Introduction
1.
$$G = SL(r)$$

2. $G = SO(r)$
3. $G = Sp(2r)$

The theta map for principal bundles on curves

Arnaud Beauville

Université de Nice

Ramanan 70, Miraflores, June 2008

Introduction

C curve of genus $g \ge 2$ G simple algebraic group

< ∃ >

э

Introduction

- C curve of genus $g \ge 2$ G simple algebraic group
- \mathcal{M}_{G} moduli space of (semi-stable) principal G-bundles on C

4 3 b

Introduction

C curve of genus $g \ge 2$ G simple algebraic group

 \mathcal{M}_{G} moduli space of (semi-stable) principal G-bundles on C

Normal projective variety, with mild singularities.

Introduction

C curve of genus $g \ge 2$ G simple algebraic group

 \mathcal{M}_{G} moduli space of (semi-stable) principal *G*-bundles on *C*

Normal projective variety, with mild singularities. But : embedding in \mathbb{P}^n not explicit.

Introduction

C curve of genus $g \ge 2$ G simple algebraic group

 \mathcal{M}_{G} moduli space of (semi-stable) principal *G*-bundles on *C*

Normal projective variety, with mild singularities. But : embedding in \mathbb{P}^n not explicit.

 $\operatorname{Pic}(\mathcal{M}_{\mathsf{G}})=\mathbb{Z}\left[\mathcal{L}\right]$, $\mathcal{L}=\mathsf{determinant}$ bundle.

伺 ト イ ヨ ト イ ヨ ト

Introduction

C curve of genus $g \ge 2$ G simple algebraic group

 \mathcal{M}_{G} moduli space of (semi-stable) principal G-bundles on C

Normal projective variety, with mild singularities. But : embedding in \mathbb{P}^n not explicit.

 $\operatorname{Pic}(\mathcal{M}_{G})=\mathbb{Z}\left[\mathcal{L}\right]$, $\mathcal{L}=$ determinant bundle. Theta map:

$$\theta: \mathcal{M}_{\mathcal{G}} - \twoheadrightarrow |\mathcal{L}|^*$$
,

rational map defined by the sections of $\mathcal L$, $(|\mathcal L| = \mathbb P(H^0(\mathcal M_G,\mathcal L))).$

・ 同 ト ・ ヨ ト ・ ヨ ト ・

Introduction

- C curve of genus $g \ge 2$ G simple algebraic group
- \mathcal{M}_{G} moduli space of (semi-stable) principal G-bundles on C

Normal projective variety, with mild singularities. But : embedding in \mathbb{P}^n not explicit.

 $\operatorname{Pic}(\mathcal{M}_{G})=\mathbb{Z}\left[\mathcal{L}\right]$, $\mathcal{L}=$ determinant bundle. Theta map:

$$\theta: \mathcal{M}_{\mathcal{G}} - \twoheadrightarrow |\mathcal{L}|^*$$
,

rational map defined by the sections of $\mathcal L$, $(|\mathcal L|=\mathbb P(H^0(\mathcal M_G,\mathcal L))).$

Theme of the talk : What can we say about that map?

伺 ト イ ヨ ト イ ヨ ト

$$G = SL(r)$$

$\mathcal{M}_{\mathit{SL}(r)} = \left\{ E \text{ (semi-stable) rank } r \mid \, \det E = \mathcal{O}_C \right\}.$

高 と く ヨ と く ヨ と

3

G = SL(r)

$$\mathcal{M}_{SL(r)} = \{ E \text{ (semi-stable) rank } r \mid \det E = \mathcal{O}_C \}.$$

Key construction : associate to $E \in \mathcal{M}_{SL(r)}$ a divisor on the Jacobian:

3

・ 同 ト ・ ヨ ト ・ ヨ ト

G = SL(r)

$$\mathcal{M}_{SL(r)} = \{ E \text{ (semi-stable) rank } r \mid \det E = \mathcal{O}_C \}.$$

Key construction : associate to $E \in \mathcal{M}_{SL(r)}$ a divisor on the Jacobian:

$$\Theta_E := \{L \in J^{g-1} \mid H^0(C, E \otimes L) \neq 0\}$$

3

・ 同 ト ・ ヨ ト ・ ヨ ト

G = SL(r)

$$\mathcal{M}_{SL(r)} = \{ E \text{ (semi-stable) rank } r \mid \det E = \mathcal{O}_C \}.$$

Key construction : associate to $E \in \mathcal{M}_{SL(r)}$ a divisor on the Jacobian:

$$\Theta_E := \{L \in J^{g-1} \mid H^0(C, E \otimes L) \neq 0\}$$

Since $\chi(E \otimes L) = 0$, Θ_E is the zero locus of a section of $\mathcal{O}_J(r\Theta)$, where $\Theta :=$ canonical Theta divisor on J^{g-1} . Thus:

伺 ト く ヨ ト く ヨ ト

G = SL(r)

$$\mathcal{M}_{SL(r)} = \{ E \text{ (semi-stable) rank } r \mid \det E = \mathcal{O}_C \}.$$

Key construction : associate to $E \in \mathcal{M}_{SL(r)}$ a divisor on the Jacobian:

$$\Theta_E := \{L \in J^{g-1} \mid H^0(C, E \otimes L) \neq 0\}$$

Since $\chi(E \otimes L) = 0$, Θ_E is the zero locus of a section of $\mathcal{O}_J(r\Theta)$, where $\Theta :=$ canonical Theta divisor on J^{g-1} . Thus:

• either $\Theta_E \in |r\Theta|$,

伺 ト く ヨ ト く ヨ ト

G = SL(r)

$$\mathcal{M}_{SL(r)} = \{ E \text{ (semi-stable) rank } r \mid \det E = \mathcal{O}_C \}.$$

Key construction : associate to $E \in \mathcal{M}_{SL(r)}$ a divisor on the Jacobian:

$$\Theta_E := \{L \in J^{g-1} \mid H^0(C, E \otimes L) \neq 0\}$$

Since $\chi(E \otimes L) = 0$, Θ_E is the zero locus of a section of $\mathcal{O}_J(r\Theta)$, where $\Theta :=$ canonical Theta divisor on J^{g-1} . Thus:

• either
$$\Theta_E \in |r\Theta|$$
,

• or
$$\Theta_E = J^{g-1}$$
: *E* has no Theta divisor.

同下 イヨト イヨト

3

Introduction
1.
$$G = SL(r)$$

2. $G = SO(r)$
3. $G = Sp(2r)$

3

• • = • • = •

Introduction
1.
$$G = SL(r)$$

2. $G = SO(r)$
3. $G = Sp(2r)$

CONSEQUENCE :

Indeterminacy locus of $\theta = Bs |\mathcal{L}| = \{E \in \mathcal{M}_{SL(r)} \mid \Theta_E = J^{g-1}\}$.

伺 ト く ヨ ト く ヨ ト

Introduction
1.
$$G = SL(r)$$

2. $G = SO(r)$
3. $G = Sp(2r)$

CONSEQUENCE :

Indeterminacy locus of $\theta = Bs |\mathcal{L}| = \{E \in \mathcal{M}_{SL(r)} \mid \Theta_E = J^{g-1}\}$.

Examples first constructed by Raynaud, exist for $r \ge 4$ in any genus (Pauly).

Introduction
1.
$$G = SL(r)$$

2. $G = SO(r)$
3. $G = Sp(2r)$

CONSEQUENCE :

Indeterminacy locus of $\theta = Bs |\mathcal{L}| = \{E \in \mathcal{M}_{SL(r)} \mid \Theta_E = J^{g-1}\}$.

Examples first constructed by Raynaud, exist for $r \ge 4$ in any genus (Pauly). One of the major difficulties in the study of θ .

Remark on the proof

Tautological lemma

X projective variety, $\varphi: X \dashrightarrow \mathbb{P}^N$, $\mathcal{L} := \varphi^* \mathcal{O}_{\mathbb{P}}(1)$. Assume:

伺 ト イヨト イヨト

3

Remark on the proof

Tautological lemma

X projective variety, $\varphi: X \dashrightarrow \mathbb{P}^N$, $\mathcal{L} := \varphi^* \mathcal{O}_{\mathbb{P}}(1)$. Assume:

• φ non-degenerate (i.e. $\varphi(X)$ spans \mathbb{P}^N);

• • = • • = •

Remark on the proof

Tautological lemma

X projective variety, $\varphi: X \dashrightarrow \mathbb{P}^N$, $\mathcal{L} := \varphi^* \mathcal{O}_{\mathbb{P}}(1)$. Assume:

- φ non-degenerate (i.e. $\varphi(X)$ spans \mathbb{P}^N);
- dim $|\mathcal{L}| = N$.

• • = • • = •

Remark on the proof

Tautological lemma

X projective variety, $\varphi: X \dashrightarrow \mathbb{P}^N$, $\mathcal{L} := \varphi^* \mathcal{O}_{\mathbb{P}}(1)$. Assume:

- φ non-degenerate (i.e. $\varphi(X)$ spans \mathbb{P}^N);
- dim $|\mathcal{L}| = N$.

Then:

* E > * E >

Remark on the proof

Tautological lemma

X projective variety, $\varphi: X \dashrightarrow \mathbb{P}^N$, $\mathcal{L} := \varphi^* \mathcal{O}_{\mathbb{P}}(1)$. Assume:

- φ non-degenerate (i.e. $\varphi(X)$ spans \mathbb{P}^N);
- dim $|\mathcal{L}| = N$.

Then:

In our case, non-degeneracy easy. Need dim $|\mathcal{L}| = \dim |r\Theta|$;

伺 ト く ヨ ト く ヨ ト

Remark on the proof

Tautological lemma

X projective variety, $\varphi: X \dashrightarrow \mathbb{P}^N$, $\mathcal{L} := \varphi^* \mathcal{O}_{\mathbb{P}}(1)$. Assume:

- φ non-degenerate (i.e. $\varphi(X)$ spans \mathbb{P}^N);
- dim $|\mathcal{L}| = N$.

Then:

In our case, non-degeneracy easy. Need dim $|\mathcal{L}| = \dim |r\Theta|$;

follows from Verlinde formula, not known at the time \rightsquigarrow

• • = • • = •

Remark on the proof

Tautological lemma

X projective variety, $\varphi: X \dashrightarrow \mathbb{P}^N$, $\mathcal{L} := \varphi^* \mathcal{O}_{\mathbb{P}}(1)$. Assume:

- φ non-degenerate (i.e. $\varphi(X)$ spans \mathbb{P}^N);
- dim $|\mathcal{L}| = N$.

Then:

In our case, non-degeneracy easy. Need dim $|\mathcal{L}| = \dim |r\Theta|$;

follows from Verlinde formula, not known at the time \rightsquigarrow

replaced by ad hoc argument with spectral curve.

Introduction
1.
$$G = SL(r)$$

2. $G = SO(r)$
3. $G = Sp(2r)$

Rank 2

Theorem

Rank 2

Theorem

• For
$$g = 2, \ \theta : \mathcal{M}_{SL(2)} \xrightarrow{\sim} |2\Theta|$$
 (Narasimhan-Ramanan)

・ロン ・雪 と ・ ヨ と ・ ヨ と

Rank 2

Theorem

- For g = 2, $\theta : \mathcal{M}_{SL(2)} \xrightarrow{\sim} |2\Theta|$ (Narasimhan-Ramanan)
- For $g \ge 3$, C non hyperelliptic, $\theta : \mathcal{M}_{SL(2)} \hookrightarrow |2\Theta|$ (Brivio-Verra + van Geemen-Izadi)

・ 同 ト ・ ヨ ト ・ ヨ ト …

3

Rank 2

Theorem

- For g = 2, $\theta : \mathcal{M}_{SL(2)} \xrightarrow{\sim} |2\Theta|$ (Narasimhan-Ramanan)
- For $g \ge 3$, C non hyperelliptic, $\theta : \mathcal{M}_{SL(2)} \hookrightarrow |2\Theta|$ (Brivio-Verra + van Geemen-Izadi)
- For g ≥ 3, C hyperelliptic, θ 2-to-1 onto explicit subvariety of |2Θ| (Bhosle-Ramanan).

・ 同 ト ・ ヨ ト ・ ヨ ト …

Rank 2

Theorem

- For g = 2, $\theta : \mathcal{M}_{SL(2)} \xrightarrow{\sim} |2\Theta|$ (Narasimhan-Ramanan)
- For $g \ge 3$, C non hyperelliptic, $\theta : \mathcal{M}_{SL(2)} \hookrightarrow |2\Theta|$ (Brivio-Verra + van Geemen-Izadi)
- For $g \ge 3$, C hyperelliptic, θ 2-to-1 onto explicit subvariety of $|2\Theta|$ (Bhosle-Ramanan).

Example (Narasimhan-Ramanan)

- g= 3, C non hyperelliptic: $heta(\mathcal{M}_{SL(2)})$ quartic hypersurface
- $\mathcal{Q} \subset |2\Theta| \cong \mathbb{P}^7$, singular along the Kummer variety $\mathcal{K}(J) \implies$

Rank 2

Theorem

- For g = 2, $\theta : \mathcal{M}_{SL(2)} \xrightarrow{\sim} |2\Theta|$ (Narasimhan-Ramanan)
- For $g \ge 3$, C non hyperelliptic, $\theta : \mathcal{M}_{SL(2)} \hookrightarrow |2\Theta|$ (Brivio-Verra + van Geemen-Izadi)
- For $g \ge 3$, C hyperelliptic, θ 2-to-1 onto explicit subvariety of $|2\Theta|$ (Bhosle-Ramanan).

Example (Narasimhan-Ramanan)

- g= 3, C non hyperelliptic: $heta(\mathcal{M}_{SL(2)})$ quartic hypersurface
- $\mathcal{Q} \subset |2\Theta| \cong \mathbb{P}^7$, singular along the Kummer variety $\mathcal{K}(J) \implies$
- \mathcal{Q} is the Coble quartic.

Introduction
1.
$$G = SL(r)$$

2. $G = SO(r)$
3. $G = Sp(2r)$

Genus 2

In genus 2, dim $\mathcal{M}_{SL(r)} = \dim |r\Theta| = r^2 - 1.$

白 ト ・ ヨ ト ・ ヨ ト

2

Genus 2

In genus 2, dim
$$\mathcal{M}_{SL(r)}= {
m dim} \, |r\Theta|=r^2-1.$$

Proposition

For g = 2, θ is generically finite.

・ロン ・部 と ・ ヨ と ・ ヨ と …

Genus 2

In genus 2, dim
$$\mathcal{M}_{SL(r)} = \dim |r\Theta| = r^2 - 1$$
.

Proposition

For g = 2, θ is generically finite.

NOTE : θ is not a morphism for $r \ge 4$; some fibres have dimension $\ge \left[\frac{r}{2}\right] - 1$.

Genus 2

In genus 2, dim
$$\mathcal{M}_{SL(r)} = \dim |r\Theta| = r^2 - 1$$
.

Proposition

For g = 2, θ is generically finite.

NOTE : θ is not a morphism for $r \ge 4$; some fibres have dimension $\ge \left[\frac{r}{2}\right] - 1$.

Example (Ortega)

 $\begin{array}{ll} (g=2) & \theta: \mathcal{M}_{SL(3)} \to |3\Theta| \cong \mathbb{P}^8 \text{ is a double covering, branched} \\ \text{along a sextic hypersurface } \mathcal{S} \subset |3\Theta|. \end{array}$

Genus 2

In genus 2, dim
$$\mathcal{M}_{SL(r)} = \dim |r\Theta| = r^2 - 1$$
.

Proposition

For g = 2, θ is generically finite.

NOTE : θ is not a morphism for $r \ge 4$; some fibres have dimension $\ge \left[\frac{r}{2}\right] - 1$.

Example (Ortega)

(g = 2) $\theta : \mathcal{M}_{SL(3)} \to |3\Theta| \cong \mathbb{P}^8$ is a double covering, branched along a sextic hypersurface $S \subset |3\Theta|$.

 $\mathcal{S}^* \subset |3\Theta|^*$ is the Coble cubic, the unique cubic hypersurface in $|3\Theta|^*$ singular along the image of J^{g-1} .

Conjectures

1 In rank 3, θ is a morphism.

3

同 ト イ ヨ ト イ ヨ ト

Introduction
1.
$$G = SL(r)$$

2. $G = SO(r)$
3. $G = Sp(2r)$

Conjectures

1 In rank 3, θ is a morphism.

2 For
$$g \ge 3$$
, θ is
 $\begin{cases} generically injective if C non hyperelliptic; generically 2-to-1 if C hyperelliptic. \end{cases}$

з

伺 ト イヨト イヨ

Introduction
1.
$$G = SL(r)$$

2. $G = SO(r)$
3. $G = Sp(2r)$

Conjectures

1 In rank 3, θ is a morphism.

a For
$$g \ge 3$$
, θ is
 $\begin{cases} generically injective if C non hyperelliptic; generically 2-to-1 if C hyperelliptic. \end{cases}$

NOTE : 1 is true for $g \leq 3$, and for a generic curve of genus g (Raynaud).

I ≡ ▶ < </p>

Introduction
1.
$$G = SL(r)$$

2. $G = SO(r)$
3. $G = Sp(2r)$

Conjectures

1 In rank 3, θ is a morphism.

2 For
$$g \ge 3$$
, θ is
 $\begin{cases} generically injective if C non hyperelliptic; generically 2-to-1 if C hyperelliptic. \end{cases}$

NOTE : 1 is true for $g \leq 3$, and for a generic curve of genus g (Raynaud).

Much less evidence for 2.

★ ∃ >

$\mathcal{M}_{\mathcal{O}(r)} \cong \{(E,q) \mid E \text{ semi-stable rk } r, q: \mathrm{Sym}^2 E \to \mathcal{O}_C \text{ non-deg.} \}$

3

SO(r) versus O(r)

 $\mathcal{M}_{O(r)} \cong \{ (E, q) \mid E \text{ semi-stable rk } r, q : \operatorname{Sym}^2 E \to \mathcal{O}_C \text{ non-deg.} \}$ $\mathcal{M}_{SO(r)} \cong \{ (E, q, \omega) \mid (E, q) \in \mathcal{M}_{O(r)}, \omega \in H^0(C, \wedge^r E), q(\omega) = 1 \}$

- 4 同 1 4 日 1 4 日 1 9 9 9 9 9 9

SO(r) versus O(r)

 $\mathcal{M}_{O(r)} \cong \{ (E, q) \mid E \text{ semi-stable rk } r, q : \operatorname{Sym}^2 E \to \mathcal{O}_C \text{ non-deg.} \}$ $\mathcal{M}_{SO(r)} \cong \{ (E, q, \omega) \mid (E, q) \in \mathcal{M}_{O(r)}, \omega \in H^0(C, \wedge^r E), q(\omega) = 1 \}$

Map $\mathcal{M}_{SO(r)} \twoheadrightarrow \mathcal{M}^{\mathcal{O}}_{O(r)} := \{(E,q) \in \mathcal{M}_{O(r)} \mid \wedge^{r} E = \mathcal{O}_{C}\}.$

SO(r) versus O(r)

 $\mathcal{M}_{O(r)} \cong \{ (E, q) \mid E \text{ semi-stable rk } r, q : \operatorname{Sym}^2 E \to \mathcal{O}_C \text{ non-deg.} \}$ $\mathcal{M}_{SO(r)} \cong \{ (E, q, \omega) \mid (E, q) \in \mathcal{M}_{O(r)}, \omega \in H^0(C, \wedge^r E), q(\omega) = 1 \}$ $\operatorname{Map} \ \mathcal{M}_{SO(r)} \twoheadrightarrow \mathcal{M}_{O(r)}^{\mathcal{O}} := \{ (E, q) \in \mathcal{M}_{O(r)} \mid \wedge^r E = \mathcal{O}_C \}.$ $\bullet \text{ For } r \text{ odd, } -1 \in \operatorname{Aut}(E, q) \text{ exchanges } \omega \text{ and } -\omega \quad \Rightarrow$ $\mathcal{M}_{SO(r)} \xrightarrow{\sim} \mathcal{M}_{O(r)}^{\mathcal{O}} .$

SO(r) versus O(r)

$$\mathcal{M}_{O(r)} \cong \{ (E, q) \mid E \text{ semi-stable rk } r, q : \operatorname{Sym}^2 E \to \mathcal{O}_C \text{ non-deg.} \}$$
$$\mathcal{M}_{SO(r)} \cong \{ (E, q, \omega) \mid (E, q) \in \mathcal{M}_{O(r)}, \omega \in H^0(C, \wedge^r E), q(\omega) = 1 \}$$
$$\operatorname{Map} \ \mathcal{M}_{SO(r)} \twoheadrightarrow \mathcal{M}_{O(r)}^{\mathcal{O}} := \{ (E, q) \in \mathcal{M}_{O(r)} \mid \wedge^r E = \mathcal{O}_C \}.$$

• For r odd, $-1 \in \operatorname{Aut}(E,q)$ exchanges ω and $-\omega \Rightarrow$

$$\mathcal{M}_{SO(r)} \xrightarrow{\sim} \mathcal{M}^{\mathcal{O}}_{O(r)}$$
.

For r even,

$$\mathcal{M}_{SO(r)} \xrightarrow{2:1} \mathcal{M}_{O(r)}^{\mathcal{O}}$$
.

伺 と く ヨ と く ヨ と …

Introduction
1.
$$G = SL(r)$$

2. $G = SO(r)$
3. $G = Sp(2r)$

The map $\mathcal{M}^{\mathcal{O}}_{\mathcal{O}(r)} \to \mathcal{M}_{SL(r)}$ is an embedding.

◆ロ > ◆母 > ◆臣 > ◆臣 > ○ 臣 - のへで

Introduction
1.
$$G = SL(r)$$

2. $G = SO(r)$
3. $G = Sp(2r)$

The map $\mathcal{M}^{\mathcal{O}}_{\mathcal{O}(r)} \to \mathcal{M}_{SL(r)}$ is an embedding.

Remarks

Introduction
1.
$$G = SL(r)$$

2. $G = SO(r)$
3. $G = Sp(2r)$

The map $\mathcal{M}^{\mathcal{O}}_{\mathcal{O}(r)} \to \mathcal{M}_{SL(r)}$ is an embedding.

Remarks

M_{SO(r)} has 2 components M[±]_{SO(r)}, distinguished by the Stiefel-Whitney class w₂ ∈ {±1}.

伺 ト く ヨ ト く ヨ ト

Theorem (Serman)

The map
$$\mathcal{M}^{\mathcal{O}}_{\mathcal{O}(r)} \to \mathcal{M}_{SL(r)}$$
 is an embedding.

Remarks

M_{SO(r)} has 2 components M[±]_{SO(r)}, distinguished by the Stiefel-Whitney class w₂ ∈ {±1}.

② For
$$(E, q) \in \mathcal{M}_{O(r)}$$
, $E \cong E^*$, hence $\Theta_E = \Theta_{E^*} = i^* \Theta_E$,
where *i* is the involution *L* → *K* ⊗ *L*⁻¹ of *J*^{g-1}.

Introduction
1.
$$G = SL(r)$$

2. $G = SO(r)$
3. $G = Sp(2r)$

The map
$$\mathcal{M}^{\mathcal{O}}_{\mathcal{O}(r)} \to \mathcal{M}_{SL(r)}$$
 is an embedding.

Remarks

M_{SO(r)} has 2 components M[±]_{SO(r)}, distinguished by the Stiefel-Whitney class w₂ ∈ {±1}.

② For
$$(E,q)\in \mathcal{M}_{\mathcal{O}(r)}$$
, $E\cong E^*$, hence $\Theta_E=\Theta_{E^*}=i^*\Theta_E$,

where *i* is the involution $L \mapsto K \otimes L^{-1}$ of J^{g-1} .

Thus $\Theta_E \in |r\Theta|^+$ or $|r\Theta|^-$, the eigenspaces of i^* in $|r\Theta|$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Theta map for SO(r)

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶

Theta map for SO(r)

Theorem

・ロン ・回 と ・ ヨ と ・ ヨ と …

Theta map for SO(r)

Theorem

$$heta^\pm$$
 is the theta map for $\mathcal{M}^\pm_{SO(r)}$.

・ロン ・回 と ・ ヨ と ・ ヨ と …

Theta map for SO(r)

Theorem

IDEA OF PROOF : Use tautological lemma. Non-degeneracy easy;

白 ト ・ ヨ ト ・ ヨ ト

Theta map for SO(r)

Theorem

IDEA OF PROOF : Use tautological lemma. Non-degeneracy easy; Verlinde formula for SO(r) gives $h^0(\mathcal{M}_{SO(r)}, \mathcal{L}) = r^g$.

伺 ト く ヨ ト く ヨ ト

Theta map for SO(r)

Theorem

$$\begin{aligned} \mathcal{M}_{SO(r)}^{\pm} & \stackrel{\theta^{\pm}}{-} &> |r\Theta|^{\pm} \\ & \downarrow & & \downarrow \\ \mathcal{M}_{SL(r)} & \stackrel{\theta}{-} &> |r\Theta| \end{aligned} \qquad \qquad \theta^{\pm} \text{ is the theta map for } \mathcal{M}_{SO(r)}^{\pm} \ . \end{aligned}$$

IDEA OF PROOF : Use tautological lemma. Non-degeneracy easy; Verlinde formula for SO(r) gives $h^0(\mathcal{M}_{SO(r)}, \mathcal{L}) = r^g$.

Computation tricky; would be interesting to get [BNR]-type proof.

A B M A B M

Introduction
1.
$$G = SL(r)$$

2. $G = SO(r)$
3. $G = Sp(2r)$

Base points

Theorem (Serman)

$$\theta^{\pm}: \mathcal{M}^{\pm}_{SO(3)} \rightarrow |3\Theta|^{\pm} \text{ and } \theta^{+}: \mathcal{M}^{+}_{SO(4)} \rightarrow |4\Theta|^{+} \text{ are morphisms.}$$

御下 ・ ヨト ・ ヨト

Introduction
1.
$$G = SL(r)$$

2. $G = SO(r)$
3. $G = Sp(2r)$

Base points

Theorem (Serman)

$$\theta^{\pm}: \mathcal{M}_{SO(3)}^{\pm} \to |3\Theta|^{\pm} \text{ and } \theta^{+}: \mathcal{M}_{SO(4)}^{+} \to |4\Theta|^{+} \text{ are morphisms.}$$

Essentially sharp: for g = 2, 20 base points on $\mathcal{M}^-_{SO(4)}$.

白 ト ・ ヨ ト ・ ヨ ト

Introduction
1.
$$G = SL(r)$$

2. $G = SO(r)$
3. $G = Sp(2r)$

Example

Example (g = 2, r = 3)

$$\mathcal{M}_{SL(3)} \downarrow_{\theta} \\ |3\Theta|_{(\cong \mathbb{P}^8} \\ \underset{\mathcal{S}}{\overset{\smile}{\leftarrow}}$$

Arnaud Beauville The theta map for principal bundles on curves

回 と く ヨ と く ヨ と

Introduction
1.
$$G = SL(r)$$

2. $G = SO(r)$
3. $G = Sp(2r)$

Example

Example (g = 2, r = 3)

 $\mathcal{S} \cap |3\Theta|^- := \mathcal{S}^- =$ union of 6 planes

Introduction
1.
$$G = SL(r)$$

2. $G = SO(r)$
3. $G = Sp(2r)$

Example

Example (g = 2, r = 3)

 $\mathcal{S} \cap |3\Theta|^- := \mathcal{S}^- =$ union of 6 planes

 $\mathcal{S} \cap |3\Theta|^+ = \mathcal{Q} + 2H \text{ , } \ \mathcal{Q} = \text{Igusa quartic, } \ H = \Theta + |2\Theta| \subset |3\Theta|^+.$

The theta map for Sp(2r)

 $\mathcal{M}_{\mathcal{S}p(2r)} = \{ (E, \varphi) \mid E \in \mathcal{M}_{\mathcal{S}L(2r)} \ , \ \varphi : \wedge^2 E \to \mathcal{O}_C \ \text{ non-deg.} \}$

伺 ト イ ヨ ト イ ヨ ト

The theta map for Sp(2r)

 $\mathcal{M}_{\mathit{Sp}(2r)} = \{(E,\varphi) \mid E \in \mathcal{M}_{\mathit{SL}(2r)} \ , \ \varphi : \wedge^2 E \to \mathcal{O}_C \ \text{ non-deg.} \}$

Again $\mathcal{M}_{Sp(2r)} \hookrightarrow \mathcal{M}_{SL(2r)}$ (Serman).

伺 と く ヨ と く ヨ と

The theta map for Sp(2r)

 $\mathcal{M}_{\mathcal{S}p(2r)} = \{ (E, \varphi) \mid E \in \mathcal{M}_{\mathcal{S}L(2r)} \ , \ \varphi : \wedge^2 E \to \mathcal{O}_C \ \text{ non-deg.} \}$

Again $\mathcal{M}_{Sp(2r)} \hookrightarrow \mathcal{M}_{SL(2r)}$ (Serman).

 $E \cong E^* \Rightarrow \Theta_E \in |2r\Theta|^+$

The theta map for Sp(2r)

$$\mathcal{M}_{Sp(2r)} = \{ (E, \varphi) \mid E \in \mathcal{M}_{SL(2r)} , \varphi : \wedge^{2}E \to \mathcal{O}_{C} \text{ non-deg.} \}$$

Again $\mathcal{M}_{Sp(2r)} \hookrightarrow \mathcal{M}_{SL(2r)}$ (Serman).
$$E \cong E^{*} \Rightarrow \Theta_{E} \in |2r\Theta|^{+} \rightsquigarrow \quad \theta^{+} : \begin{cases} \mathcal{M}_{Sp(2r)} & \dashrightarrow & |2r\Theta|^{+} \\ E & \mapsto & \Theta_{E} \end{cases}$$

2

伺 ト イヨト イヨト

The theta map for Sp(2r)

$$\mathcal{M}_{Sp(2r)} = \{ (E, \varphi) \mid E \in \mathcal{M}_{SL(2r)}, \ \varphi : \wedge^2 E \to \mathcal{O}_C \text{ non-deg.} \}$$

Again $\mathcal{M}_{Sp(2r)} \hookrightarrow \mathcal{M}_{SL(2r)}$ (Serman).
$$E \cong E^* \Rightarrow \Theta_E \in |2r\Theta|^+ \iff \theta^+ : \begin{cases} \mathcal{M}_{Sp(2r)} & \dashrightarrow & |2r\Theta|^+ \\ E & \mapsto & \Theta_E \end{cases}$$

But θ^+ is not the theta map for $r > 3$.

2

伺 ト く ヨ ト く ヨ ト

The theta map for Sp(2r)

$$\begin{split} \mathcal{M}_{Sp(2r)} &= \{ (E, \varphi) \mid E \in \mathcal{M}_{SL(2r)} , \ \varphi : \wedge^2 E \to \mathcal{O}_C \quad \text{non-deg.} \} \\ \text{Again } \mathcal{M}_{Sp(2r)} &\hookrightarrow \mathcal{M}_{SL(2r)} \text{ (Serman).} \\ E &\cong E^* \Rightarrow \Theta_E \in |2r\Theta|^+ \quad \rightsquigarrow \quad \theta^+ : \left\{ \begin{array}{cc} \mathcal{M}_{Sp(2r)} & \dashrightarrow & |2r\Theta|^+ \\ E & \mapsto & \Theta_E \end{array} \right. \\ \text{But } \theta^+ \text{ is not the theta map for } r \geq 3. \\ \text{Need to replace } J^{g-1} \text{ by} \end{split}$$

$$\mathcal{N} := \{ F \in \mathcal{M}_{GL(2)} \mid \det F = K_C \} \ (\cong \mathcal{M}_{SL(2)})$$

2

□ ▶ ▲ 臣 ▶ ▲ 臣 ▶

The theta map for Sp(2r)

$$\begin{split} \mathcal{M}_{Sp(2r)} &= \{ (E, \varphi) \mid E \in \mathcal{M}_{SL(2r)} \ , \ \varphi : \wedge^2 E \to \mathcal{O}_C \quad \text{non-deg.} \} \\ \text{Again } \mathcal{M}_{Sp(2r)} &\hookrightarrow \mathcal{M}_{SL(2r)} \ (\text{Serman}). \\ E &\cong E^* \ \Rightarrow \ \Theta_E \in |2r\Theta|^+ \ \rightsquigarrow \quad \theta^+ : \left\{ \begin{array}{cc} \mathcal{M}_{Sp(2r)} & \dashrightarrow & |2r\Theta|^+ \\ E & \mapsto & \Theta_E \end{array} \right. \\ \text{But } \theta^+ \text{ is not the theta map for } r \geq 3. \end{split}$$

Need to replace J^{g-1} by $\mathcal{N} := \{F \in \mathcal{M}_{GL(2)} \mid \det F = K_C\} \ (\cong \mathcal{M}_{SL(2)})$ and Θ by $\Delta := \{F \in \mathcal{N} \mid H^0(C, F) \neq 0\}.$

The theta map for Sp(2r)

$$\mathcal{M}_{Sp(2r)} = \{ (E, \varphi) \mid E \in \mathcal{M}_{SL(2r)} , \varphi : \wedge^{2}E \to \mathcal{O}_{C} \text{ non-deg.} \}$$

Again $\mathcal{M}_{Sp(2r)} \hookrightarrow \mathcal{M}_{SL(2r)}$ (Serman).
$$E \cong E^{*} \Rightarrow \Theta_{E} \in |2r\Theta|^{+} \iff \theta^{+} : \begin{cases} \mathcal{M}_{Sp(2r)} & \dashrightarrow & |2r\Theta|^{+} \\ E & \mapsto & \Theta_{E} \end{cases}$$

But θ^{+} is not the theta map for $r \geq 3$.

Need to replace J^{g-1} by $\mathcal{N} := \{F \in \mathcal{M}_{GL(2)} \mid \det F = K_C\} \ (\cong \mathcal{M}_{SL(2)})$ and Θ by $\Delta := \{F \in \mathcal{N} \mid H^0(C, F) \neq 0\}.$ To $E \in \mathcal{M}_{Sp(2r)}$ associate $\Delta_E := \{F \in \mathcal{N} \mid H^0(C, E \otimes F) \neq 0\}.$

4 B 6 4 B 6

The theta map for Sp(2r)

$$\mathcal{M}_{Sp(2r)} = \{ (E, \varphi) \mid E \in \mathcal{M}_{SL(2r)}, \ \varphi : \wedge^2 E \to \mathcal{O}_C \text{ non-deg.} \}$$

Again $\mathcal{M}_{Sp(2r)} \hookrightarrow \mathcal{M}_{SL(2r)}$ (Serman).
$$E \cong E^* \Rightarrow \Theta_E \in |2r\Theta|^+ \implies \theta^+ : \begin{cases} \mathcal{M}_{Sp(2r)} & \dashrightarrow & |2r\Theta|^+ \\ E & \mapsto & \Theta_E \end{cases}$$

But θ^+ is not the theta map for $r \ge 3$.

Need to replace
$$J^{g-1}$$
 by
 $\mathcal{N} := \{F \in \mathcal{M}_{GL(2)} \mid \det F = K_C\} \ (\cong \mathcal{M}_{SL(2)})$
and Θ by $\Delta := \{F \in \mathcal{N} \mid H^0(C, F) \neq 0\}$.
To $E \in \mathcal{M}_{Sp(2r)}$ associate $\Delta_E := \{F \in \mathcal{N} \mid H^0(C, E \otimes F) \neq 0\}$.
Then: either $\Delta_E = \mathcal{N}$, or $\Delta_E \in |r\Delta|$.

2

□ ▶ ▲ 臣 ▶ ▲ 臣 ▶

The theta map for Sp(2r)

$$\mathcal{M}_{Sp(2r)} = \{ (E, \varphi) \mid E \in \mathcal{M}_{SL(2r)} , \varphi : \wedge^{2}E \to \mathcal{O}_{C} \text{ non-deg.} \}$$

Again $\mathcal{M}_{Sp(2r)} \hookrightarrow \mathcal{M}_{SL(2r)}$ (Serman).
$$E \cong E^{*} \Rightarrow \Theta_{E} \in |2r\Theta|^{+} \rightsquigarrow \quad \theta^{+} : \begin{cases} \mathcal{M}_{Sp(2r)} & \dashrightarrow & |2r\Theta|^{+} \\ E & \mapsto & \Theta_{E} \end{cases}$$

But θ^{+} is not the theta map for $r \geq 3$.

Need to replace
$$J^{g-1}$$
 by
 $\mathcal{N} := \{F \in \mathcal{M}_{GL(2)} \mid \det F = K_C\} \ (\cong \mathcal{M}_{SL(2)})$
and Θ by $\Delta := \{F \in \mathcal{N} \mid H^0(C, F) \neq 0\}$.
To $E \in \mathcal{M}_{Sp(2r)}$ associate $\Delta_E := \{F \in \mathcal{N} \mid H^0(C, E \otimes F) \neq 0\}$.
Then: either $\Delta_E = \mathcal{N}$, or $\Delta_E \in |r\Delta|$.
[Subtlety: $h^0(E \otimes F)$ even (Mumford)]

Introduction 1. $G = SL(r)$ 2. $G = SO(r)$ 3. $G = Sp(2r)$	
The theta map for $Sp(2r)$, II	

Recall:

▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶

æ
The theta map for Sp(2r), II

Recall:

$$\mathcal{N} := \{F \in \mathcal{M}_{GL(2)} \mid \det F = K_C\} \supset \Delta := \{F \mid H^0(C, F) \neq 0\}$$

For $E \in \mathcal{M}_{Sp(2r)}, \ \Delta_E := \{F \in \mathcal{N} \mid H^0(C, E \otimes F) \neq 0\} \in |r\Delta|.$

2

□ ▶ ▲ 臣 ▶ ▲ 臣 ▶

The theta map for Sp(2r), II

Recall:

$$\mathcal{N} := \{F \in \mathcal{M}_{GL(2)} \mid \det F = K_C\} \supset \Delta := \{F \mid H^0(C, F) \neq 0\}$$

For $E \in \mathcal{M}_{Sp(2r)}, \ \Delta_E := \{F \in \mathcal{N} \mid H^0(C, E \otimes F) \neq 0\} \in |r\Delta|.$

Theorem $\begin{array}{c} & & |\mathcal{L}|^{*} \\ & & & \downarrow^{\wr} \\ \mathcal{M}_{Sp(2r)} - \frac{-}{E} \xrightarrow{-} \overline{\Delta}_{E} - \xrightarrow{>} |r\Delta| \end{array}$

з

A B > A B >

Idea of proof

Idea of proof.

 Use tautological lemma. Verlinde formula gives dim |L| = dim |rΔ|.

문제 문

-

Idea of proof

Idea of proof.

- Use tautological lemma. Verlinde formula gives dim |L| = dim |rΔ|.
- Then suffices to prove: the Δ_E span $|r\Delta|$.

Idea of proof

Idea of proof.

- Use tautological lemma. Verlinde formula gives dim |L| = dim |rΔ|.
- Then suffices to prove: the Δ_E span $|r\Delta|$.
- Take $E = G \oplus G^*$, with $G \in \mathcal{M}_{GL(r)}$. Then

$$\Delta_{E} = \Theta_{G} := \{F \in \mathcal{N} \mid H^{0}(C, G \otimes F) \neq 0\}$$

Idea of proof

Idea of proof.

- Use tautological lemma. Verlinde formula gives dim |L| = dim |rΔ|.
- Then suffices to prove: the Δ_E span $|r\Delta|$.
- Take $E = G \oplus G^*$, with $G \in \mathcal{M}_{GL(r)}$. Then

$$\Delta_E = \Theta_G := \{F \in \mathcal{N} \mid H^0(C, G \otimes F) \neq 0\}$$

 The Θ_G span |rΔ|: this is the rank-level duality SL(2)-GL(r) proved by Marian-Oprea and Belkale.

	Introduction
	G = SL(r)
	G = SO(r)
3.	G = Sp(2r)

Relation with θ^+

Let
$$j: \left\{ \begin{array}{ccc} J^{g-1} & \to & \mathcal{N} \\ L & \mapsto & L \oplus (K \otimes L^{-1}) \end{array} \right.$$

回 と く ヨ と く ヨ と

2

Relation with θ^+

Let
$$j: \left\{ \begin{array}{ccc} J^{g-1} & \to & \mathcal{N} \\ L & \mapsto & L \oplus (\mathcal{K} \otimes L^{-1}) \end{array} \right.$$

Then θ^+ is the composition

$$\mathcal{M}_{Sp(2r)} \stackrel{\theta}{-} \Rightarrow |r\Delta| \stackrel{j^*}{-} \Rightarrow |2r\Theta|^+$$
.

御下 ・ ヨト ・ ヨト

3

Relation with θ^+

Let
$$j: \left\{ \begin{array}{ccc} J^{g-1} & \to & \mathcal{N} \\ L & \mapsto & L \oplus (K \otimes L^{-1}) \end{array} \right.$$

Then θ^+ is the composition

$$\mathcal{M}_{Sp(2r)} \xrightarrow{\theta} |r\Delta| \xrightarrow{j^*} |2r\Theta|^+$$
.

Corollary (r = 2)

If C has no vanishing thetanull, $\theta = \theta^+ : \mathcal{M}_{Sp(4)} - imes |4\Theta|^+$.

高 と く ヨ と く ヨ と

-

Relation with θ^+

Let
$$j: \left\{ \begin{array}{ccc} J^{g-1} & \to & \mathcal{N} \\ L & \mapsto & L \oplus (K \otimes L^{-1}) \end{array} \right.$$

Then θ^+ is the composition

$$\mathcal{M}_{Sp(2r)} \stackrel{\theta}{-} \Rightarrow |r\Delta| \stackrel{j^*}{-} \Rightarrow |2r\Theta|^+$$
.

Corollary (r = 2)

If C has no vanishing thetanull, $\theta = \theta^+ : \mathcal{M}_{Sp(4)} - \twoheadrightarrow |4\Theta|^+$.

For $r \ge 3 j^*$ is surjective (but not injective) if C has no vanishing thetanull, so θ^+ is obtained from θ by projection.

- 4 E b 4 E b

Longo maï, Ramanan!

同 ト イヨ ト イヨ ト

3

Longo maï, Ramanan!

同 ト イ ヨ ト イ ヨ ト