The Lüroth problem and the Cremona group

Arnaud Beauville

Université de Nice
Tokyo, January 2013

The Lüroth problem

Definitions

- A variety V is unirational if \exists generically surjective rational map $\mathbb{P}^{n} \rightarrow V$. Equivalently, $\mathbb{C}(V) \hookrightarrow \mathbb{C}\left(t_{1}, \ldots, t_{n}\right)$.
- V is rational if \exists birational map $\mathbb{P}^{n} \xrightarrow{\sim} V$.

$$
\text { Equivalently, } \mathbb{C}(V) \xrightarrow{\sim} \mathbb{C}\left(t_{1}, \ldots, t_{n}\right) .
$$

- Lüroth problem: unirational \Longrightarrow rational?

Lüroth (1875): yes for curves.
(Quite easy with Riemann surface theory; but Lüroth's proof is algebraic.)

Higher dimension

Castelnuovo (1894): a unirational surface is rational.
Enriques (1912): proposed counter-example : $V_{2,3} \subset \mathbb{P}^{5}$.
Actually Enriques proves unirationality, and relies on an earlier paper of Fano (1908) for the non-rationality.

But Fano's analysis is incomplete.
Fano made further attempts $(1915,1947)$, but not acceptable by modern standards.

Around 1971 three "modern" counter-examples appeared:

The counter-examples

Authors	Example	Method
Clemens-Griffiths	$V_{3} \subset \mathbb{P}^{4}$	$J(V)$
Iskovskikh-Manin	some $V_{4} \subset \mathbb{P}^{4}$	$\operatorname{Bir}(V)$
Artin-Mumford	specific	Tors $H^{3}(V, \mathbb{Z})$

Comments

- The 3 papers have been very influential: many other examples worked out.

They are still (essentially) the only methods known to prove non-rationality.

- Each method has its advantages and its drawbacks.
- The 3 methods use in an essential way Hironaka's results (elimination of indeterminacies).

Let us test them on the threefolds studied by Fano:
Threefolds V with $-K_{V}$ very ample, $\operatorname{Pic}(V)=\mathbb{Z}\left[K_{V}\right]$.
(Fano threefolds of the first species: modern classification due to Iskovskikh).

Rationality of Fano threefolds

variety	unirational	rational	method
$V_{4} \subset \mathbb{P}^{4}$	some	no	$\operatorname{Bir}(\mathrm{V})$
$V_{2,3} \subset \mathbb{P}^{5}$	yes	gen. no	$\mathrm{J}(\mathrm{V}), \operatorname{Bir}(\mathrm{V})$
$V_{2,2,2} \subset \mathbb{P}^{6}$	$"$	no	$\mathrm{J}(\mathrm{V})$
$V_{10} \subset \mathbb{P}^{7}$	$"$	gen. no	$\mathrm{J}(\mathrm{V})$
$V_{12}, V_{16}, V_{18}, V_{22}$	$"$	yes	
$V_{14} \subset \mathbb{P}^{9}$	$"$	no	$\mathrm{J}(\mathrm{V})$

The main result

So the situation is quite satisfactory, except for $V_{2,3}$ and V_{10}.
Note that in both cases, "generic" means "in an (unspecified) Zariski open subset of the moduli space". So this does not say anything for a particular variety of this type.

Theorem

The threefold $\sum X_{i}=\sum X_{i}^{2}=\sum X_{i}^{3}=0$ in \mathbb{P}^{6} is not rational.

What is the point of giving one more counter-example?

- This gives one specific example of a non-rational $V_{2,3}$.
- The proof is very simple - maybe the simplest non-rationality proof available.
- Real motivation: it completes the work of Prokhorov on the finite simple subgroups of Cr_{3}.

The intermediate Jacobian

Recall the definition of the Jacobian of a curve C :

$$
H^{1}(C, \mathbb{Z}) \subset H^{1}(C, \mathbb{C})=H^{1,0} \oplus H^{0,1}
$$

The image of $H^{1}(C, \mathbb{Z})$ in $H^{0,1}$ is a lattice, so get complex torus

$$
J C:=H^{0,1} / H^{1}(C, \mathbb{Z})
$$

The cup-product defines a unimodular skew-symmetric form

$$
E: H^{1}(C, \mathbb{Z}) \times H^{1}(C, \mathbb{Z}) \rightarrow \mathbb{Z}
$$

such that $E_{\mathbb{R}}(i x, i y)=E_{\mathbb{R}}(x, y), E_{\mathbb{R}}(x, i x)>0$ for $x \neq 0$.
$\rightsquigarrow \theta \in H^{2}(J C, \mathbb{Z}) \cap H^{1,1}$, hence $\theta=c_{1}(L)$, L ample, $h^{0}(L)=1$:
This is a principal polarization on $J C$: we say that $J C$ is a p.p.a.v.
Defines unique divisor on JC (up to translation), the theta divisor.

The Clemens-Griffiths criterion

V Fano threefold, completely analogous Hodge decomposition

$$
H^{3}(V, \mathbb{Z}) \subset H^{3}(V, \mathbb{C})=H^{2,1} \oplus H^{1,2}
$$

$J V=H^{1,2} / H^{3}(V, \mathbb{Z})$ is a p.p.a.v., the intermediate Jacobian of V.

The Clemens-Griffiths criterion

If V is rational, JV is a Jacobian or a product of Jacobians.

Sketch of proof: Assume $\exists u: \mathbb{P}^{3} \xrightarrow{\sim} V$. Hironaka gives

b : composition of blow-ups of points and smooth curves $C_{1}, \ldots C_{p}$; v birational morphism. Then:

The Clemens-Griffiths criterion (continued)

$b: P \rightarrow \mathbb{P}^{3}$ blow up $\Rightarrow J P=J_{1} \times \ldots \times J_{p}$, with $J_{i}:=J C_{i} ;$
$v: P \rightarrow V$ morphism $\Rightarrow H^{*}(P, \mathbb{Z}) \underset{v^{*}}{\stackrel{v_{*}}{\rightleftarrows}} H^{*}(V, \mathbb{Z})$ with $v_{*} v^{*}=\mathrm{Id}$,
so $H^{*}(P, \mathbb{Z})=H^{*}(V, \mathbb{Z}) \oplus M \Rightarrow J P \cong J V \times A$ for some p.p.a.v. A.

Miracle

The decomposition $J P=J_{1} \times \ldots \times J_{p}$ is unique (up to permutation).

This is because

$$
\Theta_{J P}=\Theta_{J_{1}} \times J_{2} \times \ldots \times J_{p}+\ldots+J_{1} \times \ldots \times J_{p-1} \times \Theta_{J_{p}}
$$

and the theta divisor of a Jacobian is irreducible.
So $J P \cong J_{1} \times \ldots \times J_{p} \cong J V \times A \Longrightarrow J V \cong J_{k_{1}} \times \ldots \times J_{k_{m}}$.

Proof of the theorem

How can one prove that $J V \not \approx J_{1} \times \ldots \times J_{p}$?
Usually by studying the geometry of the theta divisor (singular locus, Gauss map, ...). I will use instead the action of \mathfrak{A}_{7}.

Proof of the theorem :

V defined by $\sum X_{i}=\sum X_{i}^{2}=\sum X_{i}^{3}=0$ in $\mathbb{P}^{6}:$ action of \mathfrak{S}_{7}, hence of \mathfrak{A}_{7}.

Thus \mathfrak{A}_{7} acts on JV. Non-trivially?
Lemma
JV contains no abelian subvariety fixed by \mathfrak{A}_{7}.
Proof: analyze the action of \mathfrak{A}_{7} on $T_{0}(J V)=H^{1,2} \cong H^{2}\left(V, \Omega_{V}^{1}\right)$.
Find: $T_{0}(J V)=V_{6} \oplus V_{14}$, both faithful.

Step $1: J V \neq J C$

In particular, $\mathfrak{A}_{7} \subset \operatorname{Aut}(J V)$. Note: $\operatorname{dim} J V=20$.
Step 1: If $\mathfrak{A}_{7} \subset \operatorname{Aut}(J C), g(C) \geq 31$ (hence $J V \neq J C$).
Torelli: $\operatorname{Aut}(J C)=\left\{\begin{array}{l}\operatorname{Aut}(C) \text { if } C \text { hyperelliptic } \\ \operatorname{Aut}(C) \times \mathbb{Z} / 2 \text { otherwise }\end{array}\right.$
Thus $\mathfrak{A}_{7} \longleftrightarrow \operatorname{Aut}(C) \Longrightarrow \frac{1}{2} 7!\leq 84(g-1)$, gives $g \geq 31$.

Step 2: Assume $J V=J_{1} \times \ldots \times J_{n}$.
(more subtle: e.g. $\operatorname{Aut}\left(E^{20}\right) \supset \mathfrak{S}_{20}$).

Assume $J V \cong J_{1} \times \ldots \times J_{n}$

Unicity of the decomposition $\Rightarrow \mathfrak{A}_{7}$ permutes the J_{i} 's:
\rightsquigarrow action of \mathfrak{A}_{7} on $[1, n]$. Reorder $[1, n]$:

$$
J V \cong \underbrace{J_{1} \times \ldots \times J_{p}}_{\text {orbit }[1, p]} \times \underbrace{J_{p+1} \times \ldots \times J_{p+q}}_{\text {orbit }[p+1, p+q]} \times \ldots
$$

that is, $\quad J V \cong J_{1}^{p} \times J_{p+1}^{q} \times \ldots$ Hence

$$
20=\operatorname{dim} J V=p \operatorname{dim} J_{1}+q \operatorname{dim} J_{p+1}+\cdots
$$

Lemma (classical)

If \mathfrak{A}_{7} acts transitively on a set S, then $\# S=1,7,15$ or ≥ 21.

But $p=1 \Longrightarrow \mathfrak{A}_{7}$ acts on J_{1} : either trivially, (no by lemma) or $\mathfrak{A}_{7} \subset \operatorname{Aut}\left(J_{1}\right) \Longrightarrow \operatorname{dim} J_{1} \geq 31$: impossible.
Thus $p, q, \cdots=7$ or 15 ; contradiction!

The method applies to other threefolds :

- $V_{2,3}: \sum X_{i}^{2}=\sum X_{i}^{3}=0$ in \mathbb{P}^{5}, with group \mathfrak{S}_{6}; more difficult.
- Klein cubic $\sum_{i \in \mathbb{Z} / 5} X_{i}^{2} X_{i+1}=0$ in \mathbb{P}^{4}, with group $\operatorname{PSL}\left(2, \mathbb{F}_{11}\right)$.
- The \mathfrak{S}_{6}-invariant quartic threefolds

$$
X_{t}: \sum x_{i}=0 \quad, \quad t \sum x_{i}^{4}-\left(\sum x_{i}^{2}\right)^{2}=0 \quad \text { in } \mathbb{P}^{5}, \quad t \in \mathbb{P}^{1}
$$

X_{2} is the Burkhardt quartic, X_{4} the Igusa quartic.
For $t \neq 0,2,4,6, \frac{10}{7}, \quad X_{t}$ has 30 nodes :
$\operatorname{Sing}\left(X_{t}\right)=\mathfrak{S}_{6}$-orbit of $\left(1,1, \rho, \rho, \rho^{2}, \rho^{2}\right), \quad \rho=e^{\frac{2 \pi i}{3}}$. $\operatorname{dim} J \hat{X}_{t}=5$, action of \mathfrak{S}_{6} nontrivial $\Rightarrow X_{t}$ not rational. Is it unirational?

The Cremona group

$C r_{n}:=\left\{\right.$ birational automorphisms of $\left.\mathbb{P}^{n}\right\}$.
The finite subgroups of $C r_{2}$ are known (Kantor, Wiman,
Dolgachev-Iskovskikh); very long list.
The simple (non-cyclic) finite subgroups of Cr_{2} are much easier to classify: $\mathfrak{A}_{5}, \mathfrak{A}_{6}$ and $\operatorname{PSL}\left(2, \mathbb{F}_{7}\right)$.

Theorem (Prokhorov)

The simple finite subgroups of Cr_{3} not contained in Cr_{2} are $\mathfrak{A}_{7}, S L\left(2, \mathbb{F}_{8}\right)$ and $\operatorname{PSp}\left(4, \mathbb{F}_{3}\right)$.

Up to conjugacy, $S L\left(2, \mathbb{F}_{8}\right)$ admits only one embedding in $C r_{3}$, and $\operatorname{PSp}\left(4, \mathbb{F}_{3}\right)$ two.

A complement

Proposition

Up to conjugacy, \mathfrak{A}_{7} admits only one embedding in Cr_{3}.

It is given by $\mathfrak{A}_{7} \longleftrightarrow S O(6, \mathbb{C})$ (standard representation), plus double covering $S O(6, \mathbb{C}) \rightarrow P G L(4, \mathbb{C})$.

Proof: Prokhorov classifies (up to birational equivalence) all $G \subset \operatorname{Aut}(V), G$ finite simple, V rationally connected 3-fold.

Embeddings $G \longleftrightarrow \mathrm{Cr}_{3}$ are obtained when V is rational. \mathfrak{A}_{7} appears twice: action on \mathbb{P}^{3} above, and action on V :

$$
\sum x_{i}=\sum x_{i}^{2}=\sum X_{i}^{3}=0 \text { in } \mathbb{P}^{6}
$$

Since V is not rational, only one embedding $\mathfrak{A}_{7} \subset$ Cr $_{3}$.

Another corollary

Proposition

The group \mathfrak{S}_{7} does not embed in Cr_{3}.
Idea of the proof: extend Prokhorov's method to $\mathfrak{S}_{7} \rightsquigarrow$ any rationally connected 3-fold with an action of \mathfrak{S}_{7} is birational to V, hence not rational.

Definition $: \operatorname{crdim}(G):=\min \left\{n \mid \exists G \longleftrightarrow C r_{n}\right\}$.

Proposition

For $n \geq 4, \quad \operatorname{crdim}\left(\mathfrak{S}_{n}\right) \leq n-3$, with equality for $4 \leq n \leq 7$.
Proof: \mathfrak{S}_{n} acts on the quadric $Q^{n-3}: \sum X_{i}=\sum X_{i}^{2}=0$ in \mathbb{P}^{n-1}. $\mathfrak{S}_{5} \not \subset C r_{1}, \mathfrak{S}_{6} \not \subset C r_{2}, \mathfrak{S}_{7} \not \subset C r_{3}$.

Question: Is it true that $\operatorname{crdim}\left(\mathfrak{S}_{n}\right)=n-3$?

The end

THE END

