Holomorphic symplectic geometry

Arnaud Beauville

Université de Nice

Lisbon, March 2011

I. Symplectic structure

Definition

A symplectic form on a manifold X is a 2-form φ such that:

- $d\varphi = 0$ and $\varphi(x) \in \operatorname{Alt}(\mathcal{T}_x(X))$ non-degenerate $\forall x \in X$.
- \iff locally $\varphi = dp_1 \wedge dq_1 + \ldots + dp_r \wedge dq_r$ (Darboux)

Then (X, φ) is a symplectic manifold.

(In mechanics, typically $q_i \leftrightarrow$ positions, $p_i \leftrightarrow$ velocities)

→ Unlike Riemannian geometry, symplectic geometry is locally trivial; the interesting problems are global.

All this makes sense with X complex manifold, φ holomorphic. global \rightsquigarrow X compact, usually projective or Kähler.

Definition: holomorphic symplectic manifold

- X compact, Kähler, simply-connected;
- X admits a (holomorphic) symplectic form, unique up to \mathbb{C}^* .

Consequences : dim_C X = 2r; the canonical bundle $K_X := \Omega_X^{2r}$ is trivial, generated by $\varphi \land \ldots \land \varphi$ (r times).

(*Note* : on X compact Kähler, holomorphic forms are closed)

Why is it interesting?

The Decomposition theorem

Decomposition theorem

X compact Kähler with $K_X = \mathcal{O}_X. \ \exists \ ilde{X} o X$ étale finite and

$$ilde{X} = extsf{T} imes \prod_{i} extsf{Y}_{i} imes \prod_{j} extsf{Z}_{j}$$

- T complex torus (= \mathbb{C}^g /lattice);
- Y_i holomorphic symplectic manifolds;
- Z_j simply-connected, projective, dim ≥ 3 , $H^0(Z_j, \Omega^*) = \mathbb{C} \oplus \mathbb{C}\omega$, where ω is a generator of K_{Z_j} .

(these are the Calabi-Yau manifolds)

Thus holomorphic symplectic manifolds (also called hyperkähler) are building blocks for manifolds with K trivial, which are themselves building blocks in the classification of projective (or compact Kähler) manifolds.

Examples?

Many examples of Calabi-Yau manifolds, very few of holomorphic symplectic.

- dim 2: X simply-connected, $K_X = \mathcal{O}_X \stackrel{\text{def}}{\iff} X$ K3 surface. (Example: $X \subset \mathbb{P}^3$ of degree 4, etc.)
- dim > 2? Idea: take S^r for S K3. Many symplectic forms:

$$\varphi = \lambda_1 \, p_1^* \varphi_S + \ldots + \lambda_r \, p_r^* \varphi_S \,, \quad \text{with} \ \lambda_1, \ldots, \lambda_r \in \mathbb{C}^* \,.$$

Try to get unicity by imposing $\lambda_1 = \ldots = \lambda_r$, i.e. φ invariant under \mathfrak{S}_r , i.e. φ comes from $S^{(r)} := S^r/\mathfrak{S}_r = \{$ subsets of r points of S, counted with multiplicities $\}$

• $S^{(r)}$ is singular, but admits a natural desingularization $S^{[r]} :=$ {finite analytic subspaces of S of length r} (Hilbert scheme)

Theorem

For S K3, $S^{[r]}$ is holomorphic symplectic, of dimension 2r.

Other examples

- Analogous construction with S = complex torus (dim. 2); gives generalized Kummer manifold K_r of dimension 2r.
- **②** Two isolated examples by O'Grady, of dimension 6 and 10.

All other known examples belong to one of the above families! **Example**: $V \subset \mathbb{P}^5$ cubic fourfold. $F(V) := \{\text{lines contained in } V\}$ is holomorphic symplectic, deformation of $S^{[2]}$ with S K3.

The period map

A fundamental tool to study holomorphic symplectic manifolds is the period map, which describes the position of $[\varphi]$ in $H^2(X, \mathbb{C})$.

Proposition

 $\texttt{0} \ \exists \ q: H^2(X,\mathbb{Z}) \to \mathbb{Z} \text{ quadratic and } f \in \mathbb{Z} \text{ such that}$

$$\int_X \alpha^{2r} = f q(\alpha)^r \text{ for } \alpha \in H^2(X, \mathbb{Z})$$

Por L lattice, there exists a complex manifold M_L parametrizing isomorphism classes of pairs (X, λ), where λ : (H²(X, Z), q) → L.

(Beware that \mathcal{M}_L is non Hausdorff in general.)

The period package

$$(X,\lambda) \in \mathcal{M}_L, \ \lambda_{\mathbb{C}} : H^2(X,\mathbb{C}) \xrightarrow{\sim} L_{\mathbb{C}}; \text{ put } \wp(X,\lambda) := \lambda_{\mathbb{C}}(\mathbb{C}\varphi).$$

 $\wp : \mathcal{M}_L \longrightarrow \mathbb{P}(L_{\mathbb{C}}) \text{ is the period map.}$

Theorem

Let
$$\Omega := \{x \in \mathbb{P}(L_{\mathbb{C}}) \mid q(x) = 0 \ , \ q(x, \bar{x}) > 0\}.$$

1 (AB)
$$\wp$$
 is a local isomorphism $\mathcal{M}_L \to \Omega$.

 (Verbitsky) The restriction of p to any connected component of M_L is generically injective.

Gives very precise information on the structure of \mathcal{M}_L and the geometry of X.

Completely integrable systems

Symplectic geometry provides a set-up for the differential equations of classical mechanics:

M real symplectic manifold; φ defines $\varphi^{\sharp} : T^{*}(M) \xrightarrow{\sim} T(M)$. For h function on M, $X_{h} := \varphi^{\sharp}(dh)$: hamiltonian vector field of h. $X_{h} \cdot h = 0$, i.e. h constant along trajectories of X_{h} ("integral of motion") $\dim(M) = 2r$. $h : M \to \mathbb{R}^{r}$, $h = (h_{1}, \dots, h_{r})$. Suppose: $h^{-1}(s)$ connected, smooth, compact, Lagrangian $(\varphi_{|h^{-1}(s)} = 0)$.

Arnold-Liouville theorem

 $h^{-1}(s) \cong \mathbb{R}^r$ /lattice; X_{h_i} tangent to $h^{-1}(s)$, constant on $h^{-1}(s)$.

→ explicit solutions of the ODE X_{h_i} (e.g. in terms of θ functions): "algebraically completely integrable system". Classical examples: geodesics of the ellipsoid, Lagrange and Kovalevskaya tops, etc.

Holomorphic set-up

No global functions \rightsquigarrow replace \mathbb{R}^r by \mathbb{P}^r .

Definition

X holomorphic symplectic, dim(X) = 2r. Lagrangian fibration:

 $h: X \to \mathbb{P}^r$, general fiber connected Lagrangian.

 \Rightarrow on $h^{-1}(\mathbb{C}^r) \to \mathbb{C}^r$, Arnold-Liouville situation.

Theorem

 $f: X \rightarrow B$ surjective with connected fibers \Rightarrow

Is a Lagrangian fibration (Matsushita);

2 If X projective, $B \cong \mathbb{P}^r$ (Hwang).

Is there a simple characterization of Lagrangian fibration?

Conjecture

$$\exists X \dashrightarrow \mathbb{P}^r$$
 Lagrangian $\iff \exists L$ on X, $q(c_1(L)) = 0$.

Many examples of such systems. Here is one: $S \subset \mathbb{P}^5$ given by P = Q = R = 0, P, Q, R quadratic $\Rightarrow S$ K3. $\Pi = \{$ quadrics $\supset S \} = \{\lambda P + \mu Q + \nu R\} \cong \mathbb{P}^2$ $\Pi^* =$ dual projective plane $= \{$ pencils of quadrics $\supset S \}$.

 $h: S^{[2]} \to \Pi^*: \quad h(x, y) = \{ \text{quadrics of } \Pi \supset \langle x, y \rangle \}.$

By the theorem, h Lagrangian fibration \Rightarrow

 $h^{-1}(\langle P, Q \rangle) = \{ \text{lines} \subset \{ P = Q = 0 \} \subset \mathbb{P}^5 \} \cong 2 \text{-dim'l complex torus} \,,$

a classical result of Kummer.

What about odd dimensions?

Definition

A contact form on a manifold X is a 1-form η such that:

- Ker $\eta(x) = H_x \subsetneq T_x(X)$ and $d\eta_{|H_x}$ non-degenerate $\forall x \in X$;
- \iff locally $\eta = dt + p_1 dq_1 + \ldots + p_r dq_r$.
- A contact structure on X is a family H_x ⊊ T_x(X) ∀x ∈ X, defined locally by a contact form.

Again the definition makes sense in the holomorphic set-up \rightsquigarrow holomorphic contact manifold. We will be looking for *projective* contact manifolds.

Examples of contact projective manifolds

- $\mathbb{P}T^*(M)$ for every projective manifold M(= {(m, H) | $H \subset T_m(M)$ }: "contact elements");
- g simple Lie algebra; $\mathcal{O}_{min} \subset \mathbb{P}(\mathfrak{g})$ unique closed adjoint orbit. (example: rank 1 matrices in $\mathbb{P}(\mathfrak{sl}_r)$.)

Conjecture

These are the only contact projective manifolds.

- ($\Rightarrow\,$ classical conjecture in Riemannian geometry: classification
 - of compact quaternion-Kähler manifolds (LeBrun, Salamon).)

Partial results

Definition : A projective manifold X is Fano if K_X negative, i.e. K_X^{-N} has "enough sections" for $N \gg 0$.

X contact manifold; L := T(X)/H line bundle; then $K_X \cong L^{-k}$ with $k = \frac{1}{2}(\dim(X) + 1)$. Thus X Fano $\iff L^N$ has enough sections for $N \gg 0$.

Theorem

- If X is not Fano, X ≅ ℙT*(M)
 (Kebekus, Peternell, Sommese, Wiśniewski + Demailly)
- Q X Fano and L has "enough sections" ⇒ Z ≅ O_{min} ⊂ P(g)
 (AB)

Few symplectic or contact manifolds \rightsquigarrow look for weaker structure.

$$arphi$$
 symplectic $\rightsquigarrow arphi^{\sharp}: T(X) \stackrel{\sim}{\longrightarrow} T^{*}(X) \rightsquigarrow au \in \wedge^{2}T(X) \rightsquigarrow$

 $(f,g)\mapsto \{f,g\}:=\langle au, df\wedge dg
angle$ for f,g functions on $U\subset X$.

Fact: $d\varphi = 0 \iff$ Lie algebra structure (Jacobi identity).

Definition

Poisson structure on X: bivector field $\tau : x \mapsto \tau(x) \in \wedge^2 T_x(X)$, such that $(f,g) \mapsto \{f,g\}$ Lie algebra structure.

Again this makes sense for X complex manifold, τ holomorphic.

Examples

- dim(X) = 2: any global section of $\wedge^2 T(X) = K_X^{-1}$ is Poisson.
- dim(X) = 3; wedge product ∧²T(X) ⊗ T(X) → K_X⁻¹ gives
 ∧²T(X) → Ω_X¹ ⊗ K_X⁻¹. Then α ∈ H⁰(Ω_X¹ ⊗ K_X⁻¹) is Poisson
 ⇔ α ∧ dα = 0 ⇔ locally α = fdg.
- On \mathbb{P}^3 , P, Q quadratic $\rightsquigarrow \alpha = PdQ - QdP \in \Omega^1_{\mathbb{P}^3}(4) = \Omega^1_{\mathbb{P}^3} \otimes K^{-1}_{\mathbb{P}^3}$ Poisson.
- A holomorphic symplectic manifold is Poisson.
- **If** X is Poisson, any $X \times Y$ is Poisson.

The Bondal conjecture

au Poisson, $x \in X$. $au_x : T_x^*(X) \to T_x(X)$ skew-symmetric, rk even.

$$X_r := \{x \in X \mid \operatorname{rk}(\tau_x) = r\}$$
 (r even) $X = \prod X_r$

Proposition

If $X_r \neq \emptyset$, dim $X_r \ge r$.

Proof: X_r is a Poisson submanifold, i.e. at a smooth $x \in X_r$ $\tau_x \in \wedge^2 T_x(X_r) \subset \wedge^2 T_x(X) \implies \operatorname{rk}(\tau_x) \leq \dim X_r.$

Conjecture (Bondal)

X compact Poisson manifold, $X_r \neq \emptyset \Rightarrow \dim X_r > r$.

Example: $X_0 = \{x \in X \mid \tau_x = 0\}$ contains a curve.

(e.g.: on \mathbb{P}^3 , PdQ - QdP vanishes on the curve P = Q = 0.)

The Bondal conjecture 2

Some evidence

• True for X projective threefold (Druel: $X_0 = \emptyset$ or dim ≥ 1).

• $\operatorname{rk}(\tau_x) = r$ for x general \Rightarrow true for X_{r-2} if $c_1(X)^q \neq 0$, $q = \dim X - r + 1$.

Proposition (Polishchuk)

 τ Poisson on \mathbb{P}^3 , vanishes along smooth curve C. Then C elliptic, $\deg(C) = 3$ or 4; if = 4, $\tau = PdQ - QdP$ and C : P = Q = 0.

THE END