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Divisors and line bundles

Surface = smooth, projective, over C.

Pic(S) = {line bundles on S}/ ~, (group for ®).

Div(S) = {D = >, n;G;}. D > 0 (effective) if n; = 0 Vi.
{D >0} «~ {(L,s)|LePic(S),0#seHOL)}

We put L = Os(D). Map D — Os(D) extends by linearity to

homomorphism Div(S) — Pic(S). Then Pic(S) = Div(S)/ =

where D =D’ < D — D’ = div(y), ¢ rational function on S.

C irreducible curve, s € H(Os(C)) defining C. Os(—C) <> Os

= Os(—C) = ideal sheaf of C in S.

f:S— T v f*:Pic(T) — Pic(S).

D e Div(T); if f(S) ¢ D, f*D € Div(S) and Os(f*D) = f*Os(D).



The intersection form

C # D irreducible, pe C n D. f, g equations of C,D in O,.
Definition : m,(C n D) :=dimc O,/(f, g).
Example: m,(Cn D) =1 < (f,g) =m, < f,g local

. def
coordinates at p <= C and D transverse.

Definition : (C-D):= >, my(Cn D).
peCnD

3 bilinear symmetric form ( - ) : Pic(S) x Pic(S) — Z such that
(Os(C) - Os(D)) = (C- D) for C, D irreducible.
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The intersection form: step 1

Proof : For L, M € Pic(S), we put:
(L-M) = x(Os) =x(L") =x(M™) +x(LT @MY
Step 1: (0s(C) - Os(D)) = (C - D).
Proof : C =div(s), D = div(t). Exact sequence:
0 — 0s(~C-D) 2=, 05(~C) @ Os(~D) =L 05— Oc o
Proof: pe S, f,g € Op local equations for C and D.

00, &, 02 59, 0, 0,/(fg) - 0.
Means: in Op, af = bg <= Jk,a = gk, b = fk.
Holds because O, factorial, f, g prime #. Then:
X(0s) =x(0s(=C)) = x(Os(=D)) + x(Os(=C—D)) = x(Ocnp)
= 1(Ocrp)) = 3 Opf(f.g) £ (C- D). =

peCnD
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The intersection form (continued)

Step 2: (L-Os(C)) =degLic VLePic(S), C smooth.

Proof : Exact sequences 0 — Og(—C) —» Os — O¢ — 0,

®L™L: 0-L1®0s(-C) - Lt — L|*C1 — 0.
X(Oc) = x(0s) = x(0s(=0)), x(Li¢) = x(L") = x(L Tt ® Os(~C))
= (L-C) =x(Oc) = x(L;¢) = deg Lic (R-Ron C). ]

Step 3 : (- ) is bilinear.

Put s(L, M, N) := (L- M®N) — (L- M) — (L - N).

e Symmetric in L, M, N. e =0 when L = Og(C).

Fact (Serre): VL € Pic(S), L = Os(C — D), with C, D smooth

curves  (In fact, hyperplane sections in appropriate embeddings).

Arnaud Beauville Algebraic surfaces



The intersection form: end of proof

L, M € Pic(S); M = Os(C — D), C, D smooth curves. Then
0=s(L,M,0Os(B))=(L-M®Os(B)) — (L- M) — (L-Os(B))
= (L-M) =(L-Os(A))—(L-Os(B)) linear in L, hencein M. W

Examples

@ S =12

C < P? defined by a form Fy(X, Y, Z) of degree d. % rational
function = C = dH, H line in P2. Thus Pic(IP?) = Z[H],
(C-D) :deg(C)deg(D) (Bézout theorem).
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@ Ss=P' xP!

Put A=P! x {0}, B={0} x P!, U=S~ (AU B) = A2
D e Div(S): Dyy = div(y) for some rational function ¢.

D —divyp = aA + bB for some a,be Z —

Pic(P! x P') = Z[A] @ Z[B]. (A-B) =1 (transverse).

A2 = (A- (P! x {1})) =0, B> = 0: intersection form 0

@ p:S—C, F:=pYx). IDeDiv(C), x¢ D, x = D; then

F=p'D = F>=F - p*D=0.

@D>0,D-C<0 = D=C+E E>0.
(otherwise D = > n;C;, GG#C = C-C=0Vi)

() C2<0,C=D>0 = D=C (e h0s(C)) =1).



Canonical line bundle and Riemann-Roch

Q}s = sheaf of differential 1-forms, locally isomorphic to (’)%
(locally a(x,y)dx + b(x, y)dy).

Ks = A’ QL = sheaf of 2-forms = canonical line bundle
(locally w = f(x,y)dx A dy,div(w) = div(f)).

Ks or K = canonical divisor = divisor of any rational 2-form.

Example : Kp: = —3H.

XdY AndZ +YdZ A dX + ZdX A dY .
Indeed the 2-form Y7 is well-

defined, does not vanish, and has a pole = 3H.

Example : (i, G5 smooth projective curves, S = C; x G,
projections p; : S — C;. Then Ks = pi K¢, + p5 K, .
Indeed if «; is a 1-form on C; (possibly rational), pfay A p5as is a

2-form on S, with divisor pj div(ai) + p3 div(ao).



Recall: L € Pic(S) w~ H/(S,L) = H'(L), i =0,1,2.
h(L) = dim H'(L). x(L) := RO(L) — h*(L) + h?(L).
If L= Os(D), we write H'(D), h'(D), x(D).

e Riemann-Roch : x(L) = x(Os) + %(L2 —Ks-L).
o Serre duality : h'(L) = > (Ks®L™1).

Since the term h! is difficult to control, we will most often use R-R

as an inequality, using Serre duality. In divisor form:

hO(D) + h°(K — D) = x(Os) + %(02 —K-D).
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Proof of Riemann-Roch

We admit Serre duality. Riemann-Roch follows directly from the

definition of the intersection form:

Proof : L1 (L®K5") = x(Os) = x(L) = x(Ks ® L") + x(Ks)
= 2x(Os) — 2x(L) by Serre duality. Hence

x(L) = x(Os) — %L* (L®KSY) = x(0s) + %(B —L-Ks). =
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The genus formula

Corollary (genus formula)

1
C irreducible = S = g(C):= h*(Oc¢c) =1+ §(C2 + K- Q).

Proof : Exact sequence 0 - Og(—C) > Os > O¢c - 0 =

r 1
RR—E(CZJFK.C). ]

x(Oc) = x(0s) — x(Os(-C))

o C < P? of degree d =

2(C) =1+ %(cﬂ _3d) = %(d _1)(d—2).

Examples :

e C = P! x P! of bidegree (p,q) (i.e. C=pA+qB) =

g(C) = 1+%(2pq—2p—2q) =(p-1)(qg-1).
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The genus of a singular curve

Remark : Let n: N — C be the normalization of C. Then
g(C) = g(N), with equality iff C is smooth.

Proof : Exact sequence 0—->0¢c—->nOny—>T—0

with 7 concentrated on the singular points of C.

Hence H'(T) = 0 for i > 0. Therefore x(O¢) = x(On) — h°(T),
and g(C) = g(N) + h°(T) = g(N), equality iff C = N smooth. W

C2+K-C=>=-2; equality = C ~ 2

Indeed C% + K - C =2g(C) —2>2g(N) —2 > —2. |
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Numerical invariants

Algebraic surfaces are distinguished by their numerical invariants:
e The most important: K2, x(0O).

Though we will not use this in the lectures, | want to mention:

© (M. Noether) K? = 2x(O) — 6;
@ (Miyaoka-Yau) K2 < 9x(O).

The relation of K2/x(O) with the geometry of the surface is a
long chapter of surface theory (“geography”).

Refined invariants:

e h?(0) =

e h(0) =
e h%(nK) (n = 1), the plurigenera P,.

= hP(K) (Serre duality), the geometric genus p,;
H°(Q') (Hodge theory), the irregularity q;



Exercises

1) Let C be an irreducible curve in P2, pe C. We choose affine
coordinates (x,y) with p = (0,0), and write the equation of C as
0 = fm(x,y) + fmy1(x,y¥) + ..., where f; is homogeneous of degree
qg. We have f,, = {1 ...0,, where the ¢; are linear forms; the lines
£; = 0 are the tangent to C at p. Show that a line ¢ passing
through p is tangent to C if and only if (C-¢), > m.

2) Let C be a curve of genus g. Let A = C x C be the diagonal
(A ={(x,x)|xe C}.

a) Using the genus formula, prove that A2 = 2 — 2g.

b) Let p,q: C x C — C be the two projections. Show that if

g >0, Pic(S x S) o p* Pic(C) @ ¢* Pic(C) & Z[A]. What
happens for g = 07



Exercises

3) a) Let Sp be a smooth surface in the affine space A3, defined by
dx ndy dyndz dzAdx

fl fro fy
So, so that this expression defines a non-vanishing 2-form on Sp.

an equation f = 0. Prove that on

b) Let S be a smooth surface in IP3, defined by an equation F = 0
of degree d. Prove that the expression

Td-4 TdY AndZ + YdZ A dT + ZdT A dY
7

defines a 2-form on S with divisor (d — 4)H.

4) (Hodge index theorem) Let H be a divisor on S such that
H - C > 0 for every curve C — S (for instance a hyperplane
section). Let D be a divisor such that H- D = 0. We will prove

that D2 < 0.
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Exercises

a) Show that h°(nD) =0 for all ne Z, n # 0.
b) If D? > 0, deduce from Riemann-Roch that h°(K — nD) and

h%(K 4+ nD) — oo when n — o0; conclude that D? < 0.

5) Let C, C’ be two curves, D a divisor on C x C'. Let pe C,
pPeC;putA=pxC,B=Cxp/,a=D-Aand b=D - B.
Prove the Castelnuovo-Severi inequality D? < 2ab (apply the

previous exercise to H = A+ B, and the divisor D — bA — aB).

[Note: This inequality was the essential step in Weil's proof of his

conjectures for curves.]
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Blowing up

Proposition

peS. db: §-5, unique up to isomorphism, such that
Q@ b l(p) = E=P
Q@ b:SVE—=S~p

Sketch of proof: coordinates x,y in U3 p
UcUxIP’l:XY—yX=O.
b:0—>U projection, satisfies () and (2.

Then glue S~ p and U along U ~ p. |
n _ Y
In U < U:{X #0}, y=xt with tzy:
(x, t) local coordinates, b(x,t) = (x, tx),
fﬂ E given by x = 0.

Arnaud Beauville Algebraic surfaces



The strict transform

We say that E is the exceptional curve of the blowing up.
E—=>P(Tp(S)): (X,Y) e E —tangent direction xY — yX = 0.
For C < S, strict transform C := closure of C~ p in S.

C n E = {tangent directions to C at p}.

b*C = € + mE in Div(S), where m := m,(C).

Proof : Eqn. of Cin U: 0 = f(x,y) = fn(x,¥) + fnr1(x,y) + ..
Choose (x, y) such that f,(x,0) # 0, i.e. C not tangent to y = 0.
b*f = f(x,tx) = X" (fm(1, t) + xfms1(1, ) +...), fm(1,0)#0
= multiplicity of E in div(b*f) = m. [ |
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The Picard group of S

Proposition

@ Pic(5) = b*Pic(S) éZ[E], (b*C-b*D) = (C- D), E? = —1.
@ Ks =b*Ks + E.
Q h(5) = by(S) + 1.

Proof : ¢« T §, T # E = T = strict transform of b(T) < §
= [ =b*b(I") — mE.

eVCcS, C=A%p = (b*C-E)=0, (b*C-b*D) = (C-D,).
e Take H3p, my(H) = 1. Then (H-E) =1; b*H = A + E,
(b*H-E)=0 = E?2=—1.

o b*Ks = Ke + kE = Kg-E+kE?=0. Kz - E = —1 (genus
formula) = k= —1.

e The claim on b; follows from standard topological arguments. H
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Rational maps

C < S, strict transform C = 5. Then €2 < C?, Ke - C>Ks-C.

Proof : o (2 = (b*C — mE)?2 = C2 — m?.

o K- C = (b*Ks + E) - (b*C — mE) = Ks - C + m. m

Definition : Rational map ¢ : S --» T := morphism S> U —> T.
We'll always take the largest U such that ¢y is a morphism.

e ¢ is birational if IU c S, V < T such that p: U = V

— then we say that S and T are birational.
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Elimination of indeterminacy

Theorem (Elimination of indeterminacy)

© Ju,v morphisms, u = by o...o b, blowups.

@ A birational morphism is a composition of blowups.

Remark : (D) holds in higher dimension (" Hironaka’s little roof"),

but not @
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Example: stereographic projection

Q < IP3 smooth quadric XT — YZ = 0. Segre embedding

s:Plx Pl > Q c P3, s(U, V; W, S) = (UW, US, VW, VS).
For each p = s(a, b) € Q, there are 2 lines ¢ Q passing through p:
s(P! x b) and s(a x P1).

\_/ Let M < P3 plane 3 p.

©:Q-->M:g#p~{pgynll.
Extension f : Q — I: LeP(Tp(Q)) — LTl

f birational, contracts the 2 lines through p.
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Some consequences

@:S --» T rational. 3F < S finite, o : S~ F — T morphism.

Remark : Direct proof easy, see exercises.
Consequences : o Since Div(S) = Div(S \ F) and Pic(S) =
Pic(S ~ F), ¢* : Div(T) — Div(S) and Pic(T) — Pic(S) defined.
e For Cc S, ¢(C) := ¢(C ~ F) well-defined.
e p:S-" T = HYT,Ky) = HO(S,Ks).

(Beware! Not true that ¢* K7 = Ks, think of blowups)
Proof : ¢*: HO(T,K7) — H%(S \ F,Ks) <= H°(S, Ks), then
(e~ 1)* : HO(T, K1) — H°(S, Ks) inverse of p*. [ |
e HO(T,nK7) => H°(S, nKs) for n > 0 (same argument).
o HO(T, QL) = HO(S, Q%) (same argument).



Birational invariants

e The numerical invariants pg(S) := h°(Ks) (geometric genus),
P.(S) := h°(nKs) (plurigenera), q(S) := h°(Q%) (irregularity)
are birational invariants.

Definition

A surface is ruled if it is birational to C x PL.

Proposition
S ruled = Pn(S)=0Vn>1.

Proof : Suffices to prove it for S = C x PL.
F = {c} x P! satisfies F> = 0, hence K - F = —2 (genus formula).
If nK =D >0, D must contain {c} x P! forall ce C,

impossible. |
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Irregularity of ruled surfaces

The converse is true, but difficult:

Theorem (Enriques)
Pn,(S) =0 VYn = S ruled.

In fact Enriques proved a more precise result: P1p =0 = S ruled.

Proposition
S birational to C x P* = q(S) = g(C).

Proof: S = C xP* £ C. Claim: p* : H°(C, Kc) = H(S,Qb).
we HY(QL), s: C— C x P! s(c) = (c,0). Suffices: w = p*s*w.
Local coordinates z on C, t on P!« w = a(z, t)dz + b(z, t)dt.
wiepxpt =0 = b(c,t)=0Vc = b=0.

dwe H(Ks) =0 = %a(z, t)=0 = a(z,t) = a(z,0),

w = a(z,0)dz = p*s*w. [ |
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Minimal surfaces

Definition

S minimal if any birational morphism S — T is an isomorphism.

Proposition
Every S admits a birational morphism onto a minimal surface.

/
Proof : If not, 3 an infinite chain S - $ — - - S5, — --- of
blowups. This is impossible since ba(S,) = b2(S) — n. [ |

Theorem (Castelnuovo's criterion)

Let EC S, E~P!, E2 = —1. There exists a surface T and a

blowing up b: S — T with exceptional curve E.

Corollary

S minimal & S b E ~ P! with E?> = —1.




Exercises

1) Let b: § — S the blowup of pe S, C the strict transform of
C c S. Using the genus formula, compute g(C). Deduce that
after a finite number of appropriate blowups, the strict transform

of C becomes smooth.

2) Let o : P2 --» P2 be given by o(X, Y, Z) = (YZ, ZX, XY)
(“standard quadratic transformation”). Let b: P — P? be the
blowup of P2 at the points (1,0,0), (0,1,0), (0,0,1). Show that

there is an automorphism s of P, with s2 =Idp and bos =soo.

3) Let ¢ : S --» P" be a rational map.

a) Show that there exists rational functions ¢, ..., @, on S such
that p(p) = [wo(p),...,vn(p)] (observe that there is an open
subset U < S such that )y is a morphism into A"  P").

Arnaud Beauville Algebraic surfaces



Exercises

b) Prove that there is a finite subset F — S such that ¢ is
well-defined outside F (suppose ¢ is not defined along a curve C;
let pe C, g € Op a local equation for C. We can assume that all
@i are in Op, with no common factor. But ¢; = 0 along

C = g|¢iVi, contradiction.)

4) Let u: S — T be a birational morphism of surfaces, C = S an
irreducible curve such that u(C) is a point. Show that C =~ P?,
and C2 <0.

5) Let S = P? be a smooth surface of degree d. Using
Ks = (d — 4)H and the exact sequence
0 — Ops(—d) = Ops > Os — 0, compute P,(S).
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Algebraic surfaces
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Geometrically ruled surfaces

Definition

@ A surface S is ruled if it is birational to C x P!,
o If C = P!, we say that S is rational.

o S is geometrically ruled if 3p : S — C smooth, fibers ~ P!,

The last definition is justified by:

Theorem (Noether-Enriques)
p: S — C geometrically ruled = S ruled.

Note that this is specific to surfaces: there exist smooth
morphisms X — S (S surface) with all fibers = P!, but X not

birational to S x P! (Severi-Brauer varieties).
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Minimal ruled surfaces
S ruled not rational. S minimal < S geometrically ruled.

Proof : 1) p: S — C with fibers @ P!, g(C) > 1.
IfEcS, p(E)=qgePlsinceg(C)>1=E=pl(q)=E?>=0.

2) S~ C xP! «w rationalmapp:S--+C, g(C) > 1.

Claim : p is a morphism.
Sn

If not, / Y u:5,—-S5,.1—---—-5=S.
S P C

E, < S, exceptional curve; since g(C) > 1, v(E,) ={pt} = can

replace S, by S,_1, then ... till 5§ = W
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End of the proof

3) p: S — C, general fiber F =~ P!, Want to prove all fibers =~ P!.
Recall: F2 =0, K- F = —2 (genus formula).

e F irreducible = F =~ P! (genus formula).

e F = mF’ ? Only possibility m =2, K- F' = —1, contradicts
genus formula.

e F=YnC. Claim: = C? <0Vi.

Because: njC? = C; - (F — anCJ) CG-F=0G-C=>0,and
Ci - G; > 0 for some j sinceﬁlé-_l is connected.

e Then K- C; =2g(Cj) —2— C,-2 > —1, = —1 < (; exceptional.
So if S minimal, (K-C;) >0Vi = (K-F) >0, contradiction. W
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Projective bundles

E rank 2 vector bundle on C v~ projective bundle
p:Pc(E) — C, p~i(x) = P(Ex), so Pc(E) is a geometrically
ruled surface.

The following can be deduced from the Noether-Enriques theorem:

Proposition
Every geometrically ruled surface is a projective bundle.

There is a highly developed theory of vector bundles on curves,
particularly in rank 2; therefore the classification of minimal ruled

surfaces is well understood.
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Elementary transformation

f S — C geometrically ruled. Choose pe C,

S
z ge F:=f"1(p). Blow up g.
% f:gLSLC.Fiberabovep:EuI:'.
0=(F*p)2=(E+F2=E2+F2+2 =
F2 = —1, hence F is an exceptional curve
. | (Castelnuovo). Contraction c: § — S

S
RN
— S f S’ finduces g : §’ — C geometrically ruled.
N
C
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Elementary transformation with section

Let ¥ < S be a section of f passing through g.

S
/ X Then X and F are transverse, so SAnF=0gin §
S S

, and ¢ maps > isomorphically to ¥’ section of g.

Then Y2 =32 (b*L—E)?=3%2-1.

Suppose Pic(S) = Z[F] ® Z[X]. Then Pic(S") = Z[F'| ® Z[X'].

Proof : It suffices to prove that (c*F’, c*Y/, F) basis of Pic(5).
But  c*F' =b*F, c*Y' =Y =b"C —E F=b"F-E

and (b*F, b*¥, E) basis of Pic(S). [ |
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The surfaces F,

Proposition

e For n >0, 3 a geometrically ruled rational surface F, — P!,
with a section ¥ of square —n, and Pic(F,) = Z[F] ® Z[X].

e For n > 0, the curve ¥ is the only curve of square < 0 on FF,,.

Proof : We start with Fg := P! x P!, with f = pr; and
Y = P! x {0}. Once (F,,X) is constructed, we choose q € X :

elementary transformation v F,,; = S’ with ¥2 = —n — 1.

e By the Lemma, Pic(F,) = Z[F] ® Z[X].

e Let C # X irreducible curve on F,,. C = aX + bF.
(C-F)=0 = a=>0; (C-¥)=—-an+b=0
= C2 = —na®+2ab = a(2b— an) = an® > 0. [ |
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Minimal rational surfaces
F, is minimal for n # 1.

[F; is obtained by blowing up a point g in P! x P! and contracting

one of the lines through g; by stereographic projection, F1 =~ P2,

The minimal rational surfaces are P? and F,, for n # 2.

Remark : Being geometrically ruled, the surfaces F,, are of the

form Ppi(E). It is not difficult to show that all vector bundles on
P! are direct sums of line bundles; in fact, it was observed by

Hirzebruch that F, = Pp1(Op1 @ Op1(n)).

Arnaud Beauville Algebraic surfaces



Non-ruled surfaces

Two birational minimal surfaces not ruled are isomorphic.

Thus a non-ruled surface admits a unique minimal model (up to
isomorphism); the birational classification of these surfaces is
reduced to the classification (up to isomorphism) of the minimal
ones. In contrast, ruled surfaces have a simple birational model
(C x P1), but the determination of the minimal ones is subtle.

The theorem follows easily from an important Lemma (admitted):

If S is minimal not ruled, (K - C) = 0 for all curves C.

We say that K is nef. This is the crucial notion to extend the
definition of minimal surface in higher dimension.
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Proof of the Theorem

Let ¢ : S -=» T, with S, T minimal not ruled. We want to prove

that ¢ is an isomorphism.

We choose a diagram:

S, v birational, v:5,—»S,_.1—---—> S5 =S,
/ \ with n > 1 minimal = v maps E, to a curve C.
S __f%2__.T Since v is a composition of blowups,

(Kt - C) < (Ks, - E;) = —1, contradicting the key lemma.

Thus ¢ birational morphism; S minimal = ¢ isomorphism. |
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Exercises

1) Let C be a curve of genus g. Show that the sections ¥ of the
fibration C x P! — C are in bijective correspondence with the maps
f . C — P. Using the genus formula, compute Y2 in terms of the

degree of f. Show that X2 is even, nonnegative, and # 2 if g > 0.
2) a) Show that the canonical divisor of F,, is —2% + (n—2)F and
that K2 = 8.

b) We say that a divisor D (or the corresponding line bundle) on a
surface S is nef if D - C > 0 for all curves C on 5. Show that the

anticanonical divisor —K on [, is nef if and only if n < 2.

c) We say that D is ample if D - C > 0 for all curves C, and
D? > 0. Show that —Kp, is ample if and only if n < 1.
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Exercises

d) Let S be a surface with —Ks ample. Show that S is obtained
from P2 by blowing up < 8 points (observe that if —K7 is not

ample for a surface T, any blowup of T has the same property).

3) We consider the divisor class Hy := ¥ + kF on the surface F,,.

a) For k < n, show that the effective divisors = Hy are sum of X
and k fibers.

b) Compute x(Hy) by Riemann-Roch; deduce that H(H,_1) = 0.

c) Using the exact sequences
0 — O(Hk) = O(Hky1) — Op1(1) — 0, show that Hl(Hk) =0
for k > n—1, and hO(Hy) = 2k +2 — n.
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Linear systems and rational maps

L = Os(D) € Pic(S). (Complete) linear system :
L] = D] := {E > 0| E = D} = P(HO(L)).

B, = Base locus of L:= (| E=2Z J{p1,---,ps}
Ee|L|

Z = |J G = fixed part, p; base points.

Rational map defined by L:

oL SN BL— LY, pi(p) = {E|p € E} = hyperplane in [L].

If Z = fixed part of [L|, ¢ = p;(_z): can assume L has no fixed
part, i.e. By finite.

E € |L| v~ hyperplane Hg < |L|Y;
oiHE={pe S\ B |Ecyp(p) > peE}=E~B: ¢/HE=E.
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Properties of ¢;

Properties of ¢,

e o, morphism < |L| base point free (i.e. B, = @).

e o injective < Vp#q, IE€|L|, p€ E, g ¢ E. If this holds:

e p; embedding < Vp,v#0€e T,(S), Ipe E€|L|, v¢ Ty(E).
If this is the case, we say that L is very ample.

e ©; embedding = deg(¢(S)) = L2

Remark : If D is very ample and |E| is base point free, D + E is
very ample.

Examples : o Let H be a line in P2, The linear system |nH| of
curves of degree n (n > 1) is very ample. In particular, @op is an
isomorphism of P? onto a surface V — IP°, the Veronese surface.
We have deg(V) = (2H)? = 4; the hyperplane sections of V are
conics.
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e On P! x P!, let A=TP! x {0} and B = {0} x PL. The linear
systems |A| and |B| are base point free, and ¢, g is the Segre
embedding in P3. Hence aA + bB is very ample for a, b > 1. In
particular, |2A + B| gives an isomorphism onto a surface of degree
4 in P5 (“quartic scroll”). Since A- (2A+ B) = 1, the curves in |A|
are mapped to lines in P°.

o let p1,...,ps € S. Let |D| be a linear system on S, and P < |D|
the subspace of divisors passing through pi,..., ps. Assume that
at each p; the curves of P have different tangent directions. Let
b: S5 — S be the blowing up of p1,..., ps, E; the exceptional
curve above p;. The system D:=b*D— > E; is base point free
and defines a morphism ¢4 : S |§|v to which we can apply the

previous remarks.
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Examples (continued)

e Let p € P?; consider the system of conics passing through p. It is
easy to check that [2b*H — E| on ]IA"% is very ample. It gives an iso-
morphism onto a surface S < P*, with deg(S) = (4H? + E?) = 3.
The strict transforms of the lines through p in P? form the linear
system b*H — E; since (b*H — E) - (2b*H — E) = 1, they are
mapped to lines in P%. S is the cubic scroll.

e Now let us pass to linear systems of cubic curves.

Proposition

Fors <6, let p1,...,ps €S = P2 | such that no 3 of them lie on a
line and no 6 on a conic. The linear system |—K]| on S is very
ample, and defines an isomorphism of S onto a surface ¥4 of
degree d := 9 — s in P9, called a del Pezzo surface.

In prticular, X3 is a (smooth) cubic surface in P3.

Arnaud Beauville Algebraic surfaces



Sketch of proof

Sketch of proof : The proof is a long exercise, with no essential
difficulty; I will just give an idea. We have —K¢ = 3b*H — > E;,
corresponding to the system P of cubics passing through the p;.
Let us show that ¢_k is injective in the most difficult case s = 6.
e Let p # ge P2~ {p;}. Can assume p; is not on the line {p, q).
e 3! conic Qj passing through p and the py for k # i, .

e Qi n Qij = {p} U 3 other py = q € at most one Qyj, say Q12.
e g is at most on one {p1, p;), say {p1, p3)-

o Then Quuu{p1,paye P, 3p, 3q = v k(p) #v_k(q).

e Then: deg(Xy) = (3b*H — Y. E;)?> =9 — s = d; one has
h%(3H) = 10, and one checks that py, ..., ps impose s
independent conditions. |

Example : Y3 is a smooth cubic surface in P3; we will see that
one obtains all smooth cubic surfaces in that way.
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Lines on del Pezzo surfaces

Proposition

lines € L4 = exceptional curves = the E;, the strict transforms of
the lines {pj, p;) and of the conics passing through 5 of the p; (for
s =5 or6). Their number iss+ (5) + (7).

Proof : EC S v linein ¥ < K§ - E=-1, i.e. E exceptional.

N

E # E, = E=mb*H—>a/E; in Pic(S5); aj=E-E;=0o0r 1.
(—-K)-E=3m—>a;=1 = Ya,=2and m=10or> a =5
and m = 2. |

Remark : We know more than the number of lines, namely their
classes in Pic(Xy), their incidence properties, etc. The
configuration of lines has been intensively studied in the 19th and
20th century. Let us just mention that the lattice K+ < Pic(Xy) is
a root system, of type Eg, Ds, As, Ax X Ay for s =6,5,4,3.
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The cubic surface

Proposition

Any smooth cubic surface S  P3 is a del Pezzo surface ¥3.

In particular, S contains 27 lines.

Strategy of the proof : show that S contains a line, then 2 skew
lines; then deduce from that a map S — P? composite of blowups.
There are many details to check, left to the reader.

@G :={lines ¢ IP3}, dimG = 4.

C := |Op3(3)| ={cubic surfaces = P3} =~ P¢ (c = 19).

Incidence correspondence: Z < G x C = {(¢,S)|¢ < S}.
Fibers of p =~ P“~* (S : F = 0 contains

Z
/ \ Z=T=0 < Fhasno X3, X2Y,XY? Y3).
C c Thus dim Z = dimC. We want g surjective.
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Cubic surface (continued)

If g : Z — C not surjective, dimq(Z) <c—1 = dimg }(S) >1
for S e g(Z). But g~1(X3) finite = impossible.

(2) S o ¢. The planes I > ¢ cut S along a conic.

Claim : 5 of these conics are degenerate, i.e. of the form {1 U /5.
Proof : {: Z=T=0 =

F = AX?2 +2BXY 4+ CY? +2DX +2EY + G, with A,.... G

homogeneous polynomials in Z, T. The conic is degenerate

A B D
<det|B C E|=0,degreeb5in Z, T. > 2 distinct roots =
D E G

S o 2triangles: LUty U ly, LUl Ul Then {1 Nl = 2.

Arnaud Beauville Algebraic surfaces



Cubic surface (continued)

(®) ¢ S, given by X = Y = 0. Projection from ¢: S XY p1

Well-defined: S : XB— YA=0, (X,Y)=(A,B)onS,
X=Y=A=B=0 = S singular.

@i : S — P! projection from £; ~~> © = (p1,¢2) : S — Pt x PL.
Geometrically, p;(p) = plane {{;, p) through /;.

Birational: for (71, m) € P! x P!, 71 N mp = line meeting ¢1 and
£, intersects S along a unique third point p.

= ¢ = composition of blowups. Blowup of P! x P! at 1 point =
blowup of P? at 2 points = ¢’ : S — P2 composition of blowups.
A line contracted by ¢ <= 71(A\) = {p},m2(N\) = pts

<= )\ meets /1 and /5.

For each of the 5 triangles ¢1, ¢}, ¢, {> meets one of ¢, ¢] =
5 lines contracted = S =~ IP? with 6 points blown up. |
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Exercises

1) Show that the linear system |X + nF| on I, defines a morphism
F, — P"t1 which is an embedding outside ¥ and contracts ¥ to a
point p. Show that the image of IF,, is a cone with vertex p, and
that the hyperplane sections not passing through p are rational
normal curves of degree n in P" (use exercise 3 of Lecture ).

2) Show that the linear system |X + kF| on F, for k > n defines
an isomorphism of [F,, onto a surface of degree 2k — n in P2k—n+1,
The images of the fibers are disjoint lines, and that of ¥ is a
rational normal curve of degree n + k.

3) Let S be the vector space of symmetric 3 x 3 matrices. Show
that the locus of rank 1 matrices in P(S) = IP° is a Veronese
surface V. Deduce that all secants to V (i.e. the lines {p, @),

p # q € V) are contained in a cubic hypersurface.
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Exercises

[Note: the secant lines depend on 2 + 2 parameters, so one would
expect that their union fills P2, It is a classical theorem of Severi
that the Veronese surface is the only smooth surface in P° (not

contained in a hyperplane) with this property.]

4) a) Let C be a smooth rational curve of degree e on a del Pezzo
surface £4. Show that C? = e — 2. Prove that the linear system
|C| has dimension e — 1 (use the exact sequence

0— Os — 0s(C) — Os(C)c — 0).

b) Describe in terms of P2 with 9 — d points blown up the pencils
(= linear systems of dimension 1) of conics on 4. Find their

number.
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Exercises

c) We fix e = 3. Show that the linear system |C| is base point free,
and defines a birational morphism to P? (use the exact sequence of
a). Conversely, any birational morphism ¥, — P? is defined by a
net (= linear systems of dimension 2) of twisted cubics.

d) Describe the nets of twisted cubics on X3. Show that there are
72 such nets.

5) A double-six in P2 consists of 2 sets of disjoint lines /1, ..., /g
and 44, .., 0, such thaté,m@};ﬁ@feri;&jand linll=g.
a) Show that in a cubic surface X3, the images of Ei,..., Es and

of the conics passing through 5 of the p; form a double-six.

b) Conversely, given a double-six (£;, ) on X3, there is a birational
morphism Sz — P? contracting the ¢; to points p; and mapping
the £’ to conics through 5 of the p;.

c) Conclude that there are 36 double-six on 3.
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Kodaira dimension

The key ingredient to distinguish different projective varieties is the

behaviour of the canonical bundle.

Definition

The Kodaira dimension of a surface S is
K(S) := maxdim @,k (S)
n

with the convention dim @ = —oo.

Using the plurigenera P, = h°(nK), this translates as
e k(S)

—0 <= P, =0Vn < S ruled (Enriques theorem).
@ kK(§)=0<= P, =00r1Vn, and =1 for some n.
e k(S)=1

o k()
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e Let B, C be two curves of genus b, c. Then:
e k(Bx ()=
e k(Bx(C)=0 < b=c=1;
e k(BxC)=1 < borc=1, bc>1,
@ k(Bx(C)=2 < bandc>2.
o Let Sy — P3 of degree d; then Sy is rational for d < 3,
k(S4) =0, k(S4) =2ford =5

-0 < bc=0;

These examples show a general pattern: most surfaces have Kk = 2
(they are called of general type), some have k = 1, and the cases

k =0 and kK = —o0 are completely classified.

Remark : S minimal, 5(5) >0 = K2=>0.
Indeed |nKs| 3 E for some n > 1, and K - E > 0 by the key lemma.
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K= 2

Let S be a minimal surface. The following are equivalent:
Q (S5 =2,
@ K2 >0 and S not ruled:

© ok birational onto its image for n > 0.

Proof : @ = @ clear.

(2 = (3: let H be a very ample divisor on S. Riemann-Roch
x(nK — H) ~ £n2K2 > 0 for n» 0, hence

R%(nK — H) + h°((1 — n)K + H) > 0.

But ((1 —n)K+ H) K < 0for n» 0, hence h° = 0 by key Lemma

= h%(nK —H) >0, hence nK =H+E, E>0 = @,k birational.



k = 2 (continued)

O = @: k(S) =2 = S not ruled and K? > 0. But K2 > 0 by:

S minimal, K? =0, |nK| = Z + M with Z fixed part. Then M is

base-point free, and pp = pp 0 S — C < |nK|V.

Proof : Key lemma = (K-Z) and (K-M) >0, hence = 0.
0=M-(Z+M) = M?>=0 = |M| base-point free, hence
om:S— Cc|nK|Y. M?>=0 = C curve. [ |
Remark: 3 much more precise results for @ (Kodaira, Bombieri):
@nk morphism for n = 4, birational for n > 5.

Example: For S = B x C as above,

K3.c= (p*Kg - q*Kc) = (2b—2)(2c —2): KZ >0 < b,c >2.



Surfaces with Kk = 1

Proposition

S minimal, kK(S) =1 = K? =0, and 3p: S — B with general

fiber elliptic curve.

(We say that S is an elliptic surface.)
Proof : Choose n such that h°(nK) > 2, |nK| = Z + |M|. By the

Lemma, op : S — C < |nK|Y.
Stein factorization: ¢y : S > B — C, with fibers of p connected.

F smooth fiber. F<M = K-F=0F2=0 = g(F)=1

(genus formula). [ |

Remark : An elliptic surface can be rational, ruled, or have x = 0.
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Surfaces with k = 0

S minimal with k = 0.
Q@ g=0 K=0:S is a K3 surface;
@ g=0,2K=0, K=#0: S is an Enriques surface — quotient

of a K3 by a fixed-point free involution.

© g = 1: S is a bielliptic surface, quotient of a product E x F

of elliptic curves by a finite group acting freely (7 cases).

Q g =2: S is an abelian surface (projective complex torus).

We will treat only the cases with g = 0 (the other cases require
the theory of the Albanese variety). If K =0, we are in case .
We want to prove that g=0, K#0 = 2K =0.
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S minimal, g=0, K#0

Proof : We have h°(nK) =0 or1VYn>1, and K2 = 0 by the
case = 2. We first prove p; = h°(K) = 0.
If h%(K) = 1 Riemann-Roch gives

h2(—K) + h°(2K) = x(Os) =1 —q+ pg = 2,
hence h°(—K) > 1. Thus 3A€ |K|,Be|-K| = A+B=0
= A=B+0, K=0, excluded. Hence h°(K) = 0.
Then: R (—K) + h°(2K) = x(Os) = 1.
If °(—K)>0,|-K|>D >0, |nK|>E>0,nD+E=0 =
D =0, contradiction. Hence h°(2K) > 0.
Riemann-Roch: h%(3K) + h%(—2K) = 1. Suppose h°(3K) > 1.
D e [2K|, E € |3K|; 3D,2E € |6K| = 3D = 2E =
D =2F,E =3F with F > 0. But F = E — D = K, contradiction.

Therefore h°(—2K) > 0, and 2K = 0. [



The double cover of an Enriques surface

Let S be an Enriques surface. View Ks as a line bundle

p: K — S; we have a non-vanishing section w of H°(2K). Let
X = {xeK|x*=w(px)}

It is a closed subvariety of IC; for each y € S there are 2 points in

X above y, exchanged by the involution o : x — —x. This
involution acts freely, and px identifies S with X/o.

The morphism px : X — S is étale, hence pxKs = Kx.

K Xs K——K
Consider the pull back diagram: p/i lp
K—"—s

p’ has a canonical section x — (x, x); this section does not vanish
outside the zero section of KC. Therefore p*K s = Kx is trivial.
We will admit g = 0, so X is a K3 surface. |



e S, < P3 (smooth) is a K3 surface.
Indeed Ks, = (d —4)H, so =0 for d = 4. To prove g = 0 we

admit a classical result:

Hi(P", Opn(k)) = 0 for all k and 0 < i < n.

Then from the exact sequence 0 — Op3(—4) — Ops —> Os — 0
we get HY(Os) = 0. [ |

e More generally, for each g > 3, there is a family of K3 surfaces
of degree 2g — 2 in IP8: in P* we get the intersection of a quadric
and a cubic, in P° the intersection of 3 quadrics, etc. These
surfaces have a rich geometry and have been, and still are,

extensively studied.
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An Enriques surface

In P°, with homogeneous coordinates X, X1, X2, X§, X{, X3,

consider the surface S defined by
PX)+ P (X)=QX)+ Q(X")=R(X)+R(X)=0,

where P, Q,R; P', Q', R" are general quadratic forms in 3 variables.
The involution o : (X, X]) — (=X, X]) preserves S; its fixed
points are the 2-planes X; = 0 and XJ-’ = 0, which are not on S
since the quadratic forms are general. The surface quotient S/o is

an Enriques surface.

THE END
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Exercises

1)Let S be a K3 surface, C S a curve of genus g.

a) Show that C? =2g —2 and h°(C) = g + 1 (deduce from the
exact sequence 0 —» Os(—C) — Os — O¢ — 0 that
HY(Os(=C)) = 0).

b) Show that the restriction of Os(C) to C has degree 2g — 2 and
h® = g, hence is =~ K.

c) Deduce from b) that |C| is base point free. If C is not
hyperelliptic, show the morphism ¢ is birational onto its image.

2) a) Let C, C’ two cubic curves in P2, which intersect
transversally at 9 points pi,..., pg. Let P be the bowup of P? at
these points. Show that the anticanonical system |—Kp| is base
point free, and defines a morphism P — P! whose general fiber is

a plane cubic, hence an elliptic curve.
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Exercises

b) Let S be a smooth quartic surface in P® containing a line ¢,
defined by X = Y = 0. Show that (X, Y') define a morphism
S — P! whose general fiber is a plane cubic.
3) Let S be a K3 surface, D an effective divisor on S with D? = 0
and D - C = 0 for every curve C on S. Show that D = mE, where
m > 1 and E is a smooth elliptic curve.
( Let Z be the fixed part of |D|, so that D = Z + M prove
D-Z =0, then Z2 = 0, which implies Z = 0 by Riemann-Roch.

Then use the same argument as in the Lemma.)
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Exercises

4) Let S be an Enriques surface, E an elliptic curve on S. Show
that either |E| or |2E] is a base point free pencil of elliptic cuves.
(Use the exact sequence 0 — Os — Os(E) — Os(E) g — 0. If
Os(E)|e = Ok, |E| is a base point free pencil. If not, observe that
|K + E| contains a divisor E’ by Riemann-Roch; then |2E|
contains 2E and 2E’, and the above exact sequence tensored by
Os(E) shows that h%(2E) = 2.)

5) Let S be a surface, p: S — B a morphism onto a curve with
connected fibers. Suppose a fiber F is reducible, i.e. F =) n;C
Let D = Y r;G;, with r; € Z. Show that D? <0, and D? = 0 if
and only if D = kF for some k e Q.

(Write G; = n;C; and s; = — € Q, so that D = ). 5;G;; using
G?=G;-(F-Y G, prove that D? = Z(s, —5)°G; - G;.)



Exercises

6) Let S be a minimal surface with a morphism p: S — B onto a
curve, whose general fiber is an elliptic curve. By a theorem of

Zariski all fibers of p are connected.

a) Suppose a fiber is reducible, hence = ) n;C;. Using exercise 5,
show that C,-2 < 0 for all /. Deduce that C; is smooth rational and
C? = -2.

1
b) Suppose x(S) = 0. Show that there exists an integer d such
that dK = p*D for some D = 0 on B (let D € |rK|; since
D - F =0, D is contained in some fibers. Apply exercise 5.)
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