Algebraic surfaces

Lecture I: The Picard group, Riemann-Roch,...

Arnaud Beauville
Université Côte d’Azur

July 2020

Divisors and line bundles

Surface $=$ smooth, projective, over \mathbb{C}.
$\operatorname{Pic}(S)=\{$ line bundles on $S\} / \sim, \quad($ group for $\otimes)$.
$\operatorname{Div}(S)=\left\{D=\sum n_{i} C_{i}\right\} . \quad D \geqslant 0$ (effective) if $n_{i} \geqslant 0 \forall i$.

$$
\{D \geqslant 0\} \leadsto \sim\left\{(L, s) \mid L \in \operatorname{Pic}(S), 0 \neq s \in H^{0}(L)\right\}
$$

We put $L=\mathcal{O}_{S}(D)$. Map $D \mapsto \mathcal{O}_{S}(D)$ extends by linearity to homomorphism $\operatorname{Div}(S) \rightarrow \operatorname{Pic}(S)$. Then $\operatorname{Pic}(S)=\operatorname{Div}(S) / \equiv$ where $D \equiv D^{\prime} \Leftrightarrow D-D^{\prime}=\operatorname{div}(\varphi), \varphi$ rational function on S.
C irreducible curve, $s \in H^{0}\left(\mathcal{O}_{S}(C)\right)$ defining $C . \mathcal{O}_{S}(-C) \stackrel{s}{\longrightarrow} \mathcal{O}_{S}$ $\Rightarrow \mathcal{O}_{S}(-C) \cong$ ideal sheaf of C in S.
$f: S \rightarrow T \leadsto f^{*}: \operatorname{Pic}(T) \rightarrow \operatorname{Pic}(S)$.
$D \in \operatorname{Div}(T)$; if $f(S) \notin D, f^{*} D \in \operatorname{Div}(S)$ and $\mathcal{O}_{S}\left(f^{*} D\right)=f^{*} \mathcal{O}_{S}(D)$.

The intersection form

$C \neq D$ irreducible, $p \in C \cap D . f, g$ equations of C, D in \mathcal{O}_{p}.
Definition : $m_{p}(C \cap D):=\operatorname{dim}_{\mathbb{C}} \mathcal{O}_{p} /(f, g)$.
Example: $m_{p}(C \cap D)=1 \Longleftrightarrow(f, g)=\mathfrak{m}_{p} \Longleftrightarrow f, g$ local coordinates at $p \stackrel{\text { def }}{\Longleftrightarrow} C$ and D transverse.

Definition : $(C \cdot D):=\sum_{p \in C \cap D} m_{p}(C \cap D)$.

Theorem

\exists bilinear symmetric form $(\cdot): \operatorname{Pic}(S) \times \operatorname{Pic}(S) \rightarrow \mathbb{Z}$ such that $\left(\mathcal{O}_{S}(C) \cdot \mathcal{O}_{S}(D)\right)=(C \cdot D)$ for C, D irreducible.

The intersection form: step 1

Proof : For $L, M \in \operatorname{Pic}(S)$, we put:

$$
(L \cdot M)=\chi\left(\mathcal{O}_{S}\right)-\chi\left(L^{-1}\right)-\chi\left(M^{-1}\right)+\chi\left(L^{-1} \otimes M^{-1}\right)
$$

Step $1:\left(\mathcal{O}_{S}(C) \cdot \mathcal{O}_{S}(D)\right)=(C \cdot D)$.
Proof : $C=\operatorname{div}(s), D=\operatorname{div}(t)$. Exact sequence:
$0 \rightarrow \mathcal{O}_{S}(-C-D) \xrightarrow{(t,-s)} \mathcal{O}_{S}(-C) \oplus \mathcal{O}_{S}(-D) \xrightarrow{(s, t)} \mathcal{O}_{S} \rightarrow \mathcal{O}_{C \cap D}$.
Proof: $p \in S, f, g \in \mathcal{O}_{p}$ local equations for C and D.

$$
0 \rightarrow \mathcal{O}_{p} \xrightarrow{(g,-f)} \mathcal{O}_{p}^{2} \xrightarrow{(f, g)} \mathcal{O}_{p} \rightarrow \mathcal{O}_{p} /(f, g) \rightarrow 0
$$

Means: in $\mathcal{O}_{p}, a f=b g \Longleftrightarrow \exists k, a=g k, b=f k$.
Holds because \mathcal{O}_{p} factorial, f, g prime \neq. Then:

$$
\begin{aligned}
& \chi\left(\mathcal{O}_{S}\right)-\chi\left(\mathcal{O}_{S}(-C)\right)-\chi\left(\mathcal{O}_{S}(-D)\right)+\chi\left(\mathcal{O}_{S}(-C-D)\right)=\chi\left(\mathcal{O}_{C \cap D}\right) \\
& \left.=h^{0}\left(\mathcal{O}_{C \cap D}\right)\right)=\sum_{p \in C \cap D} \mathcal{O}_{p} /(f, g) \xlongequal{\text { def }}(C \cdot D)
\end{aligned}
$$

The intersection form (continued)

Step 2: $\left(L \cdot \mathcal{O}_{S}(C)\right)=\operatorname{deg} L_{\mid C} \quad \forall L \in \operatorname{Pic}(S), C$ smooth .
Proof: Exact sequences $0 \rightarrow \mathcal{O}_{S}(-C) \rightarrow \mathcal{O}_{S} \rightarrow \mathcal{O}_{C} \rightarrow 0$,
$\otimes L^{-1}: \quad 0 \rightarrow L^{-1} \otimes \mathcal{O}_{S}(-C) \rightarrow L^{-1} \rightarrow L_{\mid C}^{-1} \rightarrow 0$.
$\chi\left(\mathcal{O}_{C}\right)=\chi\left(\mathcal{O}_{S}\right)-\chi\left(\mathcal{O}_{S}(-C)\right), \chi\left(L_{\mid C}^{-1}\right)=\chi\left(L^{-1}\right)-\chi\left(L^{-1} \otimes \mathcal{O}_{S}(-C)\right)$
$\Rightarrow(L \cdot C)=\chi\left(\mathcal{O}_{C}\right)-\chi\left(L_{\mid C}^{-1}\right)=\operatorname{deg} L_{\mid C}(\mathrm{R}-\mathrm{R}$ on $C)$.
Step 3 : (\cdot) is bilinear.
Put $s(L, M, N):=(L \cdot M \otimes N)-(L \cdot M)-(L \cdot N)$.

- Symmetric in $L, M, N . \quad \bullet=0$ when $L=\mathcal{O}_{S}(C)$.

Fact (Serre): $\forall L \in \operatorname{Pic}(S), L \cong \mathcal{O}_{S}(C-D)$, with C, D smooth curves (In fact, hyperplane sections in appropriate embeddings).

The intersection form: end of proof

$L, M \in \operatorname{Pic}(S) ; M=\mathcal{O}_{S}(C-D), C, D$ smooth curves. Then
$0=s\left(L, M, \mathcal{O}_{S}(B)\right)=\left(L \cdot M \otimes \mathcal{O}_{S}(B)\right)-(L \cdot M)-\left(L \cdot \mathcal{O}_{S}(B)\right)$
$\Rightarrow(L \cdot M)=\left(L \cdot \mathcal{O}_{S}(A)\right)-\left(L \cdot \mathcal{O}_{S}(B)\right)$ linear in L, hence in M.

Examples

(1) $S=\mathbb{P}^{2}$
$C \subset \mathbb{P}^{2}$ defined by a form $F_{d}(X, Y, Z)$ of degree $d . \frac{F_{d}}{Z^{d}}$ rational function $\Rightarrow C \equiv d H, H$ line in \mathbb{P}^{2}. Thus $\operatorname{Pic}\left(\mathbb{P}^{2}\right)=\mathbb{Z}[H]$,
$(C \cdot D): \operatorname{deg}(C) \operatorname{deg}(D)$ (Bézout theorem).

Examples

(2) $S=\mathbb{P}^{1} \times \mathbb{P}^{1}$

Put $A=\mathbb{P}^{1} \times\{0\}, B=\{0\} \times \mathbb{P}^{1}, U=S \backslash(A \cup B) \cong \mathbb{A}^{2}$.
$D \in \operatorname{Div}(S): D_{\mid U}=\operatorname{div}(\varphi)$ for some rational function φ.
$D-\operatorname{div} \varphi=a A+b B$ for some $a, b \in \mathbb{Z} \Longrightarrow$
$\operatorname{Pic}\left(\mathbb{P}^{1} \times \mathbb{P}^{1}\right)=\mathbb{Z}[A] \oplus \mathbb{Z}[B]$.
$(A \cdot B)=1$ (transverse).
$A^{2}=\left(A \cdot\left(\mathbb{P}^{1} \times\{1\}\right)\right)=0, B^{2}=0$: intersection form $\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$.
(3) $p: S \rightarrow C, F:=p^{-1}(x) . \exists D \in \operatorname{Div}(C), x \notin D, x \equiv D$; then $F \equiv p^{*} D \Rightarrow F^{2}=F \cdot p^{*} D=0$.
(4) $D \geqslant 0, D \cdot C<0 \Rightarrow D=C+E, E \geqslant 0$.
(otherwise $D=\sum n_{i} C_{i}, C_{i} \neq C \Rightarrow C \cdot C_{i} \geqslant 0 \forall i$)
(5) $C^{2}<0, C \equiv D \geqslant 0 \Rightarrow D=C\left(\Leftrightarrow h^{0}\left(\mathcal{O}_{S}(C)\right)=1\right)$.

Canonical line bundle and Riemann-Roch

$\Omega_{S}^{1}=$ sheaf of differential 1-forms, locally isomorphic to \mathcal{O}_{S}^{2} (locally $a(x, y) d x+b(x, y) d y$).
$\mathcal{K}_{S}=\bigwedge^{2} \Omega_{S}^{1}=$ sheaf of 2-forms $=$ canonical line bundle (locally $\omega=f(x, y) d x \wedge d y, \operatorname{div}(\omega)=\operatorname{div}(f)$).
K_{S} or $K=$ canonical divisor $=$ divisor of any rational 2 -form.
Example : $K_{\mathbb{P}^{2}} \equiv-3 H$.
Indeed the 2-form $\frac{X d Y \wedge d Z+Y d Z \wedge d X+Z d X \wedge d Y}{X Y Z}$ is welldefined, does not vanish, and has a pole $\equiv 3 H$.

Example: C_{1}, C_{2} smooth projective curves, $S=C_{1} \times C_{2}$, projections $p_{i}: S \rightarrow C_{i}$. Then $K_{S} \equiv p_{1}^{*} K_{C_{1}}+p_{2}^{*} K_{C_{2}}$.
Indeed if α_{i} is a 1-form on C_{i} (possibly rational), $p_{1}^{*} \alpha_{1} \wedge p_{2}^{*} \alpha_{2}$ is a 2 -form on S, with divisor $p_{1}^{*} \operatorname{div}\left(\alpha_{1}\right)+p_{2}^{*} \operatorname{div}\left(\alpha_{2}\right)$.

Riemann-Roch

Recall: $L \in \operatorname{Pic}(S) \leadsto H^{i}(S, L)=H^{i}(L), i=0,1,2$.
$h^{i}(L)=\operatorname{dim} H^{i}(L) \cdot \chi(L):=h^{0}(L)-h^{1}(L)+h^{2}(L)$.
If $L=\mathcal{O}_{S}(D)$, we write $H^{i}(D), h^{i}(D), \chi(D)$.

Theorem

- Riemann-Roch : $\chi(L)=\chi\left(\mathcal{O}_{S}\right)+\frac{1}{2}\left(L^{2}-\mathcal{K}_{S} \cdot L\right)$.
- Serre duality : $h^{i}(L)=h^{2-i}\left(\mathcal{K}_{S} \otimes L^{-1}\right)$.

Since the term h^{1} is difficult to control, we will most often use R-R as an inequality, using Serre duality. In divisor form:

$$
h^{0}(D)+h^{0}(K-D) \geqslant \chi\left(\mathcal{O}_{S}\right)+\frac{1}{2}\left(D^{2}-K \cdot D\right)
$$

Proof of Riemann-Roch

We admit Serre duality. Riemann-Roch follows directly from the definition of the intersection form:

Proof : $L^{-1} \cdot\left(L \otimes \mathcal{K}_{S}^{-1}\right)=\chi\left(\mathcal{O}_{S}\right)-\chi(L)-\chi\left(\mathcal{K}_{S} \otimes L^{-1}\right)+\chi\left(\mathcal{K}_{S}\right)$
$=2 \chi\left(\mathcal{O}_{S}\right)-2 \chi(L)$ by Serre duality. Hence
$\chi(L)=\chi\left(\mathcal{O}_{S}\right)-\frac{1}{2} L^{-1} \cdot\left(L \otimes \mathcal{K}_{S}^{-1}\right)=\chi\left(\mathcal{O}_{S}\right)+\frac{1}{2}\left(L^{2}-L \cdot \mathcal{K}_{S}\right)$.

The genus formula

Corollary (genus formula)

C irreducible $\subset S \Rightarrow g(C):=h^{1}\left(\mathcal{O}_{C}\right)=1+\frac{1}{2}\left(C^{2}+K \cdot C\right)$.

Proof : Exact sequence $0 \rightarrow \mathcal{O}_{S}(-C) \rightarrow \mathcal{O}_{S} \rightarrow \mathcal{O}_{C} \rightarrow 0 \Longrightarrow$

$$
\chi\left(\mathcal{O}_{C}\right)=\chi\left(\mathcal{O}_{S}\right)-\chi\left(\mathcal{O}_{S}(-C)\right) \stackrel{\mathrm{R}-\mathrm{R}}{=}-\frac{1}{2}\left(C^{2}+K \cdot C\right)
$$

Examples: • $C \subset \mathbb{P}^{2}$ of degree $d \Rightarrow$

$$
g(C)=1+\frac{1}{2}\left(d^{2}-3 d\right)=\frac{1}{2}(d-1)(d-2) .
$$

- $C \subset \mathbb{P}^{1} \times \mathbb{P}^{1}$ of bidegree (p, q) (i.e. $\left.C \equiv p A+q B\right) \Rightarrow$

$$
g(C)=1+\frac{1}{2}(2 p q-2 p-2 q)=(p-1)(q-1)
$$

The genus of a singular curve

Remark: Let $n: N \rightarrow C$ be the normalization of C. Then $g(C) \geqslant g(N)$, with equality iff C is smooth.

Proof: Exact sequence $\quad 0 \rightarrow \mathcal{O}_{C} \rightarrow n_{*} \mathcal{O}_{N} \rightarrow \mathcal{T} \rightarrow 0$ with \mathcal{T} concentrated on the singular points of C. Hence $H^{i}(\mathcal{T})=0$ for $i>0$. Therefore $\chi\left(\mathcal{O}_{C}\right)=\chi\left(\mathcal{O}_{N}\right)-h^{0}(\mathcal{T})$, and $g(C)=g(N)+h^{0}(\mathcal{T}) \geqslant g(N)$, equality iff $C=N$ smooth.

Corollary

$C^{2}+K \cdot C \geqslant-2 ;$ equality $\Rightarrow C \cong \mathbb{P}^{1}$.

Indeed $C^{2}+K \cdot C=2 g(C)-2 \geqslant 2 g(N)-2 \geqslant-2$.

Numerical invariants

Algebraic surfaces are distinguished by their numerical invariants:

- The most important: $K^{2}, \chi(\mathcal{O})$.

Though we will not use this in the lectures, I want to mention:

Theorem

(1) (M. Noether) $K^{2} \geqslant 2 \chi(\mathcal{O})-6$;
(2) (Miyaoka-Yau) $K^{2} \leqslant 9 \chi(\mathcal{O})$.

The relation of $K^{2} / \chi(\mathcal{O})$ with the geometry of the surface is a long chapter of surface theory ("geography").
Refined invariants:

- $h^{2}(\mathcal{O})=h^{0}(K)$ (Serre duality), the geometric genus p_{g};
- $h^{1}(\mathcal{O})=H^{0}\left(\Omega^{1}\right)$ (Hodge theory), the irregularity q;
- $h^{0}(n K)(n \geqslant 1)$, the plurigenera P_{n}.

Exercises

1) Let C be an irreducible curve in $\mathbb{P}^{2}, p \in C$. We choose affine coordinates (x, y) with $p=(0,0)$, and write the equation of C as $0=f_{m}(x, y)+f_{m+1}(x, y)+\ldots$, where f_{q} is homogeneous of degree q. We have $f_{m}=\ell_{1} \ldots \ell_{m}$, where the ℓ_{i} are linear forms; the lines $\ell_{i}=0$ are the tangent to C at p. Show that a line ℓ passing through p is tangent to C if and only if $(C \cdot \ell)_{p}>m$.
2) Let C be a curve of genus g. Let $\Delta \subset C \times C$ be the diagonal ($\Delta=\{(x, x) \mid x \in C\}$.
a) Using the genus formula, prove that $\Delta^{2}=2-2 g$.
b) Let $p, q: C \times C \rightarrow C$ be the two projections. Show that if $g>0, \operatorname{Pic}(S \times S) \supset p^{*} \operatorname{Pic}(C) \oplus q^{*} \operatorname{Pic}(C) \oplus \mathbb{Z}[\Delta]$. What happens for $g=0$?

Exercises

3) a) Let S_{0} be a smooth surface in the affine space A^{3}, defined by an equation $f=0$. Prove that $\frac{d x \wedge d y}{f_{z}^{\prime}}=\frac{d y \wedge d z}{f_{x}^{\prime}}=\frac{d z \wedge d x}{f_{y}^{\prime}}$ on S_{0}, so that this expression defines a non-vanishing 2-form on S_{0}. b) Let S be a smooth surface in \mathbb{P}^{3}, defined by an equation $F=0$ of degree d. Prove that the expression

$$
T^{d-4} \frac{T d Y \wedge d Z+Y d Z \wedge d T+Z d T \wedge d Y}{F_{X}^{\prime}}
$$

defines a 2-form on S with divisor $(d-4) H$.
4) (Hodge index theorem) Let H be a divisor on S such that $H \cdot C>0$ for every curve $C \subset S$ (for instance a hyperplane section). Let D be a divisor such that $H \cdot D=0$. We will prove that $D^{2} \leqslant 0$.

Exercises

a) Show that $h^{0}(n D)=0$ for all $n \in \mathbb{Z}, n \neq 0$.
b) If $D^{2}>0$, deduce from Riemann-Roch that $h^{0}(K-n D)$ and $h^{0}(K+n D) \rightarrow \infty$ when $n \rightarrow \infty$; conclude that $D^{2} \leqslant 0$.
5) Let C, C^{\prime} be two curves, D a divisor on $C \times C^{\prime}$. Let $p \in C$, $p^{\prime} \in C^{\prime}$; put $A=p \times C, B=C \times p^{\prime}, a=D \cdot A$ and $b=D \cdot B$.
Prove the Castelnuovo-Severi inequality $D^{2} \leqslant 2 a b$ (apply the previous exercise to $H=A+B$, and the divisor $D-b A-a B)$.
[Note: This inequality was the essential step in Weil's proof of his conjectures for curves.]

Algebraic surfaces

Lecture II: Rational and birational maps

Arnaud Beauville
Université Côte d'Azur

July 2020

Blowing up

Proposition

$p \in S . \exists b: \hat{S} \rightarrow S$, unique up to isomorphism, such that
(1) $b^{-1}(p)=E \cong \mathbb{P}^{1}$;
(2) $b: S \backslash E \xrightarrow{\sim} S \backslash p$.

Sketch of proof: coordinates x, y in $U \ni p$ $\hat{U} \subset U \times \mathbb{P}^{1}: x Y-y X=0$.
$b: \hat{U} \rightarrow U$ projection, satisfies (1) and (2).
Then glue $S \backslash p$ and \hat{U} along $U \backslash p$.
In $\hat{U}^{\prime} \subset \hat{U}:\{X \neq 0\}, y=x t$ with $t=\frac{Y}{X}$:
(x, t) local coordinates, $b(x, t)=(x, t x)$,
E given by $x=0$.

The strict transform

We say that E is the exceptional curve of the blowing up.
$E \xrightarrow{\sim} \mathbb{P}\left(T_{p}(S)\right):(X, Y) \in E \leftrightarrow$ tangent direction $x Y-y X=0$.
For $C \subset S$, strict transform $\hat{C}:=$ closure of $C \backslash p$ in \hat{S}.
$\hat{C} \cap E=\{$ tangent directions to C at $p\}$.

Lemma

$b^{*} C=\hat{C}+m E$ in $\operatorname{Div}(\hat{S})$, where $m:=m_{p}(C)$.

Proof : Eqn. of C in $U: 0=f(x, y)=f_{m}(x, y)+f_{m+1}(x, y)+.$. Choose (x, y) such that $f_{m}(x, 0) \neq 0$, i.e. C not tangent to $y=0$. $b^{*} f=f(x, t x)=x^{m}\left(f_{m}(1, t)+x f_{m+1}(1, t)+\ldots\right), \quad f_{m}(1,0) \neq 0$ \Rightarrow multiplicity of $E \operatorname{in} \operatorname{div}\left(b^{*} f\right)=m$.

The Picard group of \hat{S}

Proposition

(1) $\operatorname{Pic}(\hat{S})=b^{*} \operatorname{Pic}(S) \stackrel{\perp}{\oplus} \mathbb{Z}[E],\left(b^{*} C \cdot b^{*} D\right)=(C \cdot D), E^{2}=-1$.
(2) $K_{\hat{S}}=b^{*} K_{S}+E$.
(3) $b_{2}(\hat{S})=b_{2}(S)+1$.

Proof : • $\Gamma \subset \hat{S}, \Gamma \neq E \Rightarrow \Gamma=$ strict transform of $b(\Gamma) \subset S$
$\Rightarrow \Gamma=b^{*} b(\Gamma)-m E$.

- $\forall C \subset S, C \equiv A \nexists p \Rightarrow\left(b^{*} C \cdot E\right)=0,\left(b^{*} C \cdot b^{*} D\right)=(C \cdot D)$.
- Take $H \ni p, m_{p}(H)=1$. Then $(\hat{H} \cdot E)=1 ; b^{*} H=\hat{H}+E$,
$\left(b^{*} H \cdot E\right)=0 \Rightarrow E^{2}=-1$.
- $b^{*} K_{S}=K_{\hat{s}}+k E \Rightarrow K_{\hat{s}} \cdot E+k E^{2}=0 . K_{\hat{s}} \cdot E=-1$ (genus formula) $\Rightarrow k=-1$.
- The claim on b_{2} follows from standard topological arguments.

Rational maps

Corollary

$C \subset S$, strict transform $\hat{C} \subset \hat{S}$. Then $\hat{C}^{2} \leqslant C^{2}, K_{\hat{S}} \cdot \hat{C} \geqslant K_{S} \cdot C$.
Proof: - $\hat{C}^{2}=\left(b^{*} C-m E\right)^{2}=C^{2}-m^{2}$.

- $K_{\hat{S}} \cdot \hat{C}=\left(b^{*} K_{S}+E\right) \cdot\left(b^{*} C-m E\right)=K_{S} \cdot C+m$.

Definition : Rational map $\varphi: S \rightarrow T:=$ morphism $S \supset U \rightarrow T$.
We'll always take the largest U such that $\varphi_{\mid U}$ is a morphism.

- φ is birational if $\exists U \subset S, V \subset T$ such that $\varphi: U \sim \sim V$
- then we say that S and T are birational.

Elimination of indeterminacy

Theorem (Elimination of indeterminacy)

(1) $\exists u, v$ morphisms, $u=b_{1} \circ \ldots \circ b_{n}$ blowups.

(2) A birational morphism is a composition of blowups.

Remark : (1) holds in higher dimension ("Hironaka's little roof'), but not (2).

Example: stereographic projection

$Q \subset \mathbb{P}^{3}$ smooth quadric $X T-Y Z=0$. Segre embedding $s: \mathbb{P}^{1} \times \mathbb{P}^{1} \xrightarrow{\sim} Q \subset \mathbb{P}^{3}, s(U, V ; W, S)=(U W, U S, V W, V S)$.

For each $p=s(a, b) \in Q$, there are 2 lines $\subset Q$ passing through p : $s\left(\mathbb{P}^{1} \times b\right)$ and $s\left(a \times \mathbb{P}^{1}\right)$.

Let $\Pi \subset \mathbb{P}^{3}$ plane $\nexists p$.
$\varphi: Q \rightarrow \Pi: q \neq p \leadsto\langle p, q\rangle \cap \Pi$.
Extension $f: \hat{Q} \rightarrow \Pi: \ell \in \mathbb{P}\left(T_{p}(Q)\right) \mapsto \ell \cap \Pi$.
f birational, contracts the 2 lines through p.

Some consequences

Corollary

$\varphi: S \rightarrow T$ rational. $\exists F \subset S$ finite, $\varphi: S \backslash F \rightarrow T$ morphism.
Remark : Direct proof easy, see exercises.
Consequences : • Since $\operatorname{Div}(S) \xrightarrow{\sim} \operatorname{Div}(S \backslash F)$ and $\operatorname{Pic}(S) \xrightarrow{\sim}$ $\operatorname{Pic}(S \backslash F), \varphi^{*}: \operatorname{Div}(T) \rightarrow \operatorname{Div}(S)$ and $\operatorname{Pic}(T) \rightarrow \operatorname{Pic}(S)$ defined.

- For $C \subset S, \varphi(C):=\overline{\varphi(C \backslash F)}$ well-defined.
- $\varphi: S \xrightarrow{\sim} T \Rightarrow H^{0}\left(T, K_{T}\right) \xrightarrow{\sim} H^{0}\left(S, K_{S}\right)$.
(Beware! Not true that $\varphi^{*} K_{T}=K_{S}$, think of blowups)
Proof : $\varphi^{*}: H^{0}\left(T, K_{T}\right) \rightarrow H^{0}\left(S \backslash F, K_{S}\right) \simeq H^{0}\left(S, K_{S}\right)$, then
$\left(\varphi^{-1}\right)^{*}: H^{0}\left(T, K_{T}\right) \rightarrow H^{0}\left(S, K_{S}\right)$ inverse of φ^{*}.
- $H^{0}\left(T, n K_{T}\right) \xrightarrow{\sim} H^{0}\left(S, n K_{S}\right)$ for $n>0$ (same argument).
- $H^{0}\left(T, \Omega_{T}^{1}\right) \xrightarrow{\sim} H^{0}\left(S, \Omega_{S}^{1}\right)$ (same argument).

Birational invariants

- The numerical invariants $p_{g}(S):=h^{0}\left(K_{S}\right)$ (geometric genus), $P_{n}(S):=h^{0}\left(n K_{S}\right)$ (plurigenera), $q(S):=h^{0}\left(\Omega_{S}^{1}\right)$ (irregularity) are birational invariants.

Definition

A surface is ruled if it is birational to $C \times \mathbb{P}^{1}$.

Proposition

S ruled $\Rightarrow P_{n}(S)=0 \forall n \geqslant 1$.
Proof : Suffices to prove it for $S=C \times \mathbb{P}^{1}$.
$F=\{c\} \times \mathbb{P}^{1}$ satisfies $F^{2}=0$, hence $K \cdot F=-2$ (genus formula).
If $n K \equiv D \geqslant 0, D$ must contain $\{c\} \times \mathbb{P}^{1}$ for all $c \in C$, impossible.

Irregularity of ruled surfaces

The converse is true, but difficult:

Theorem (Enriques)

$$
P_{n}(S)=0 \forall n \Rightarrow S \text { ruled }
$$

In fact Enriques proved a more precise result: $P_{12}=0 \Rightarrow S$ ruled.

Proposition

S birational to $C \times \mathbb{P}^{1} \Rightarrow q(S)=g(C)$.

Proof: $S=C \times \mathbb{P}^{1} \xrightarrow{p} C$. Claim: $p^{*}: H^{0}\left(C, K_{C}\right) \xrightarrow{\sim} H^{0}\left(S, \Omega_{S}^{1}\right)$. $\omega \in H^{0}\left(\Omega_{S}^{1}\right), s: C \hookrightarrow C \times \mathbb{P}^{1}, s(c)=(c, 0)$. Suffices: $\omega=p^{*} s^{*} \omega$. Local coordinates z on C, t on $\mathbb{P}^{1} \leadsto \omega=a(z, t) d z+b(z, t) d t$. $\omega_{\{c\} \times \mathbb{P}^{1}}=0 \Rightarrow b(c, t) \equiv 0 \forall c \Rightarrow b=0$.
$d \omega \in H^{0}\left(K_{S}\right)=0 \Rightarrow \frac{\partial}{\partial t} a(z, t)=0 \Rightarrow a(z, t)=a(z, 0)$,
$\omega=a(z, 0) d z=p^{*} s^{*} \omega$.

Minimal surfaces

Definition

S minimal if any birational morphism $S \rightarrow T$ is an isomorphism.

Proposition

Every S admits a birational morphism onto a minimal surface.

Proof: If not, \exists an infinite chain $S \rightarrow S_{1} \rightarrow \cdots \rightarrow S_{n} \rightarrow \cdots$ of blowups. This is impossible since $b_{2}\left(S_{n}\right)=b_{2}(S)-n$.

Theorem (Castelnuovo's criterion)

Let $E \subset S, E \cong \mathbb{P}^{1}, E^{2}=-1$. There exists a surface T and a blowing up $b: S \rightarrow T$ with exceptional curve E.

Corollary

$$
S \text { minimal } \Leftrightarrow S \neq E \cong \mathbb{P}^{1} \text { with } E^{2}=-1
$$

Exercises

1) Let $b: \hat{S} \rightarrow S$ the blowup of $p \in S, \hat{C}$ the strict transform of $C \subset S$. Using the genus formula, compute $g(\hat{C})$. Deduce that after a finite number of appropriate blowups, the strict transform of C becomes smooth.
2) Let $\sigma: \mathbb{P}^{2} \rightarrow \mathbb{P}^{2}$ be given by $\sigma(X, Y, Z)=(Y Z, Z X, X Y)$ ("standard quadratic transformation"). Let $b: P \rightarrow \mathbb{P}^{2}$ be the blowup of \mathbb{P}^{2} at the points $(1,0,0),(0,1,0),(0,0,1)$. Show that there is an automorphism s of P, with $s^{2}=\operatorname{Id} P$ and $b \circ s=s \circ \sigma$.
3) Let $\varphi: S \rightarrow \mathbb{P}^{n}$ be a rational map.
a) Show that there exists rational functions $\varphi_{0}, \ldots, \varphi_{n}$ on S such that $\varphi(p)=\left[\varphi_{0}(p), \ldots, \varphi_{n}(p)\right]$ (observe that there is an open subset $U \subset S$ such that $\varphi_{\mid U}$ is a morphism into $\left.\mathbb{A}^{n} \subset \mathbb{P}^{n}\right)$.

Exercises

b) Prove that there is a finite subset $F \subset S$ such that φ is
well-defined outside F (suppose φ is not defined along a curve C; let $p \in C, g \in \mathcal{O}_{p}$ a local equation for C. We can assume that all φ_{i} are in \mathcal{O}_{p}, with no common factor. But $\varphi_{i}=0$ along
$C \Rightarrow g \mid \varphi_{i} \forall i$, contradiction.)
4) Let $u: S \rightarrow T$ be a birational morphism of surfaces, $C \subset S$ an irreducible curve such that $u(C)$ is a point. Show that $C \cong \mathbb{P}^{1}$, and $C^{2}<0$.
5) Let $S \subset \mathbb{P}^{3}$ be a smooth surface of degree d. Using
$K_{S} \equiv(d-4) H$ and the exact sequence
$0 \rightarrow \mathcal{O}_{\mathbb{P}^{3}}(-d) \rightarrow \mathcal{O}_{\mathbb{P}^{3}} \rightarrow \mathcal{O}_{S} \rightarrow 0$, compute $P_{n}(S)$.

Algebraic surfaces

Lecture III: minimal models

Arnaud Beauville

Université Côte d'Azur

July 2020

Geometrically ruled surfaces

Definition

- A surface S is ruled if it is birational to $C \times \mathbb{P}^{1}$.
- If $C=\mathbb{P}^{1}$, we say that S is rational.
- S is geometrically ruled if $\exists p: S \rightarrow C$ smooth, fibers $\cong \mathbb{P}^{1}$.

The last definition is justified by:
Theorem (Noether-Enriques)
$p: S \rightarrow C$ geometrically ruled $\Rightarrow S$ ruled.

Note that this is specific to surfaces: there exist smooth morphisms $X \rightarrow S$ (S surface) with all fibers $\cong \mathbb{P}^{1}$, but X not birational to $S \times \mathbb{P}^{1}$ (Severi-Brauer varieties).

Minimal ruled surfaces

Theorem

S ruled not rational. S minimal $\Leftrightarrow S$ geometrically ruled.

Proof : 1) $p: S \rightarrow C$ with fibers $\cong \mathbb{P}^{1}, g(C) \geqslant 1$. If $E \subset S, p(E)=q \in \mathbb{P}^{1}$ since $g(C) \geqslant 1 \Rightarrow E=p^{-1}(q) \Rightarrow E^{2}=0$.
2) $S \cong C \times \mathbb{P}^{1} \leadsto$ rational map $p: S \rightarrow C, g(C) \geqslant 1$.

Claim : p is a morphism.
If not,

$$
S_{n}
$$

$E_{n} \subset S_{n}$ exceptional curve; since $g(C) \geqslant 1, v\left(E_{n}\right)=\{\mathrm{pt}\} \Rightarrow$ can replace S_{n} by S_{n-1}, then ... till $S_{0} \Rightarrow ■$.

End of the proof

3) $p: S \rightarrow C$, general fiber $F \cong \mathbb{P}^{1}$. Want to prove all fibers $\cong \mathbb{P}^{1}$. Recall: $F^{2}=0, K \cdot F=-2$ (genus formula).

- F irreducible $\Rightarrow F \cong \mathbb{P}^{1}$ (genus formula).
- $F=m F^{\prime}$? Only possibility $m=2, K \cdot F^{\prime}=-1$, contradicts genus formula.
- $F=\sum n_{i} C_{i}$. Claim : $\Rightarrow C_{i}^{2}<0 \forall i$.

Because: $n_{i} C_{i}^{2}=C_{i} \cdot\left(F-\sum_{j \neq i} n_{j} C_{j}\right), C_{i} \cdot F=0, C_{i} \cdot C_{j} \geqslant 0$, and
$C_{i} \cdot C_{j}>0$ for some j since F is connected.

- Then $K \cdot C_{i}=2 g\left(C_{i}\right)-2-C_{i}^{2} \geqslant-1,=-1 \Leftrightarrow C_{i}$ exceptional.

So if S minimal, $\left(K \cdot C_{i}\right) \geqslant 0 \forall i \Rightarrow(K \cdot F) \geqslant 0$, contradiction.

Projective bundles

E rank 2 vector bundle on $C \leadsto$ projective bundle $p: \mathbb{P}_{C}(E) \rightarrow C, p^{-1}(x)=\mathbb{P}\left(E_{x}\right)$, so $\mathbb{P}_{C}(E)$ is a geometrically ruled surface.

The following can be deduced from the Noether-Enriques theorem:

Proposition

Every geometrically ruled surface is a projective bundle.

There is a highly developed theory of vector bundles on curves, particularly in rank 2; therefore the classification of minimal ruled surfaces is well understood.

Elementary transformation

$f: S \rightarrow C$ geometrically ruled. Choose $p \in C$, $q \in F:=f^{-1}(p)$. Blow up q.
$\hat{f}: \hat{S} \xrightarrow{b} S \xrightarrow{f} C$. Fiber above $p=E \cup \hat{F}$.
$0=\left(\hat{f}^{*} p\right)^{2}=(E+\hat{F})^{2}=E^{2}+\hat{F}^{2}+2 \Rightarrow$
$\hat{F}^{2}=-1$, hence \hat{F} is an exceptional curve (Castelnuovo). Contraction $c: \hat{S} \rightarrow S^{\prime}$:

$S^{\prime} \hat{f}$ induces $g: S^{\prime} \rightarrow C$ geometrically ruled.

Elementary transformation with section

Then

$$
\Sigma^{\prime 2}=\hat{\Sigma}^{2}=\left(b^{*} \Sigma-E\right)^{2}=\Sigma^{2}-1
$$

Lemma

Suppose $\operatorname{Pic}(S)=\mathbb{Z}[F] \oplus \mathbb{Z}[\Sigma]$. Then $\operatorname{Pic}\left(S^{\prime}\right)=\mathbb{Z}\left[F^{\prime}\right] \oplus \mathbb{Z}\left[\Sigma^{\prime}\right]$.
Proof: It suffices to prove that $\left(c^{*} F^{\prime}, c^{*} \Sigma^{\prime}, \hat{F}\right)$ basis of $\operatorname{Pic}(\hat{S})$.
But $\quad c^{*} F^{\prime}=b^{*} F, c^{*} \Sigma^{\prime}=\hat{\Sigma}=b^{*} \Sigma-E, \hat{F}=b^{*} F-E$ and $\left(b^{*} F, b^{*} \Sigma, E\right)$ basis of $\operatorname{Pic}(\hat{S})$.

The surfaces \mathbb{F}_{n}

Proposition

- For $n \geqslant 0, \exists$ a geometrically ruled rational surface $\mathbb{F}_{n} \rightarrow \mathbb{P}^{1}$, with a section Σ of square $-n$, and $\operatorname{Pic}\left(\mathbb{F}_{n}\right)=\mathbb{Z}[F] \oplus \mathbb{Z}[\Sigma]$.
- For $n>0$, the curve Σ is the only curve of square <0 on \mathbb{F}_{n}.

Proof : We start with $\mathbb{F}_{0}:=\mathbb{P}^{1} \times \mathbb{P}^{1}$, with $f=\mathrm{pr}_{1}$ and $\Sigma=\mathbb{P}^{1} \times\{0\}$. Once $\left(\mathbb{F}_{n}, \Sigma\right)$ is constructed, we choose $q \in \Sigma$: elementary transformation $\leadsto \mathbb{F}_{n+1}=S^{\prime}$ with $\Sigma^{\prime 2}=-n-1$.

- By the Lemma, $\operatorname{Pic}\left(\mathbb{F}_{n}\right)=\mathbb{Z}[F] \oplus \mathbb{Z}[\Sigma]$.
- Let $C \neq \Sigma$ irreducible curve on $\mathbb{F}_{n} . \quad C \equiv a \Sigma+b F$.
$(C \cdot F) \geqslant 0 \Rightarrow a \geqslant 0 ; \quad(C \cdot \Sigma)=-a n+b \geqslant 0$
$\Rightarrow C^{2}=-n a^{2}+2 a b=a(2 b-a n) \geqslant a n^{2} \geqslant 0$.

Minimal rational surfaces

Corollary

\mathbb{F}_{n} is minimal for $n \neq 1$.
\mathbb{F}_{1} is obtained by blowing up a point q in $\mathbb{P}^{1} \times \mathbb{P}^{1}$ and contracting one of the lines through q; by stereographic projection, $\mathbb{F}_{1} \cong \hat{\mathbb{P}}^{2}$.

Theorem

The minimal rational surfaces are \mathbb{P}^{2} and \mathbb{F}_{n} for $n \neq 2$.

Remark: Being geometrically ruled, the surfaces \mathbb{F}_{n} are of the form $\mathbb{P}_{\mathbb{P}^{1}}(E)$. It is not difficult to show that all vector bundles on \mathbb{P}^{1} are direct sums of line bundles; in fact, it was observed by Hirzebruch that $\mathbb{F}_{n}=\mathbb{P}_{\mathbb{P}^{1}}\left(\mathcal{O}_{\mathbb{P}^{1}} \oplus \mathcal{O}_{\mathbb{P}^{1}}(n)\right)$.

Non-ruled surfaces

Theorem

Two birational minimal surfaces not ruled are isomorphic.
Thus a non-ruled surface admits a unique minimal model (up to isomorphism); the birational classification of these surfaces is reduced to the classification (up to isomorphism) of the minimal ones. In contrast, ruled surfaces have a simple birational model $\left(C \times \mathbb{P}^{1}\right)$, but the determination of the minimal ones is subtle.

The theorem follows easily from an important Lemma (admitted):
Key lemma
If S is minimal not ruled, $(K \cdot C) \geqslant 0$ for all curves C.
We say that K is nef. This is the crucial notion to extend the definition of minimal surface in higher dimension.

Proof of the Theorem

Let $\varphi: S \xrightarrow{\sim} T$, with S, T minimal not ruled. We want to prove that φ is an isomorphism.

We choose a diagram:

v birational, $u: S_{n} \rightarrow S_{n-1} \rightarrow \cdots \rightarrow S_{0}=S$, with $n \geqslant 1$ minimal $\Rightarrow v$ maps E_{n} to a curve C.

Since v is a composition of blowups,
$\left(K_{T} \cdot C\right) \leqslant\left(K_{S_{n}} \cdot E_{n}\right)=-1$, contradicting the key lemma.
Thus φ birational morphism; S minimal $\Rightarrow \varphi$ isomorphism.

Exercises

1) Let C be a curve of genus g. Show that the sections Σ of the fibration $C \times \mathbb{P}^{1} \rightarrow C$ are in bijective correspondence with the maps $f: C \rightarrow \mathbb{P}^{1}$. Using the genus formula, compute Σ^{2} in terms of the degree of f. Show that Σ^{2} is even, nonnegative, and $\neq 2$ if $g>0$.
2) a) Show that the canonical divisor of \mathbb{F}_{n} is $-2 \Sigma+(n-2) F$ and that $K^{2}=8$.
b) We say that a divisor D (or the corresponding line bundle) on a surface S is nef if $D \cdot C \geqslant 0$ for all curves C on S. Show that the anticanonical divisor $-K$ on \mathbb{F}_{n} is nef if and only if $n \leqslant 2$.
c) We say that D is ample if $D \cdot C>0$ for all curves C, and $D^{2}>0$. Show that $-K_{\mathbb{F}_{n}}$ is ample if and only if $n \leqslant 1$.

Exercises

d) Let S be a surface with $-K_{S}$ ample. Show that S is obtained from \mathbb{P}^{2} by blowing up $\leqslant 8$ points (observe that if $-K_{T}$ is not ample for a surface T, any blowup of T has the same property).
3) We consider the divisor class $H_{k}:=\Sigma+k F$ on the surface \mathbb{F}_{n}.
a) For $k<n$, show that the effective divisors $\equiv H_{k}$ are sum of Σ and k fibers.
b) Compute $\chi\left(H_{k}\right)$ by Riemann-Roch; deduce that $H^{1}\left(H_{n-1}\right)=0$.
c) Using the exact sequences
$0 \rightarrow \mathcal{O}\left(H_{k}\right) \rightarrow \mathcal{O}\left(H_{k+1}\right) \rightarrow \mathcal{O}_{\mathbb{P}^{1}}(1) \rightarrow 0$, show that $H^{1}\left(H_{k}\right)=0$ for $k \geqslant n-1$, and $h^{0}\left(H_{k}\right)=2 k+2-n$.

Algebraic surfaces

Lecture IV: Rational surfaces

Arnaud Beauville

Université Côte d'Azur

July 2020

Linear systems and rational maps

$L=\mathcal{O}_{S}(D) \in \operatorname{Pic}(S)$. (Complete) linear system :

$$
|L|=|D|:=\{E \geqslant 0 \mid E \equiv D\}=\mathbb{P}\left(H^{0}(L)\right)
$$

$B_{L}=$ Base locus of $L:=\bigcap_{E \in|L|} E=Z \bigcup\left\{p_{1}, \ldots, p_{s}\right\}$
$Z=\bigcup C_{i}=$ fixed part, p_{i} base points.
Rational map defined by L :
$\varphi_{L}: S \backslash B_{L} \rightarrow|L|^{\vee}, \varphi_{L}(p)=\{E \mid p \in E\}=$ hyperplane in $|L|$.
If $Z=$ fixed part of $|L|, \varphi_{L}=\varphi_{L(-Z)}$: can assume L has no fixed part, i.e. B_{L} finite.
$E \in|L| \quad \leadsto$ hyperplane $H_{E} \subset|L|^{v}$;
$\varphi_{L}^{*} H_{E}=\left\{p \in S \backslash B_{L} \mid E \in \varphi_{L}(p) \Leftrightarrow p \in E\right\}=E \backslash B_{L}: \varphi_{L}^{*} H_{E}=E$.

Properties of φ_{L}

Properties of φ_{L}

- φ_{L} morphism $\Leftrightarrow|L|$ base point free (i.e. $B_{L}=\varnothing$).
- φ_{L} injective $\Leftrightarrow \forall p \neq q, \exists E \in|L|, p \in E, q \notin E$. If this holds:
- φ_{L} embedding $\Leftrightarrow \forall p, v \neq 0 \in T_{p}(S), \exists p \in E \in|L|, v \notin T_{p}(E)$.

If this is the case, we say that L is very ample.

- φ_{L} embedding $\Rightarrow \operatorname{deg}\left(\varphi_{L}(S)\right)=L^{2}$.

Remark: If D is very ample and $|E|$ is base point free, $D+E$ is very ample.
Examples: • Let H be a line in \mathbb{P}^{2}. The linear system $|n H|$ of curves of degree $n(n \geqslant 1)$ is very ample. In particular, $\varphi_{2 H}$ is an isomorphism of \mathbb{P}^{2} onto a surface $V \subset \mathbb{P}^{5}$, the Veronese surface. We have $\operatorname{deg}(V)=(2 H)^{2}=4$; the hyperplane sections of V are conics.

Examples

- On $\mathbb{P}^{1} \times \mathbb{P}^{1}$, let $A=\mathbb{P}^{1} \times\{0\}$ and $B=\{0\} \times \mathbb{P}^{1}$. The linear systems $|A|$ and $|B|$ are base point free, and φ_{A+B} is the Segre embedding in \mathbb{P}^{3}. Hence $a A+b B$ is very ample for $a, b \geqslant 1$. In particular, $|2 A+B|$ gives an isomorphism onto a surface of degree 4 in \mathbb{P}^{5} ("quartic scroll"). Since $A \cdot(2 A+B)=1$, the curves in $|A|$ are mapped to lines in \mathbb{P}^{5}.
- Let $p_{1}, \ldots, p_{s} \in S$. Let $|D|$ be a linear system on S, and $P \subset|D|$ the subspace of divisors passing through p_{1}, \ldots, p_{s}. Assume that at each p_{i} the curves of P have different tangent directions. Let $b: \hat{S} \rightarrow S$ be the blowing up of $p_{1}, \ldots, p_{s}, E_{i}$ the exceptional curve above p_{i}. The system $\hat{D}:=b^{*} D-\sum E_{i}$ is base point free and defines a morphism $\varphi_{\hat{D}}: \hat{S} \rightarrow|\hat{D}|^{\vee}$ to which we can apply the previous remarks.

Examples (continued)

- Let $p \in \mathbb{P}^{2}$; consider the system of conics passing through p. It is easy to check that $\left|2 b^{*} H-E\right|$ on $\hat{\mathbb{P}}_{p}^{2}$ is very ample. It gives an isomorphism onto a surface $S \subset \mathbb{P}^{4}$, with $\operatorname{deg}(S)=\left(4 H^{2}+E^{2}\right)=3$. The strict transforms of the lines through p in \mathbb{P}^{2} form the linear system $b^{*} H-E$; since $\left(b^{*} H-E\right) \cdot\left(2 b^{*} H-E\right)=1$, they are mapped to lines in \mathbb{P}^{4}. S is the cubic scroll.
- Now let us pass to linear systems of cubic curves.

Proposition

For $s \leqslant 6$, let $p_{1}, \ldots, p_{s} \in S=\mathbb{P}^{2}$, such that no 3 of them lie on a line and no 6 on a conic. The linear system $|-K|$ on \hat{S} is very ample, and defines an isomorphism of \hat{S} onto a surface Σ_{d} of degree $d:=9-s$ in \mathbb{P}^{d}, called a del Pezzo surface.

In prticular, Σ_{3} is a (smooth) cubic surface in \mathbb{P}^{3}.

Sketch of proof

Sketch of proof : The proof is a long exercise, with no essential difficulty; I will just give an idea. We have $-K_{\hat{S}}=3 b^{*} H-\sum E_{i}$, corresponding to the system P of cubics passing through the p_{i}. Let us show that φ_{-K} is injective in the most difficult case $s=6$.

- Let $p \neq q \in \mathbb{P}^{2} \backslash\left\{p_{i}\right\}$. Can assume p_{1} is not on the line $\langle p, q\rangle$.
- \exists ! conic $Q_{i j}$ passing through p and the p_{k} for $k \neq i, j$.
- $Q_{1 i} \cap Q_{1 j}=\{p\} \cup 3$ other $p_{k} \Rightarrow q \in$ at most one $Q_{1 i}$, say Q_{12}.
- q is at most on one $\left\langle p_{1}, p_{i}\right\rangle$, say $\left\langle p_{1}, p_{3}\right\rangle$.
- Then $Q_{14} \cup\left\langle p_{1}, p_{4}\right\rangle \in P$, $\ni p, \nexists q \Rightarrow \varphi_{-K}(p) \neq \varphi_{-K}(q)$.
- Then: $\operatorname{deg}\left(\sum_{d}\right)=\left(3 b^{*} H-\sum E_{i}\right)^{2}=9-s=d$; one has $h^{0}(3 H)=10$, and one checks that p_{1}, \ldots, p_{s} impose s independent conditions.
Example : Σ_{3} is a smooth cubic surface in \mathbb{P}^{3}; we will see that one obtains all smooth cubic surfaces in that way.

Lines on del Pezzo surfaces

Proposition

lines $\subset \Sigma_{d}=$ exceptional curves $=$ the E_{i}, the strict transforms of the lines $\left\langle p_{i}, p_{j}\right\rangle$ and of the conics passing through 5 of the p_{i} (for $s=5$ or 6). Their number is $s+\binom{s}{2}+\binom{s}{5}$.

Proof : $E \subset \hat{S} \leadsto$ line in $\Sigma \Leftrightarrow K_{\hat{S}} \cdot E=-1$, i.e. E exceptional. $E \neq E_{i} \Rightarrow E \equiv m b^{*} H-\sum a_{i} E_{i}$ in $\operatorname{Pic}(\hat{S}) ; a_{i}=E \cdot E_{i}=0$ or 1. $(-K) \cdot E=3 m-\sum a_{i}=1 \Rightarrow \sum a_{i}=2$ and $m=1$, or $\sum a_{i}=5$ and $m=2$.

Remark: We know more than the number of lines, namely their classes in $\operatorname{Pic}\left(\Sigma_{d}\right)$, their incidence properties, etc. The configuration of lines has been intensively studied in the 19th and 20th century. Let us just mention that the lattice $K^{\perp} \subset \operatorname{Pic}\left(\Sigma_{d}\right)$ is a root system, of type $E_{6}, D_{5}, A_{4}, A_{2} \times A_{1}$ for $s=6,5,4,3$.

The cubic surface

Proposition

Any smooth cubic surface $S \subset \mathbb{P}^{3}$ is a del Pezzo surface Σ_{3}. In particular, S contains 27 lines.

Strategy of the proof: show that S contains a line, then 2 skew lines; then deduce from that a map $S \rightarrow \mathbb{P}^{2}$ composite of blowups.
There are many details to check, left to the reader.
(1) $\mathbb{G}:=\left\{\right.$ lines $\left.\subset \mathbb{P}^{3}\right\}, \operatorname{dim} \mathbb{G}=4$.
$\mathcal{C}:=\left|\mathcal{O}_{\mathbb{P}^{3}}(3)\right|=\left\{\right.$ cubic surfaces $\left.\subset \mathbb{P}^{3}\right\} \cong \mathbb{P}^{c}(c=19)$.
Incidence correspondence: $Z \subset \mathbb{G} \times \mathcal{C}=\{(\ell, S) \mid \ell \subset S\}$.

Fibers of $p \cong \mathbb{P}^{c-4}(S: F=0$ contains
$Z=T=0 \Leftrightarrow F$ has no $\left.X^{3}, X^{2} Y, X Y^{2}, Y^{3}\right)$.
Thus $\operatorname{dim} Z=\operatorname{dim} \mathcal{C}$. We want q surjective.

Cubic surface (continued)

If $q: Z \rightarrow \mathcal{C}$ not surjective, $\operatorname{dim} q(Z) \leqslant c-1 \Rightarrow \operatorname{dim} q^{-1}(S) \geqslant 1$ for $S \in q(Z)$. But $q^{-1}\left(\Sigma_{3}\right)$ finite \Rightarrow impossible.
(2) $S \supset \ell$. The planes $\Pi \supset \ell$ cut S along a conic.

Claim : 5 of these conics are degenerate, i.e. of the form $\ell_{1} \cup \ell_{2}$.
Proof : $\ell: Z=T=0 \Rightarrow$
$F=A X^{2}+2 B X Y+C Y^{2}+2 D X+2 E Y+G$, with A, \ldots, G homogeneous polynomials in Z, T. The conic is degenerate
$\Leftrightarrow \operatorname{det}\left|\begin{array}{lll}A & B & D \\ B & C & E \\ D & E & G\end{array}\right|=0$, degree 5 in $Z, T . \geqslant 2$ distinct roots \Rightarrow
$S \supset 2$ triangles: $\ell \cup \ell_{1} \cup \ell_{1}^{\prime}, \ell \cup \ell_{2} \cup \ell_{2}^{\prime}$. Then $\ell_{1} \cap \ell_{2}=\varnothing$.

Cubic surface (continued)

(3) $\ell \subset S$, given by $X=Y=0$. Projection from $\ell: S \xrightarrow{(X, Y)} \mathbb{P}^{1}$. Well-defined: $S: X B-Y A=0,(X, Y)=(A, B)$ on S,
$X=Y=A=B=0 \Rightarrow S$ singular.
$\varphi_{i}: S \rightarrow \mathbb{P}^{1}$ projection from $\ell_{i} \leadsto \varphi=\left(\varphi_{1}, \varphi_{2}\right): S \rightarrow \mathbb{P}^{1} \times \mathbb{P}^{1}$.
Geometrically, $\varphi_{i}(p)=$ plane $\left\langle\ell_{i}, p\right\rangle$ through ℓ_{i}.
Birational: for $\left(\pi_{1}, \pi_{2}\right) \in \mathbb{P}^{1} \times \mathbb{P}^{1}, \pi_{1} \cap \pi_{2}=$ line meeting ℓ_{1} and ℓ_{2}, intersects S along a unique third point p.
$\Rightarrow \varphi=$ composition of blowups. Blowup of $\mathbb{P}^{1} \times \mathbb{P}^{1}$ at 1 point $=$ blowup of \mathbb{P}^{2} at 2 points $\Rightarrow \varphi^{\prime}: S \rightarrow \mathbb{P}^{2}$ composition of blowups.
λ line contracted by $\varphi \Longleftrightarrow \pi_{1}(\lambda)=\{p\}, \pi_{2}(\lambda)=p t s$ $\Longleftrightarrow \lambda$ meets ℓ_{1} and ℓ_{2}.
For each of the 5 triangles $\ell_{1}, \ell_{1}^{\prime}, \ell_{1}^{\prime \prime}, \ell_{2}$ meets one of $\ell_{1}^{\prime}, \ell_{1}^{\prime \prime} \Rightarrow$ 5 lines contracted $\Rightarrow S \cong \mathbb{P}^{2}$ with 6 points blown up.

Exercises

1) Show that the linear system $|\Sigma+n F|$ on \mathbb{F}_{n} defines a morphism $\mathbb{F}_{n} \rightarrow \mathbb{P}^{n+1}$, which is an embedding outside Σ and contracts Σ to a point p. Show that the image of \mathbb{F}_{n} is a cone with vertex p, and that the hyperplane sections not passing through p are rational normal curves of degree n in \mathbb{P}^{n} (use exercise 3 of Lecture II).
2) Show that the linear system $|\Sigma+k F|$ on \mathbb{F}_{n} for $k>n$ defines an isomorphism of \mathbb{F}_{n} onto a surface of degree $2 k-n$ in $\mathbb{P}^{2 k-n+1}$. The images of the fibers are disjoint lines, and that of Σ is a rational normal curve of degree $n+k$.
3) Let \mathcal{S} be the vector space of symmetric 3×3 matrices. Show that the locus of rank 1 matrices in $\mathbb{P}(\mathcal{S}) \cong \mathbb{P}^{5}$ is a Veronese surface V. Deduce that all secants to V (i.e. the lines $\langle p, q\rangle$, $p \neq q \in V$) are contained in a cubic hypersurface.

Exercises

[Note: the secant lines depend on $2+2$ parameters, so one would expect that their union fills \mathbb{P}^{5}. It is a classical theorem of Severi that the Veronese surface is the only smooth surface in \mathbb{P}^{5} (not contained in a hyperplane) with this property.]
4) a) Let C be a smooth rational curve of degree e on a del Pezzo surface Σ_{d}. Show that $C^{2}=e-2$. Prove that the linear system
$|C|$ has dimension $e-1$ (use the exact sequence
$\left.0 \rightarrow \mathcal{O}_{S} \rightarrow \mathcal{O}_{S}(C) \rightarrow \mathcal{O}_{S}(C)_{\mid C} \rightarrow 0\right)$.
b) Describe in terms of \mathbb{P}^{2} with $9-d$ points blown up the pencils ($=$ linear systems of dimension 1) of conics on Σ_{d}. Find their number.

Exercises

c) We fix $e=3$. Show that the linear system $|C|$ is base point free, and defines a birational morphism to \mathbb{P}^{2} (use the exact sequence of a). Conversely, any birational morphism $\Sigma_{d} \rightarrow \mathbb{P}^{2}$ is defined by a net ($=$ linear systems of dimension 2) of twisted cubics.
d) Describe the nets of twisted cubics on Σ_{3}. Show that there are 72 such nets.
5) A double-six in \mathbb{P}^{3} consists of 2 sets of disjoint lines $\ell_{1}, \ldots, \ell_{6}$ and $\ell_{1}^{\prime}, \ldots, \ell_{6}^{\prime}$, such that $\ell_{i} \cap \ell_{j}^{\prime} \neq \varnothing$ for $i \neq j$ and $\ell_{i} \cap \ell_{i}^{\prime}=\varnothing$.
a) Show that in a cubic surface Σ_{3}, the images of E_{1}, \ldots, E_{6} and of the conics passing through 5 of the p_{i} form a double-six.
b) Conversely, given a double-six $\left(\ell_{i}, \ell_{j}^{\prime}\right)$ on Σ_{3}, there is a birational morphism $\mathbb{S}_{3} \rightarrow \mathbb{P}^{2}$ contracting the ℓ_{i} to points p_{i} and mapping the ℓ_{j}^{\prime} to conics through 5 of the p_{i}.
c) Conclude that there are 36 double-six on Σ_{3}.

Algebraic surfaces

Lecture V: The Kodaira dimension

Arnaud Beauville

Université Côte d'Azur

July 2020

Kodaira dimension

The key ingredient to distinguish different projective varieties is the behaviour of the canonical bundle.

Definition

The Kodaira dimension of a surface S is

$$
\kappa(S):=\max _{n} \operatorname{dim} \varphi_{n K}(S)
$$

with the convention $\operatorname{dim} \varnothing=-\infty$.

Using the plurigenera $P_{n}=h^{0}(n K)$, this translates as

- $\kappa(S)=-\infty \Longleftrightarrow P_{n}=0 \forall n \Longleftrightarrow S$ ruled (Enriques theorem).
- $\kappa(S)=0 \Longleftrightarrow P_{n}=0$ or $1 \forall n$, and $=1$ for some n.
- $\kappa(S)=1 \Longleftrightarrow P_{n} \geqslant 2$ for some n, and $\operatorname{dim} \varphi_{m K}(S) \leqslant 1 \forall m$;
- $\kappa(S)=2 \Longleftrightarrow \operatorname{dim} \varphi_{n K}(S)=2$ for some n.

Examples

- Let B, C be two curves of genus b, c. Then:
- $\kappa(B \times C)=-\infty \Leftrightarrow b c=0$;
- $\kappa(B \times C)=0 \Leftrightarrow b=c=1$;
- $\kappa(B \times C)=1 \Leftrightarrow b$ or $c=1, b c>1$;
- $\kappa(B \times C)=2 \Leftrightarrow b$ and $c \geqslant 2$.
- Let $S_{d} \subset \mathbb{P}^{3}$ of degree d; then S_{d} is rational for $d \leqslant 3$, $\kappa\left(S_{4}\right)=0, \kappa\left(S_{d}\right)=2$ for $d \geqslant 5$.

These examples show a general pattern: most surfaces have $\kappa=2$ (they are called of general type), some have $\kappa=1$, and the cases $\kappa=0$ and $\kappa=-\infty$ are completely classified.

Remark: S minimal, $\kappa(S) \geqslant 0 \Rightarrow K_{S}^{2} \geqslant 0$. Indeed $\left|n K_{S}\right| \ni E$ for some $n \geqslant 1$, and $K \cdot E \geqslant 0$ by the key lemma.

$\kappa=2$

Proposition

Let S be a minimal surface. The following are equivalent:
(1) $\kappa(S)=2$;
(2) $K^{2}>0$ and S not ruled;
(3) $\varphi_{n K}$ birational onto its image for $n \gg 0$.

Proof : (3) \Rightarrow (1) clear.
(2) \Rightarrow (3): let H be a very ample divisor on S. Riemann-Roch $m s$ $\chi(n K-H) \sim \frac{1}{2} n^{2} K^{2}>0$ for $n \gg 0$, hence
$h^{0}(n K-H)+h^{0}((1-n) K+H)>0$.
But $((1-n) K+H) \cdot K<0$ for $n \gg 0$, hence $h^{0}=0$ by key Lemma
$\Rightarrow h^{0}(n K-H)>0$, hence $n K \equiv H+E, E \geqslant 0 \Rightarrow \varphi_{n K}$ birational.

$\kappa=2$ (continued)

$$
\text { (1) } \Rightarrow \text { (2): } \kappa(S)=2 \Rightarrow S \text { not ruled and } K^{2} \geqslant 0 \text {. But } K^{2}>0 \text { by: }
$$

Lemma

S minimal, $K^{2}=0,|n K|=Z+M$ with Z fixed part. Then M is base-point free, and $\varphi_{M}=\varphi_{n K}: S \rightarrow C \subset|n K|^{\vee}$.

Proof : Key lemma $\Rightarrow(K \cdot Z)$ and $(K \cdot M) \geqslant 0$, hence $=0$.
$0=M \cdot(Z+M) \Rightarrow M^{2}=0 \Rightarrow|M|$ base-point free, hence $\varphi_{M}: S \rightarrow C \subset|n K|^{\vee}$. $M^{2}=0 \Rightarrow C$ curve.

Remark: \exists much more precise results for (3) (Kodaira, Bombieri): $\varphi_{n K}$ morphism for $n \geqslant 4$, birational for $n \geqslant 5$.

Example: For $S=B \times C$ as above, $K_{B \times C}^{2}=\left(p^{*} K_{B} \cdot q^{*} K_{C}\right)=(2 b-2)(2 c-2): K_{X}^{2}>0 \Leftrightarrow b, c \geqslant 2$.

Surfaces with $\kappa=1$

Proposition

S minimal, $\kappa(S)=1 \Rightarrow K^{2}=0$, and $\exists p: S \rightarrow B$ with general fiber elliptic curve.

(We say that S is an elliptic surface.)

Proof: Choose n such that $h^{0}(n K) \geqslant 2,|n K|=Z+|M|$. By the Lemma, $\varphi_{M}: S \rightarrow C \subset|n K|^{\vee}$.
Stein factorization: $\varphi_{M}: S \xrightarrow{p} B \rightarrow C$, with fibers of p connected.
F smooth fiber. $F \leqslant M \Rightarrow K \cdot F=0, F^{2}=0 \Rightarrow g(F)=1$
(genus formula).
Remark : An elliptic surface can be rational, ruled, or have $\kappa=0$.

Surfaces with $\kappa=0$

Theorem

S minimal with $\kappa=0$.
(1) $q=0, K \equiv 0: S$ is a $K 3$ surface;
(2) $q=0,2 K \equiv 0, K \not \equiv 0: S$ is an Enriques surface - quotient of a K3 by a fixed-point free involution.
(3) $q=1$: S is a bielliptic surface, quotient of a product $E \times F$ of elliptic curves by a finite group acting freely (7 cases).
(4) $q=2: S$ is an abelian surface (projective complex torus).

We will treat only the cases with $q=0$ (the other cases require the theory of the Albanese variety). If $K \equiv 0$, we are in case (1).
We want to prove that $\quad q=0, K \not \equiv 0 \Rightarrow 2 K \equiv 0$.

S minimal, $q=0, K \neq 0$

Proof: We have $h^{0}(n K)=0$ or $1 \forall n \geqslant 1$, and $K^{2}=0$ by the case $\kappa=2$. We first prove $p_{g}=h^{0}(K)=0$.
If $h^{0}(K)=1$ Riemann-Roch gives

$$
h^{0}(-K)+h^{0}(2 K) \geqslant \chi\left(\mathcal{O}_{S}\right)=1-q+p_{g}=2
$$

hence $h^{0}(-K) \geqslant 1$. Thus $\exists A \in|K|, B \in|-K| \Rightarrow A+B \equiv 0$ $\Rightarrow A=B+0, K \equiv 0$, excluded. Hence $h^{0}(K)=0$.
Then: $\quad h^{0}(-K)+h^{0}(2 K) \geqslant \chi\left(\mathcal{O}_{S}\right)=1$.
If $h^{0}(-K)>0,|-K| \ni D \geqslant 0,|n K| \ni E \geqslant 0, n D+E \equiv 0 \Rightarrow$ $D \equiv 0$, contradiction. Hence $h^{0}(2 K)>0$.
Riemann-Roch: $h^{0}(3 K)+h^{0}(-2 K) \geqslant 1$. Suppose $h^{0}(3 K) \geqslant 1$.
$D \in|2 K|, E \in|3 K| ; 3 D, 2 E \in|6 K| \Rightarrow 3 D=2 E \Rightarrow$
$D=2 F, E=3 F$ with $F \geqslant 0$. But $F \equiv E-D \equiv K$, contradiction.
Therefore $h^{0}(-2 K)>0$, and $2 K \equiv 0$.

The double cover of an Enriques surface

Let S be an Enriques surface. View \mathcal{K}_{S} as a line bundle $p: \mathcal{K} \rightarrow S$; we have a non-vanishing section ω of $H^{0}(2 K)$. Let

$$
X=\left\{x \in \mathcal{K} \mid x^{2}=\omega(p x)\right\}
$$

It is a closed subvariety of \mathcal{K}; for each $y \in S$ there are 2 points in X above y, exchanged by the involution $\sigma: x \mapsto-x$. This involution acts freely, and p_{X} identifies S with X / σ. The morphism $p_{X}: X \rightarrow S$ is étale, hence $p_{X}^{*} \mathcal{K}_{S} \cong \mathcal{K}_{X}$.

Consider the pull back diagram:

p^{\prime} has a canonical section $x \mapsto(x, x)$; this section does not vanish outside the zero section of \mathcal{K}. Therefore $p^{*} \mathcal{K}_{\mid S}=\mathcal{K}_{X}$ is trivial. We will admit $q=0$, so X is a K3 surface.

Examples

- $S_{4} \subset \mathbb{P}^{3}$ (smooth) is a K3 surface.

Indeed $K_{S_{d}} \equiv(d-4) H$, so $\equiv 0$ for $d=4$. To prove $q=0$ we admit a classical result:

Lemma

$H^{i}\left(\mathbb{P}^{n}, \mathcal{O}_{\mathbb{P}^{n}}(k)\right)=0$ for all k and $0<i<n$.

Then from the exact sequence $0 \rightarrow \mathcal{O}_{\mathbb{P}^{3}}(-4) \rightarrow \mathcal{O}_{\mathbb{P}^{3}} \rightarrow \mathcal{O}_{S} \rightarrow 0$ we get $H^{1}\left(\mathcal{O}_{S}\right)=0$.

- More generally, for each $g \geqslant 3$, there is a family of K3 surfaces of degree $2 g-2$ in \mathbb{P}^{g} : in \mathbb{P}^{4} we get the intersection of a quadric and a cubic, in \mathbb{P}^{5} the intersection of 3 quadrics, etc. These surfaces have a rich geometry and have been, and still are, extensively studied.

An Enriques surface

$\operatorname{In} \mathbb{P}^{5}$, with homogeneous coordinates $X_{0}, X_{1}, X_{2}, X_{0}^{\prime}, X_{1}^{\prime}, X_{2}^{\prime}$, consider the surface S defined by

$$
P(X)+P^{\prime}\left(X^{\prime}\right)=Q(X)+Q^{\prime}\left(X^{\prime}\right)=R(X)+R^{\prime}\left(X^{\prime}\right)=0
$$

where $P, Q, R ; P^{\prime}, Q^{\prime}, R^{\prime}$ are general quadratic forms in 3 variables. The involution $\sigma:\left(X_{i}, X_{j}^{\prime}\right) \mapsto\left(-X_{i}, X_{j}^{\prime}\right)$ preserves S; its fixed points are the 2-planes $X_{i}=0$ and $X_{j}^{\prime}=0$, which are not on S since the quadratic forms are general. The surface quotient S / σ is an Enriques surface.

THE END

Exercises

1)Let S be a K3 surface, $C \subset S$ a curve of genus g.
a) Show that $C^{2}=2 g-2$ and $h^{0}(C)=g+1$ (deduce from the exact sequence $0 \rightarrow \mathcal{O}_{S}(-C) \rightarrow \mathcal{O}_{S} \rightarrow \mathcal{O}_{C} \rightarrow 0$ that $\left.H^{1}\left(\mathcal{O}_{S}(-C)\right)=0\right)$.
b) Show that the restriction of $\mathcal{O}_{S}(C)$ to C has degree $2 g-2$ and $h^{0}=g$, hence is $\cong \mathcal{K}_{C}$.
c) Deduce from b) that $|C|$ is base point free. If C is not hyperelliptic, show the morphism φ_{C} is birational onto its image.
2) a) Let C, C^{\prime} two cubic curves in \mathbb{P}^{2}, which intersect transversally at 9 points p_{1}, \ldots, p_{9}. Let \hat{P} be the bowup of \mathbb{P}^{2} at these points. Show that the anticanonical system $\left|-K_{\hat{P}}\right|$ is base point free, and defines a morphism $\hat{P} \rightarrow \mathbb{P}^{1}$ whose general fiber is a plane cubic, hence an elliptic curve.

Exercises

b) Let S be a smooth quartic surface in \mathbb{P}^{3} containing a line ℓ, defined by $X=Y=0$. Show that (X, Y) define a morphism $S \rightarrow \mathbb{P}^{1}$ whose general fiber is a plane cubic.
3) Let S be a K3 surface, D an effective divisor on S with $D^{2}=0$ and $D \cdot C \geqslant 0$ for every curve C on S. Show that $D \equiv m E$, where $m \geqslant 1$ and E is a smooth elliptic curve.
(Let Z be the fixed part of $|D|$, so that $D \equiv Z+M$; prove
$D \cdot Z=0$, then $Z^{2}=0$, which implies $Z=0$ by Riemann-Roch.
Then use the same argument as in the Lemma.)

Exercises

4) Let S be an Enriques surface, E an elliptic curve on S. Show that either $|E|$ or $|2 E|$ is a base point free pencil of elliptic cuves.
(Use the exact sequence $0 \rightarrow \mathcal{O}_{S} \rightarrow \mathcal{O}_{S}(E) \rightarrow \mathcal{O}_{S}(E)_{\mid E} \rightarrow 0$. If $\mathcal{O}_{S}(E)_{\mid E}=\mathcal{O}_{E},|E|$ is a base point free pencil. If not, observe that $|K+E|$ contains a divisor E^{\prime} by Riemann-Roch; then $|2 E|$ contains $2 E$ and $2 E^{\prime}$, and the above exact sequence tensored by $\mathcal{O}_{S}(E)$ shows that $h^{0}(2 E)=2$.)
5) Let S be a surface, $p: S \rightarrow B$ a morphism onto a curve with connected fibers. Suppose a fiber F is reducible, i.e. $F=\sum n_{i} C_{i}$. Let $D=\sum r_{i} C_{i}$, with $r_{i} \in \mathbb{Z}$. Show that $D^{2} \leqslant 0$, and $D^{2}=0$ if and only if $D \equiv k F$ for some $k \in \mathbb{Q}$.
(Write $G_{i}=n_{i} C_{i}$ and $s_{i}=\frac{r_{i}}{n_{i}} \in \mathbb{Q}$, so that $D=\sum s_{i} G_{i}$; using $G_{i}^{2}=G_{i} \cdot\left(F-\sum_{i \neq i} G_{j}\right)$, prove that $\left.D^{2}=\sum_{i \neq i}\left(s_{i}-s_{j}\right)^{2} G_{i} \cdot G_{j}.\right)$

Exercises

6) Let S be a minimal surface with a morphism $p: S \rightarrow B$ onto a curve, whose general fiber is an elliptic curve. By a theorem of Zariski all fibers of p are connected.
a) Suppose a fiber is reducible, hence $=\sum n_{i} C_{i}$. Using exercise 5 , show that $C_{i}^{2}<0$ for all i. Deduce that C_{i} is smooth rational and $C_{i}^{2}=-2$.
b) Suppose $\kappa(S) \geqslant 0$. Show that there exists an integer d such that $d K \equiv p^{*} D$ for some $D \geqslant 0$ on B (let $D \in|r K|$; since
$D \cdot F=0, D$ is contained in some fibers. Apply exercise 5.)
