The Lüroth problem and the Cremona group

Arnaud Beauville

Université de Nice

Tokyo, January 2013

Arnaud Beauville The Lüroth problem and the Cremona group

The Lüroth problem

Definitions

• A variety V is unirational if \exists generically surjective rational

map $\mathbb{P}^n \dashrightarrow V$. Equivalently, $\mathbb{C}(V) \hookrightarrow \mathbb{C}(t_1, \ldots, t_n)$.

• V is rational if \exists birational map $\mathbb{P}^n \xrightarrow{\sim} V$.

Equivalently, $\mathbb{C}(V) \longrightarrow \mathbb{C}(t_1, \ldots, t_n)$.

• Lüroth problem: unirational \implies rational?

Lüroth (1875): yes for curves.

(Quite easy with Riemann surface theory; but Lüroth's proof is algebraic.)

Castelnuovo (1894): a unirational surface is rational.

Enriques (1912): proposed counter-example : $V_{2,3} \subset \mathbb{P}^5$.

Actually Enriques proves unirationality, and relies on an earlier paper of Fano (1908) for the non-rationality.

But Fano's analysis is incomplete.

Fano made further attempts (1915, 1947), but not acceptable by modern standards.

Around 1971 three "modern" counter-examples appeared:

Authors	Example	Method
Clemens-Griffiths	$V_3 \subset \mathbb{P}^4$	J(V)
Iskovskikh-Manin	some $V_4\subset \mathbb{P}^4$	$\operatorname{Bir}(V)$
Artin-Mumford	specific	Tors $H^3(V,\mathbb{Z})$

• The 3 papers have been very influential: many other examples worked out.

They are still (essentially) the only methods known to prove non-rationality.

- Each method has its advantages and its drawbacks.
- The 3 methods use in an essential way Hironaka's results (elimination of indeterminacies).

Let us test them on the threefolds studied by Fano:

Threefolds V with $-K_V$ very ample, $\operatorname{Pic}(V) = \mathbb{Z}[K_V]$.

(*Fano threefolds of the first species* : modern classification due to lskovskikh).

variety	unirational	rational	method
$V_4 \subset \mathbb{P}^4$	some	no	Bir(V)
$V_{2,3} \subset \mathbb{P}^5$	yes	gen. no	J(V) , $Bir(V)$
$V_{2,2,2} \subset \mathbb{P}^6$	"	no	J(V)
$V_{10} \subset \mathbb{P}^7$	"	gen. no	J(V)
$V_{12}, V_{16}, V_{18}, V_{22}$	"	yes	
$V_{14}\subset \mathbb{P}^9$	"	no	J(V)

The main result

So the situation is quite satisfactory, except for $V_{2,3}$ and V_{10} .

Note that in both cases, "generic" means "in an (unspecified) Zariski open subset of the moduli space". So this does not say anything for a particular variety of this type.

Theorem

The threefold $\sum X_i = \sum X_i^2 = \sum X_i^3 = 0$ in \mathbb{P}^6 is not rational.

What is the point of giving one more counter-example?

- This gives one specific example of a non-rational $V_{2,3}$.
- The proof is very simple maybe the simplest non-rationality proof available.
- \bullet Real motivation: it completes the work of Prokhorov on the finite simple subgroups of ${\rm Cr}_3.$

The intermediate Jacobian

Recall the definition of the Jacobian of a curve C:

$$H^1(\mathcal{C},\mathbb{Z})\subset H^1(\mathcal{C},\mathbb{C})=H^{1,0}\oplus H^{0,1}$$

The image of $H^1(\mathcal{C},\mathbb{Z})$ in $H^{0,1}$ is a lattice, so get complex torus

$$JC := H^{0,1}/H^1(C,\mathbb{Z})$$
.

The cup-product defines a unimodular skew-symmetric form

$$E: H^1(C,\mathbb{Z}) \times H^1(C,\mathbb{Z}) \to \mathbb{Z}$$

such that $E_{\mathbb{R}}(ix, iy) = E_{\mathbb{R}}(x, y)$, $E_{\mathbb{R}}(x, ix) > 0$ for $x \neq 0$.

 \rightarrow $\theta \in H^2(JC, \mathbb{Z}) \cap H^{1,1}$, hence $\theta = c_1(L)$, *L* ample, $h^0(L) = 1$: This is a principal polarization on *JC*: we say that *JC* is a p.p.a.v. Defines unique divisor on *JC* (up to translation), the theta divisor.

The Clemens-Griffiths criterion

V Fano threefold, completely analogous Hodge decomposition

$$H^3(V,\mathbb{Z}) \subset H^3(V,\mathbb{C}) = H^{2,1} \oplus H^{1,2}$$

 $JV = H^{1,2}/H^3(V,\mathbb{Z})$ is a p.p.a.v., the intermediate Jacobian of V.

The Clemens-Griffiths criterion

If V is rational, JV is a Jacobian or a product of Jacobians.

Sketch of proof : Assume $\exists u : \mathbb{P}^3 \xrightarrow{\sim} V$. Hironaka gives

b: composition of blow-ups of points and smooth curves C_1, \ldots, C_p ;

v birational morphism. Then:

The Clemens-Griffiths criterion (continued)

$$b:P o \mathbb{P}^3$$
 blow up $\Rightarrow JP=J_1 imes \ldots imes J_p$, with $J_i:=JC_i$;

$$v: P \to V \text{ morphism} \Rightarrow H^*(P, \mathbb{Z}) \xrightarrow[v^*]{v_*} H^*(V, \mathbb{Z}) \text{ with } v_*v^* = \mathrm{Id},$$

so $H^*(P,\mathbb{Z}) = H^*(V,\mathbb{Z}) \oplus M \Rightarrow JP \cong JV \times A$ for some p.p.a.v. A.

Miracle

The decomposition
$$JP = J_1 \times \ldots \times J_p$$
 is unique (up to permutation).

This is because

$$\Theta_{JP} = \Theta_{J_1} imes J_2 imes \ldots imes J_p + \ldots + J_1 imes \ldots imes J_{p-1} imes \Theta_{J_p}$$

and the theta divisor of a Jacobian is irreducible.

So
$$JP \cong J_1 \times \ldots \times J_p \cong JV \times A \implies JV \cong J_{k_1} \times \ldots \times J_{k_m}.$$

Proof of the theorem

How can one prove that $JV \ncong J_1 \times \ldots \times J_p$?

Usually by studying the geometry of the theta divisor (singular locus, Gauss map, ...). I will use instead the action of \mathfrak{A}_7 .

Proof of the theorem :

$$V$$
 defined by $\sum X_i = \sum X_i^2 = \sum X_i^3 = 0$ in \mathbb{P}^6 :

action of \mathfrak{S}_7 , hence of \mathfrak{A}_7 .

Thus \mathfrak{A}_7 acts on JV. Non-trivially?

Lemma

JV contains no abelian subvariety fixed by \mathfrak{A}_7 .

Proof: analyze the action of \mathfrak{A}_7 on $T_0(JV) = H^{1,2} \cong H^2(V, \Omega^1_V)$. Find: $T_0(JV) = V_6 \oplus V_{14}$, both faithful. In particular, $\mathfrak{A}_7 \subset \operatorname{Aut}(JV)$. Note: dim JV = 20.

Step 1: If $\mathfrak{A}_7 \subset \operatorname{Aut}(JC)$, $g(C) \geq 31$ (hence $JV \neq JC$).

Torelli:
$$\operatorname{Aut}(JC) = \begin{cases} \operatorname{Aut}(C) & \text{if } C \text{ hyperelliptic} \\ \operatorname{Aut}(C) \times \mathbb{Z}/2 & \text{otherwise.} \end{cases}$$

Thus $\mathfrak{A}_7 \hookrightarrow \operatorname{Aut}(\mathcal{C}) \implies \frac{1}{2}7! \leq 84(g-1)$, gives $g \geq 31$.

Step 2: Assume $JV = J_1 \times \ldots \times J_n$. (more subtle: e.g. $Aut(E^{20}) \supset \mathfrak{S}_{20}$).

Assume $JV \cong J_1 \times \ldots \times J_n$

Unicity of the decomposition $\Rightarrow \mathfrak{A}_7$ permutes the J_i 's: \rightsquigarrow action of \mathfrak{A}_7 on [1, n]. Reorder [1, n]:

$$JV \cong \underbrace{J_1 \times \ldots \times J_p}_{\text{orbit } [1,p]} \times \underbrace{J_{p+1} \times \ldots \times J_{p+q}}_{\text{orbit } [p+1,p+q]} \times \ldots$$

that is, $JV\cong J_1^p imes J_{p+1}^q imes \ldots$ Hence

$$20 = \dim JV = p \dim J_1 + q \dim J_{p+1} + \cdots$$

Lemma (classical)

If \mathfrak{A}_7 acts transitively on a set S, then #S = 1, 7, 15 or ≥ 21 .

But $p = 1 \implies \mathfrak{A}_7$ acts on J_1 : either trivially, (no by lemma)

or $\mathfrak{A}_7 \subset \operatorname{Aut}(J_1) \implies \dim J_1 \ge 31$: impossible.

Thus $p, q, \dots = 7$ or 15; contradiction!

The method applies to other threefolds :

•
$$V_{2,3}: \sum X_i^2 = \sum X_i^3 = 0$$
 in \mathbb{P}^5 , with group \mathfrak{S}_6 ; more difficult.

• Klein cubic
$$\sum_{i \in \mathbb{Z}/5} X_i^2 X_{i+1} = 0$$
 in \mathbb{P}^4 , with group $PSL(2, \mathbb{F}_{11})$.

The S₆-invariant quartic threefolds

$$X_t: \ \sum x_i = 0 \quad , \quad t \sum x_i^4 - (\sum x_i^2)^2 = 0 \quad \text{in } \mathbb{P}^5 \ , \quad t \in \mathbb{P}^1$$

 X_2 is the Burkhardt quartic, X_4 the Igusa quartic. For $t \neq 0, 2, 4, 6, \frac{10}{7}$, X_t has 30 nodes : Sing $(X_t) = \mathfrak{S}_6$ -orbit of $(1, 1, \rho, \rho, \rho^2, \rho^2)$, $\rho = e^{\frac{2\pi i}{3}}$. dim $J\hat{X}_t = 5$, action of \mathfrak{S}_6 nontrivial $\Rightarrow X_t$ not rational. Is it unirational?

The Cremona group

 $Cr_n := \{ \text{birational automorphisms of } \mathbb{P}^n \}.$

The finite subgroups of Cr_2 are known (Kantor, Wiman,

Dolgachev-Iskovskikh); very long list.

The simple (non-cyclic) finite subgroups of Cr_2 are much easier to classify: \mathfrak{A}_5 , \mathfrak{A}_6 and $PSL(2, \mathbb{F}_7)$.

Theorem (Prokhorov)

The simple finite subgroups of Cr_3 not contained in Cr_2 are

 \mathfrak{A}_7 , $SL(2, \mathbb{F}_8)$ and $PSp(4, \mathbb{F}_3)$.

Up to conjugacy, $SL(2, \mathbb{F}_8)$ admits only one embedding in Cr_3 , and $PSp(4, \mathbb{F}_3)$ two.

Proposition

Up to conjugacy, \mathfrak{A}_7 admits only one embedding in Cr_3 .

It is given by $\mathfrak{A}_7 \hookrightarrow SO(6, \mathbb{C})$ (standard representation), plus double covering $SO(6, \mathbb{C}) \to PGL(4, \mathbb{C})$.

Proof : Prokhorov classifies (up to birational equivalence) all

 $G \subset Aut(V)$, G finite simple, V rationally connected 3-fold.

Embeddings $G \hookrightarrow Cr_3$ are obtained when V is rational.

 \mathfrak{A}_7 appears twice: action on \mathbb{P}^3 above, and action on V:

$$\sum X_i = \sum X_i^2 = \sum X_i^3 = 0$$
 in \mathbb{P}^6 .

Since V is not rational, only one embedding $\mathfrak{A}_7 \subset Cr_3$.

Another corollary

Proposition

The group \mathfrak{S}_7 does not embed in Cr_3 .

Idea of the proof : extend Prokhorov's method to $\mathfrak{S}_7 \rightsquigarrow$ any rationally connected 3-fold with an action of \mathfrak{S}_7 is birational to V, hence not rational.

Definition :
$$\operatorname{crdim}(G) := \min\{n \mid \exists G \hookrightarrow Cr_n\}.$$

Proposition

For $n \ge 4$, $\operatorname{crdim}(\mathfrak{S}_n) \le n-3$, with equality for $4 \le n \le 7$.

Proof: \mathfrak{S}_n acts on the quadric Q^{n-3} : $\sum X_i = \sum X_i^2 = 0$ in \mathbb{P}^{n-1} . $\mathfrak{S}_5 \not\subset Cr_1$, $\mathfrak{S}_6 \not\subset Cr_2$, $\mathfrak{S}_7 \not\subset Cr_3$.

Question : Is it true that $\operatorname{crdim}(\mathfrak{S}_n) = n - 3$?

THE END

Arnaud Beauville The Lüroth problem and the Cremona group