Rightarrow \#A = 16$ or 20.

To get a contradiction, we use easy linear algebra (coding theory): For $x = \sum_{i \in A} e_i \in (\mathbb{Z}/2)^{32}$, w(x) := #A (weight of x). $K \subset (\mathbb{Z}/2)^{32}$, $x \in K \Rightarrow w(x) = 0,16$ or $20 \Rightarrow \dim K \leq 5$.

The key lemma

Proposition: $\pi: X \to S$, branch locus: $\bigcup_{n \in A} E_n \Rightarrow \# A = 16$ or 20.

Proof uses standard surface theory, plus:

Lemma

X, S smooth projective,
$$\pi : X \xrightarrow{2:1} S$$
, branch locus $E_1 \cup ... \cup E_r$,
 $\operatorname{Pic}(S)[2] = 0.$ Put $\varphi : (\mathbb{Z}/2)^r \xrightarrow{(E_i)} H^2(S, \mathbb{Z}/2).$ Then
 $\operatorname{Pic}(X)[2] \xrightarrow{\sim} \operatorname{Ker} \varphi / (\sum e_i) .$

Sketch of proof of the Proposition:

(1) Riemann-Roch + Castelnuovo \rightsquigarrow 4 | #A and #A \ge 16.

(2)
$$20 < \#A < 32$$
: R-R $\implies q(X) \ge 1 \implies \dim Ker \varphi \ge 1 \implies$

 $\exists B \subsetneq A$ even. Then B or $A \smallsetminus B$ even with # < 16, contradicts (1).

(3)
$$#A = 32$$
: analogous, + some coding theory.

Proof of the key lemma

Lemma

X, S smooth projective,
$$\pi : X \xrightarrow{2:1} S$$
, branch locus $E_1 \cup ... \cup E_r$,
 $\operatorname{Pic}(S)[2] = 0.$ Put $\varphi : (\mathbb{Z}/2)^r \xrightarrow{[E_i]} H^2(S, \mathbb{Z}/2).$ Then
 $\operatorname{Pic}(X)[2] \xrightarrow{\sim} \operatorname{Ker} \varphi/(\sum e_i).$

We start from the exact sequence

$$1 \to \mathbb{C}^* \to \mathcal{K}^*_S \xrightarrow{\operatorname{div}} \operatorname{Div}(S) \to \operatorname{Pic}(S) \to 0\,,$$

which we break as

$$\begin{split} 1 &\to \mathbb{C}^* \to K_S^* \to K_S^*/\mathbb{C}^* \to 1, \quad 1 \to K_S^*/\mathbb{C}^* \to \mathsf{Div}(S) \to \mathsf{Pic}(S) \to 0 \,. \\ \sigma \text{ involution of } X \text{ associated to } \pi, \ G := \langle \sigma \rangle \cong \mathbb{Z}/2. \qquad \text{Recall:} \\ H^1(G, M) &= \mathsf{Ker}(1+\sigma)/\mathsf{Im}(1-\sigma), \quad H^2(G, M) = \mathsf{Ker}(1-\sigma)/\mathsf{Im}(1+\sigma). \end{split}$$

Proof of the key lemma

Compare 2nd exact sequences for S and X:

Fact 1: $H^1(G, K_X^*/C^*) = 0$: because $H^1(G, K_X^*) = 0$ (Hilbert 90) and $H^2(G, \mathbb{C}^*) = \mathbb{C}^*/\mathbb{C}^{*2} = 0$.

Fact 2: Coker $\alpha = Z/2$: follows from the diagram

and
$$H^1(G, \mathbb{C}^*) = \operatorname{Ker}(\mathbb{C}^* \xrightarrow{\times 2} \mathbb{C}^*) = \mathbb{Z}/2.$$

Proof of the key lemma

Apply snake lemma to

Hence exact sequence

$$0 \to \operatorname{Pic}(S) \to \operatorname{Pic}(X)^G \to (\mathbb{Z}/2)^r / (\sum e_i) \to 0.$$

Apply snake lemma to $\times 2 \longrightarrow$

 $0 \to \operatorname{Pic}(X)^{G}[2] \to (\mathbb{Z}/2)^{r} / (\sum e_{i}) \xrightarrow{[E_{i}]} \operatorname{Pic}(S) \otimes \mathbb{Z}/2.$ $\operatorname{Pic}(X)^{G}[2] = \operatorname{Pic}(X)[2]: \ L \in \operatorname{Pic}(X)[2] \ \Rightarrow \ \operatorname{Nm}(L) \in \operatorname{Pic}(S)[2]$ $\Rightarrow \ \pi^{*} \operatorname{Nm}(L) = L \otimes \sigma^{*}L = \mathcal{O}_{X} \ \Rightarrow \ \sigma^{*}L = L^{-1} = L.$

Proof of Gauss theorem

We apply the same proof with $S = \operatorname{Spec}(\mathbb{Z}), X = \operatorname{Spec}(\mathcal{O}) \rightsquigarrow$ $1 \to \mathcal{O}^*_{\perp} \to K^*_{\perp} \to \text{Div}(\mathcal{O}) \to \text{Cl}^+(K) \to 0$, and diagram $1 \longrightarrow \mathbb{Q}_{\perp}^{*} \longrightarrow \mathsf{Div}(\mathbb{Z}) \longrightarrow \mathsf{Cl}(\mathbb{Q}) = 0$ $1 \longrightarrow (\mathcal{K}^*_{+}/\mathcal{O}^*_{+})^{\mathsf{G}} \longrightarrow \mathsf{Div}(\mathcal{O})^{\mathsf{G}} \longrightarrow \mathsf{Cl}^+(\mathcal{K})^{\mathsf{G}} \longrightarrow H^1(\mathcal{G}, \mathcal{K}^*_{+}/\mathcal{O}^*_{+})$ For simplicity, case d > 0: then $(\mathcal{O}^*_+, \sigma) \cong (\mathbb{Z}, -1)$. Fact 1: $H^1(G, K^*_{\perp}/\mathcal{O}^*_{\perp}) = 0$: • $H^1(G, K^*_+) = 0$: $1 \to K^*_+ \to K^* \xrightarrow{\operatorname{sgn, sgn} \circ \sigma} \{+1\} \times \{+1\} \to 1$ $\longrightarrow \mathbb{O}^* \to \{\pm 1\} \to H^1(G, K_+^*) \to 0$, hence $H^1G, K_+^*) = 0$. • $H^2(G, \mathcal{O}^*_+) = H^2(G, (\mathbb{Z}, -1)) = 0.$ Fact 2: $H^1(G, \mathcal{O}^*_{\perp}) = H^1(G, (\mathbb{Z}, -1)) = \mathbb{Z}/2.$

THE END

Happy retirement, Alex!

Arnaud Beauville Nodal surfaces and Gauss genus theory