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I. Symplectic structure

Definition

A symplectic form on a manifold X is a 2-form ϕ such that:

dϕ = 0 and ϕ(x) ∈ Alt(Tx(X )) non-degenerate ∀x ∈ X .

⇐⇒ locally ϕ = dp1 ∧ dq1 + . . .+ dpr ∧ dqr (Darboux)

Then (X , ϕ) is a symplectic manifold.

(In mechanics, typically qi ↔ positions, pi ↔ velocities)

 Unlike Riemannian geometry, symplectic geometry is locally

trivial; the interesting problems are global.

All this makes sense with X complex manifold, ϕ holomorphic.

global  X compact, usually projective or Kähler.
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Holomorphic symplectic manifolds

Definition: holomorphic symplectic manifold

X compact, Kähler, simply-connected;

X admits a (holomorphic) symplectic form, unique up to C∗.

Consequences : dimC X = 2r ; the canonical bundle KX := Ω2r
X

is trivial, generated by ϕ ∧ . . . ∧ ϕ (r times).

(Note : on X compact Kähler, holomorphic forms are closed)

Why is it interesting?
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The Decomposition theorem

Decomposition theorem

X compact Kähler with KX = OX . ∃ X̃ → X étale finite and

X̃ = T ×
∏
i

Yi ×
∏
j

Zj

T complex torus (= Cg/lattice);

Yi holomorphic symplectic manifolds;

Zj simply-connected, projective, dim ≥ 3,

H0(Zj ,Ω
∗) = C⊕ Cω, where ω is a generator of KZj

.

(these are the Calabi-Yau manifolds)

Thus holomorphic symplectic manifolds (also called hyperkähler)
are building blocks for manifolds with K trivial, which are
themselves building blocks in the classification of projective (or
compact Kähler) manifolds.
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Examples?

Many examples of Calabi-Yau manifolds, very few of holomorphic

symplectic.

dim 2: X simply-connected, KX = OX
def⇐⇒ X K3 surface.

(Example: X ⊂ P3 of degree 4, etc.)

dim > 2? Idea: take S r for S K3. Many symplectic forms:

ϕ = λ1 p
∗
1ϕS + . . .+ λr p

∗
r ϕS , with λ1, . . . , λr ∈ C∗ .

Try to get unicity by imposing λ1 = . . . = λr , i.e.

ϕ invariant under Sr , i.e. ϕ comes from S (r) := S r/Sr =

{subsets of r points of S , counted with multiplicities}

S (r) is singular, but admits a natural desingularization S [r ] :=

{finite analytic subspaces of S of length r} (Hilbert scheme)
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Examples

Theorem

For S K3, S [r ] is holomorphic symplectic, of dimension 2r .

Other examples

1 Analogous construction with S = complex torus (dim. 2);

gives generalized Kummer manifold Kr of dimension 2r .

2 Two isolated examples by O’Grady, of dimension 6 and 10.

All other known examples belong to one of the above families!

Example: V ⊂ P5 cubic fourfold. F (V ) := {lines contained in V }
is holomorphic symplectic, deformation of S [2] with S K3.

Arnaud Beauville Holomorphic symplectic geometry



The period map

A fundamental tool to study holomorphic symplectic manifolds is

the period map, which describes the position of [ϕ] in H2(X ,C).

Proposition

1 ∃ q : H2(X ,Z)→ Z quadratic and f ∈ Z such that∫
X
α2r = f q(α)r for α ∈ H2(X ,Z) .

2 For L lattice, there exists a complex manifold ML para-

metrizing isomorphism classes of pairs (X , λ), where

λ : (H2(X ,Z), q) ∼−→ L.

(Beware that ML is non Hausdorff in general.)
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The period package

(X , λ) ∈ML, λC : H2(X ,C) ∼−→ LC; put ℘(X , λ) := λC(Cϕ).

℘ :ML −→ P(LC) is the period map.

Theorem

Let Ω := {x ∈ P(LC) | q(x) = 0 , q(x , x̄) > 0}.

1 (AB) ℘ is a local isomorphism ML → Ω.

2 (Huybrechts) ℘ is surjective.

3 (Verbitsky) The restriction of ℘ to any connected component

ofML is generically injective.

Gives very precise information on the structure of ML and the

geometry of X .
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Completely integrable systems

Symplectic geometry provides a set-up for the differential

equations of classical mechanics:

M real symplectic manifold; ϕ defines ϕ] : T ∗(M) ∼−→ T (M).

For h function on M, Xh := ϕ](dh): hamiltonian vector field of h.

Xh · h = 0, i.e. h constant along trajectories of Xh

(“integral of motion”)

dim(M) = 2r . h : M → Rr , h = (h1, . . . , hr ). Suppose:

h−1(s) connected, smooth, compact, Lagrangian (ϕ|h−1(s) = 0).

Arnold-Liouville theorem

h−1(s) ∼= Rr/lattice; Xhi tangent to h−1(s), constant on h−1(s).

 explicit solutions of the ODE Xhi (e.g. in terms of θ functions):

“algebraically completely integrable system”. Classical examples:

geodesics of the ellipsoid, Lagrange and Kovalevskaya tops, etc.
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Holomorphic set-up

No global functions  replace Rr by Pr .

Definition

X holomorphic symplectic, dim(X ) = 2r . Lagrangian fibration:

h : X → Pr , general fiber connected Lagrangian.

⇒ on h−1(Cr )→ Cr , Arnold-Liouville situation.

Theorem

f : X → B surjective with connected fibers ⇒
1 h is a Lagrangian fibration (Matsushita);

2 If X projective, B ∼= Pr (Hwang).

Is there a simple characterization of Lagrangian fibration?

Conjecture

∃ X 99K Pr Lagrangian ⇐⇒ ∃ L on X , q(c1(L)) = 0.
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An example

Many examples of such systems. Here is one:

S ⊂ P5 given by P = Q = R = 0, P,Q,R quadratic ⇒ S K3.

Π = {quadrics ⊃ S} = {λP + µQ + νR} ∼= P2

Π∗ = dual projective plane = {pencils of quadrics ⊃ S} .

h : S [2] → Π∗ : h(x , y) = {quadrics of Π ⊃ 〈x , y〉} .

By the theorem, h Lagrangian fibration ⇒

h−1(〈P,Q〉) = {lines ⊂ {P = Q = 0} ⊂ P5} ∼= 2-dim’l complex torus ,

a classical result of Kummer.
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II. Contact geometry

What about odd dimensions?

Definition

A contact form on a manifold X is a 1-form η such that:

Ker η(x) = Hx  Tx(X ) and dη|Hx
non-degenerate ∀x ∈ X ;

⇐⇒ locally η = dt + p1dq1 + . . .+ prdqr .

A contact structure on X is a family Hx  Tx(X ) ∀x ∈ X ,

defined locally by a contact form.

Again the definition makes sense in the holomorphic set-up  

holomorphic contact manifold. We will be looking for projective

contact manifolds.
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Examples

Examples of contact projective manifolds

1 PT ∗(M) for every projective manifold M(
= {(m,H) | H ⊂ Tm(M)}: “contact elements”

)
;

2 g simple Lie algebra; Omin ⊂ P(g) unique closed adjoint orbit.

(example: rank 1 matrices in P(slr ).)

Conjecture

These are the only contact projective manifolds.(
⇒ classical conjecture in Riemannian geometry: classification

of compact quaternion-Kähler manifolds (LeBrun, Salamon).
)
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Partial results

Definition : A projective manifold X is Fano if KX negative, i.e.

K−NX has “enough sections” for N � 0.

X contact manifold; L := T (X )/H line bundle; then KX
∼= L−k

with k = 1
2 (dim(X ) + 1). Thus X Fano ⇐⇒ LN has enough

sections for N � 0.

Theorem

1 If X is not Fano, X ∼= PT ∗(M)

(Kebekus, Peternell, Sommese, Wísniewski + Demailly)

2 X Fano and L has “enough sections” ⇒ Z ∼= Omin ⊂ P(g)

(AB)
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III. Poisson manifolds

Few symplectic or contact manifolds  look for weaker structure.

ϕ symplectic  ϕ] : T (X ) ∼−→ T ∗(X )  τ ∈ ∧2T (X )  

(f , g) 7→ {f , g} := 〈τ, df ∧ dg〉 for f , g functions on U ⊂ X .

Fact: dϕ = 0 ⇐⇒ Lie algebra structure (Jacobi identity).

Definition

Poisson structure on X : bivector field τ : x 7→ τ(x) ∈ ∧2Tx(X ),

such that (f , g) 7→ {f , g} Lie algebra structure.

Again this makes sense for X complex manifold, τ holomorphic.
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Examples

1 dim(X ) = 2: any global section of ∧2T (X ) = K−1
X is Poisson.

2 dim(X ) = 3; wedge product ∧2T (X )⊗ T (X )→ K−1
X gives

∧2T (X ) ∼−→ Ω1
X ⊗ K−1

X . Then α ∈ H0(Ω1
X ⊗ K−1

X ) is Poisson

⇐⇒ α ∧ dα = 0 ⇐⇒ locally α = fdg .

3 On P3, P,Q quadratic

 α = PdQ − QdP ∈ Ω1
P3(4) = Ω1

P3 ⊗ K−1
P3 Poisson.

4 A holomorphic symplectic manifold is Poisson.

5 If X is Poisson, any X × Y is Poisson.
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The Bondal conjecture

τ Poisson, x ∈ X . τx : T ∗x (X )→ Tx(X ) skew-symmetric, rk even.

Xr := {x ∈ X | rk(τx) = r} (r even) X =
∐

Xr

Proposition

If Xr 6= ∅, dimXr ≥ r .

Proof : Xr is a Poisson submanifold, i.e. at a smooth x ∈ Xr

τx ∈ ∧2Tx(Xr ) ⊂ ∧2Tx(X ) =⇒ rk(τx) ≤ dimXr .

Conjecture (Bondal)

X compact Poisson manifold, Xr 6= ∅ ⇒ dimXr > r .

Example: X0 = {x ∈ X | τx = 0} contains a curve.

(e.g.: on P3, PdQ − QdP vanishes on the curve P = Q = 0.)
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The Bondal conjecture 2

Some evidence

1 True for X projective threefold (Druel: X0 = ∅ or dim ≥ 1).

2 rk(τx) = r for x general ⇒ true for Xr−2 if c1(X )q 6= 0,

q = dimX − r + 1.

Proposition (Polishchuk)

τ Poisson on P3, vanishes along smooth curve C . Then C elliptic,

deg(C ) = 3 or 4; if = 4, τ = PdQ − QdP and C : P = Q = 0.

THE END
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