Algebraic surfaces Lecture I: The Picard group, Riemann-Roch,...

Arnaud Beauville

Université Côte d'Azur

July 2020

Divisors and line bundles

Surface = smooth, projective, over \mathbb{C} . Pic(S) = {line bundles on S}/~~, (group for \otimes). Div(S) = {D = $\sum n_i C_i$ }. $D \ge 0$ (effective) if $n_i \ge 0 \forall i$. { $D \ge 0$ } $\stackrel{\sim}{\longleftrightarrow}$ { $(L, s) \mid L \in \text{Pic}(S), 0 \ne s \in H^0(L)$ } We put $L = \mathcal{O}_S(D)$. Map $D \mapsto \mathcal{O}_S(D)$ extends by linearity to homomorphism Div(S) \rightarrow Pic(S). Then Pic(S) = Div(S)/ = where $D \equiv D' \Leftrightarrow D - D' = \text{div}(\varphi), \varphi$ rational function on S.

 $\begin{array}{l} C \text{ irreducible curve, } s \in H^0(\mathcal{O}_S(C)) \text{ defining } C. \ \mathcal{O}_S(-C) \stackrel{s}{\hookrightarrow} \mathcal{O}_S \\ \Rightarrow \ \mathcal{O}_S(-C) \cong \text{ ideal sheaf of } C \text{ in } S. \end{array}$

 $\begin{aligned} f: S \to T & \iff f^* : \operatorname{Pic}(T) \to \operatorname{Pic}(S). \\ D \in \operatorname{Div}(T); \text{ if } f(S) \notin D, \ f^*D \in \operatorname{Div}(S) \text{ and } \mathcal{O}_S(f^*D) = f^*\mathcal{O}_S(D). \end{aligned}$

 $C \neq D$ irreducible, $p \in C \cap D$. f, g equations of C, D in \mathcal{O}_p . **Definition :** $m_p(C \cap D) := \dim_{\mathbb{C}} \mathcal{O}_p/(f, g)$. **Example**: $m_p(C \cap D) = 1 \iff (f, g) = \mathfrak{m}_p \iff f, g$ local coordinates at $p \iff C$ and D transverse.

Definition :
$$(C \cdot D) := \sum_{p \in C \cap D} m_p(C \cap D).$$

Theorem

∃ bilinear symmetric form (\cdot) : Pic(S) × Pic(S) → \mathbb{Z} such that $(\mathcal{O}_{S}(C) \cdot \mathcal{O}_{S}(D)) = (C \cdot D)$ for C, D irreducible.

The intersection form: step 1

Proof : For $L, M \in \text{Pic}(S)$, we put: $(L \cdot M) = \chi(\mathcal{O}_{\mathsf{S}}) - \chi(L^{-1}) - \chi(M^{-1}) + \chi(L^{-1} \otimes M^{-1})$ **Step 1 :** $(\mathcal{O}_{\mathsf{S}}(C) \cdot \mathcal{O}_{\mathsf{S}}(D)) = (C \cdot D).$ **Proof**: $C = \operatorname{div}(s)$, $D = \operatorname{div}(t)$. Exact sequence: $0 \to \mathcal{O}_{\mathsf{S}}(-C-D) \xrightarrow{(t,-s)} \mathcal{O}_{\mathsf{S}}(-C) \oplus \mathcal{O}_{\mathsf{S}}(-D) \xrightarrow{(s,t)} \mathcal{O}_{\mathsf{S}} \twoheadrightarrow \mathcal{O}_{C \cap D}.$ Proof: $p \in S$, $f, g \in \mathcal{O}_p$ local equations for C and D. $0 \to \mathcal{O}_p \xrightarrow{(g,-f)} \mathcal{O}_p^2 \xrightarrow{(f,g)} \mathcal{O}_p \to \mathcal{O}_p/(f,g) \to 0\,.$ Means: in \mathcal{O}_p , $af = bg \iff \exists k, a = gk, b = fk$. Holds because \mathcal{O}_p factorial, f, g prime \neq . Then: $\chi(\mathcal{O}_{S}) - \chi(\mathcal{O}_{S}(-C)) - \chi(\mathcal{O}_{S}(-D)) + \chi(\mathcal{O}_{S}(-C-D)) = \chi(\mathcal{O}_{C \cap D})$ $= h^0(\mathcal{O}_{C \cap D})) = \sum \mathcal{O}_p/(f,g) \stackrel{\text{def}}{=} (C \cdot D).$ $p \in C \cap$ Arnaud Beauville Algebraic surfaces

The intersection form (continued)

$$\begin{split} & \textbf{Step 2}: \ (L \cdot \mathcal{O}_{S}(C)) = \deg L_{|C} \quad \forall L \in \operatorname{Pic}(S), \ C \ \text{smooth.} \\ & \textbf{Proof}: \ \text{Exact sequences } 0 \rightarrow \mathcal{O}_{S}(-C) \rightarrow \mathcal{O}_{S} \rightarrow \mathcal{O}_{C} \rightarrow 0, \\ & \otimes L^{-1}: \qquad 0 \rightarrow L^{-1} \otimes \mathcal{O}_{S}(-C) \rightarrow L^{-1} \rightarrow L_{|C}^{-1} \rightarrow 0. \\ & \chi(\mathcal{O}_{C}) = \chi(\mathcal{O}_{S}) - \chi(\mathcal{O}_{S}(-C)), \ \chi(L_{|C}^{-1}) = \chi(L^{-1}) - \chi(L^{-1} \otimes \mathcal{O}_{S}(-C)) \\ & \Rightarrow \ (L \cdot C) = \chi(\mathcal{O}_{C}) - \chi(L_{|C}^{-1}) = \deg L_{|C} \ (\text{R-R on } C). \end{split}$$

Step 3 : (\cdot) is bilinear.

Put $s(L, M, N) := (L \cdot M \otimes N) - (L \cdot M) - (L \cdot N).$

• Symmetric in L, M, N. • = 0 when $L = \mathcal{O}_{S}(C)$.

Fact (Serre): $\forall L \in Pic(S), L \cong \mathcal{O}_S(C - D)$, with C, D smooth curves (In fact, hyperplane sections in appropriate embeddings).

 $L, M \in \operatorname{Pic}(S); M = \mathcal{O}_{S}(C - D), C, D \text{ smooth curves. Then}$ $0 = s(L, M, \mathcal{O}_{S}(B)) = (L \cdot M \otimes \mathcal{O}_{S}(B)) - (L \cdot M) - (L \cdot \mathcal{O}_{S}(B))$ $\Rightarrow (L \cdot M) = (L \cdot \mathcal{O}_{S}(A)) - (L \cdot \mathcal{O}_{S}(B)) \text{ linear in } L, \text{ hence in } M.$

Examples

(1) $S = \mathbb{P}^2$ $C \subset \mathbb{P}^2$ defined by a form $F_d(X, Y, Z)$ of degree d. $\frac{F_d}{Z^d}$ rational function $\Rightarrow C \equiv dH$, H line in \mathbb{P}^2 . Thus $\operatorname{Pic}(\mathbb{P}^2) = \mathbb{Z}[H]$, $(C \cdot D) : \operatorname{deg}(C) \operatorname{deg}(D)$ (Bézout theorem).

Examples

(2)
$$S = \mathbb{P}^1 \times \mathbb{P}^1$$

Put $A = \mathbb{P}^1 \times \{0\}, B = \{0\} \times \mathbb{P}^1, U = S \setminus (A \cup B) \cong \mathbb{A}^2.$
 $D \in \text{Div}(S): D_{|U} = \text{div}(\varphi) \text{ for some rational function } \varphi.$
 $D - \text{div } \varphi = aA + bB \text{ for some } a, b \in \mathbb{Z} \implies$
 $\text{Pic}(\mathbb{P}^1 \times \mathbb{P}^1) = \mathbb{Z}[A] \oplus \mathbb{Z}[B].$ $(A \cdot B) = 1 \text{ (transverse)}.$
 $A^2 = (A \cdot (\mathbb{P}^1 \times \{1\})) = 0, B^2 = 0: \text{ intersection form } \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}.$
(3) $p: S \to C, F := p^{-1}(x). \exists D \in \text{Div}(C), x \notin D, x \equiv D; \text{ then}$
 $F \equiv p^*D \implies F^2 = F \cdot p^*D = 0.$
(4) $D \ge 0, D \cdot C < 0 \implies D = C + E, E \ge 0.$
 $(\text{otherwise } D = \sum n_i C_i, C_i \neq C \implies C \cdot C_i \ge 0 \forall i)$
(5) $C^2 < 0, C \equiv D \ge 0 \implies D = C (\Leftrightarrow h^0(\mathcal{O}_S(C)) = 1).$

Canonical line bundle and Riemann-Roch

 $\Omega^1_{\rm S}$ = sheaf of differential 1-forms, locally isomorphic to $\mathcal{O}^2_{\rm S}$ (locally a(x, y)dx + b(x, y)dy). $\mathcal{K}_{S} = \bigwedge^{2} \Omega_{S}^{1}$ = sheaf of 2-forms = canonical line bundle (locally $\omega = f(x, y) dx \wedge dy, \operatorname{div}(\omega) = \operatorname{div}(f)$). $K_{\rm S}$ or K = canonical divisor = divisor of any rational 2-form. **Example :** $K_{\mathbb{D}^2} \equiv -3H$. Indeed the 2-form $\frac{XdY \wedge dZ + YdZ \wedge dX + ZdX \wedge dY}{XYZ}$ is welldefined, does not vanish, and has a pole $\equiv 3H$. **Example :** C_1, C_2 smooth projective curves, $S = C_1 \times C_2$, projections $p_i: S \to C_i$. Then $K_S \equiv p_1^* K_{C_1} + p_2^* K_{C_2}$. Indeed if α_i is a 1-form on C_i (possibly rational), $p_1^* \alpha_1 \wedge p_2^* \alpha_2$ is a 2-form on S, with divisor $p_1^* \operatorname{div}(\alpha_1) + p_2^* \operatorname{div}(\alpha_2)$.

Riemann-Roch

Recall:
$$L \in Pic(S) \dashrightarrow H^{i}(S, L) = H^{i}(L), i = 0, 1, 2.$$

 $h^{i}(L) = \dim H^{i}(L). \ \chi(L) := h^{0}(L) - h^{1}(L) + h^{2}(L).$
If $L = \mathcal{O}_{S}(D)$, we write $H^{i}(D), h^{i}(D), \chi(D).$

Theorem

- **Riemann-Roch** : $\chi(L) = \chi(\mathcal{O}_S) + \frac{1}{2}(L^2 \mathcal{K}_S \cdot L).$
- Serre duality : $h^i(L) = h^{2-i}(\mathcal{K}_S \otimes L^{-1}).$

Since the term h^1 is difficult to control, we will most often use R-R as an inequality, using Serre duality. In divisor form:

$$h^0(D) + h^0(K - D) \ge \chi(\mathcal{O}_S) + \frac{1}{2}(D^2 - K \cdot D).$$

We admit Serre duality. Riemann-Roch follows directly from the definition of the intersection form:

Proof:
$$L^{-1} \cdot (L \otimes \mathcal{K}_{S}^{-1}) = \chi(\mathcal{O}_{S}) - \chi(L) - \chi(\mathcal{K}_{S} \otimes L^{-1}) + \chi(\mathcal{K}_{S})$$

= $2\chi(\mathcal{O}_{S}) - 2\chi(L)$ by Serre duality. Hence
 $\chi(L) = \chi(\mathcal{O}_{S}) - \frac{1}{2}L^{-1} \cdot (L \otimes \mathcal{K}_{S}^{-1}) = \chi(\mathcal{O}_{S}) + \frac{1}{2}(L^{2} - L \cdot \mathcal{K}_{S}).$

Corollary (genus formula)

$$C \text{ irreducible} \subset S \Rightarrow g(C) := h^1(\mathcal{O}_C) = 1 + \frac{1}{2}(C^2 + K \cdot C).$$

Proof : Exact sequence $0 \to \mathcal{O}_{\mathcal{S}}(-\mathcal{C}) \to \mathcal{O}_{\mathcal{S}} \to \mathcal{O}_{\mathcal{C}} \to 0 \implies$

$$\chi(\mathcal{O}_{\mathcal{C}}) = \chi(\mathcal{O}_{\mathcal{S}}) - \chi(\mathcal{O}_{\mathcal{S}}(-\mathcal{C})) \stackrel{\text{R-R}}{=} -\frac{1}{2}(\mathcal{C}^2 + \mathcal{K} \cdot \mathcal{C}) .$$

Examples : • $C \subset \mathbb{P}^2$ of degree $d \Rightarrow$

$$g(C) = 1 + \frac{1}{2}(d^2 - 3d) = \frac{1}{2}(d - 1)(d - 2).$$

• $C \subset \mathbb{P}^1 \times \mathbb{P}^1$ of bidegree (p,q) (i.e. $C \equiv pA + qB$) \Rightarrow

$$g(C) = 1 + \frac{1}{2}(2pq - 2p - 2q) = (p-1)(q-1).$$

Remark : Let $n : N \to C$ be the normalization of C. Then $g(C) \ge g(N)$, with equality iff C is smooth. **Proof** : Exact sequence $0 \to \mathcal{O}_C \to n_*\mathcal{O}_N \to \mathcal{T} \to 0$ with \mathcal{T} concentrated on the singular points of C. Hence $H^i(\mathcal{T}) = 0$ for i > 0. Therefore $\chi(\mathcal{O}_C) = \chi(\mathcal{O}_N) - h^0(\mathcal{T})$, and $g(C) = g(N) + h^0(\mathcal{T}) \ge g(N)$, equality iff C = N smooth.

Corollary

$$C^2 + K \cdot C \ge -2$$
; equality $\Rightarrow C \cong \mathbb{P}^1$.

Indeed
$$C^2 + K \cdot C = 2g(C) - 2 \ge 2g(N) - 2 \ge -2$$
.

Numerical invariants

Algebraic surfaces are distinguished by their numerical invariants:

• The most important: K^2 , $\chi(\mathcal{O})$.

Though we will not use this in the lectures, I want to mention:

Theorem

• (M. Noether)
$$K^2 \ge 2\chi(\mathcal{O}) - 6;$$

2 (Miyaoka-Yau) K
$$^2 \leqslant 9\chi(\mathcal{O}).$$

The relation of $K^2/\chi(\mathcal{O})$ with the geometry of the surface is a long chapter of surface theory ("geography").

Refined invariants:

- $h^2(\mathcal{O}) = h^0(\mathcal{K})$ (Serre duality), the geometric genus p_g ;
- $h^1(\mathcal{O}) = H^0(\Omega^1)$ (Hodge theory), the irregularity q;
- $h^0(nK)$ $(n \ge 1)$, the plurigenera P_n .

Exercises

1) Let *C* be an irreducible curve in \mathbb{P}^2 , $p \in C$. We choose affine coordinates (x, y) with p = (0, 0), and write the equation of *C* as $0 = f_m(x, y) + f_{m+1}(x, y) + \ldots$, where f_q is homogeneous of degree *q*. We have $f_m = \ell_1 \ldots \ell_m$, where the ℓ_i are linear forms; the lines $\ell_i = 0$ are the *tangent* to *C* at *p*. Show that a line ℓ passing through *p* is tangent to *C* if and only if $(C \cdot \ell)_p > m$.

2) Let C be a curve of genus g. Let $\Delta \subset C \times C$ be the diagonal $(\Delta = \{(x, x) | x \in C\}.$

a) Using the genus formula, prove that $\Delta^2 = 2 - 2g$. b) Let $p, q : C \times C \rightarrow C$ be the two projections. Show that if g > 0, $\operatorname{Pic}(S \times S) \supset p^* \operatorname{Pic}(C) \oplus q^* \operatorname{Pic}(C) \oplus \mathbb{Z}[\Delta]$. What happens for g = 0?

Exercises

3) a) Let S_0 be a smooth surface in the affine space A^3 , defined by an equation f = 0. Prove that $\frac{dx \wedge dy}{f'_z} = \frac{dy \wedge dz}{f'_x} = \frac{dz \wedge dx}{f'_y}$ on S_0 , so that this expression defines a non-vanishing 2-form on S_0 . b) Let S be a smooth surface in \mathbb{P}^3 , defined by an equation F = 0of degree d. Prove that the expression

$$T^{d-4} \frac{TdY \wedge dZ + YdZ \wedge dT + ZdT \wedge dY}{F'_X}$$

defines a 2-form on S with divisor (d - 4)H.

4) (Hodge index theorem) Let H be a divisor on S such that $H \cdot C > 0$ for every curve $C \subset S$ (for instance a hyperplane section). Let D be a divisor such that $H \cdot D = 0$. We will prove that $D^2 \leq 0$.

a) Show that $h^0(nD) = 0$ for all $n \in \mathbb{Z}$, $n \neq 0$.

b) If $D^2 > 0$, deduce from Riemann-Roch that $h^0(K - nD)$ and $h^0(K + nD) \rightarrow \infty$ when $n \rightarrow \infty$; conclude that $D^2 \leq 0$.

5) Let C, C' be two curves, D a divisor on $C \times C'$. Let $p \in C$, $p' \in C'$; put $A = p \times C$, $B = C \times p'$, $a = D \cdot A$ and $b = D \cdot B$. Prove the Castelnuovo-Severi inequality $D^2 \leq 2ab$ (apply the previous exercise to H = A + B, and the divisor D - bA - aB). [Note: This inequality was the essential step in Weil's proof of his

conjectures for curves.]

Algebraic surfaces

Lecture II: Rational and birational maps

Arnaud Beauville

Université Côte d'Azur

July 2020

Blowing up

Proposition

 $p \in S$. $\exists b : \hat{S} \rightarrow S$, unique up to isomorphism, such that

•
$$b^{-1}(p) = E \cong \mathbb{P}^1;$$

$$b: S \smallsetminus E \xrightarrow{\sim} S \smallsetminus p.$$

Sketch of proof: coordinates x, y in $U \ni p$ $\hat{U} \subset U \times \mathbb{P}^1$: xY - vX = 0. $b: \hat{U} \to U$ projection, satisfies (1) and (2). Then glue $S \setminus p$ and \hat{U} along $U \setminus p$. In $\hat{U}' \subset \hat{U}$: $\{X \neq 0\}$, y = xt with $t = \frac{Y}{Y}$: (x, t) local coordinates, b(x, t) = (x, tx), E given by x = 0.

The strict transform

We say that *E* is the **exceptional curve** of the blowing up. $E \xrightarrow{\sim} \mathbb{P}(T_p(S))$: $(X, Y) \in E \leftrightarrow \text{tangent direction } xY - yX = 0$. For $C \subset S$, **strict transform** $\hat{C} := \text{closure of } C \smallsetminus p \text{ in } \hat{S}$. $\hat{C} \cap E = \{\text{tangent directions to } C \text{ at } p\}.$

Lemma

$$b^*C = \hat{C} + mE$$
 in $Div(\hat{S})$, where $m := m_p(C)$.

Proof: Eqn. of C in U: $0 = f(x, y) = f_m(x, y) + f_{m+1}(x, y) + ..$ Choose (x, y) such that $f_m(x, 0) \neq 0$, i.e. C not tangent to y = 0. $b^*f = f(x, tx) = x^m (f_m(1, t) + xf_{m+1}(1, t) + ...), f_m(1, 0) \neq 0$ \Rightarrow multiplicity of E in div $(b^*f) = m$.

The Picard group of \hat{S}

Proposition

•
$$\operatorname{Pic}(\hat{S}) = b^* \operatorname{Pic}(S) \stackrel{\perp}{\oplus} \mathbb{Z}[E], \ (b^* C \cdot b^* D) = (C \cdot D), \ E^2 = -1.$$

$$K_{\hat{S}} = b^* K_S + E.$$

3
$$b_2(\hat{S}) = b_2(S) + 1.$$

Proof: • $\Gamma \subset \hat{S}, \ \Gamma \neq E \implies \Gamma = \text{strict transform of } b(\Gamma) \subset S$ $\Rightarrow \ \Gamma = b^* b(\Gamma) - mE.$

•
$$\forall C \subset S, C \equiv A \neq p \Rightarrow (b^*C \cdot E) = 0, (b^*C \cdot b^*D) = (C \cdot D).$$

• Take $H \ni p$, $m_p(H) = 1$. Then $(\hat{H} \cdot E) = 1$; $b^*H = \hat{H} + E$, $(b^*H \cdot E) = 0 \implies E^2 = -1$.

•
$$b^*K_S = K_{\hat{S}} + kE \Rightarrow K_{\hat{S}} \cdot E + kE^2 = 0$$
. $K_{\hat{S}} \cdot E = -1$ (genus formula) $\Rightarrow k = -1$.

• The claim on b₂ follows from standard topological arguments.

Corollary

 $C \subset S$, strict transform $\hat{C} \subset \hat{S}$. Then $\hat{C}^2 \leq C^2$, $K_{\hat{S}} \cdot \hat{C} \geq K_S \cdot C$.

Proof : •
$$\hat{C}^2 = (b^*C - mE)^2 = C^2 - m^2$$
.

•
$$K_{\hat{S}} \cdot \hat{C} = (b^* K_S + E) \cdot (b^* C - mE) = K_S \cdot C + m.$$

Definition : Rational map $\varphi : S \dashrightarrow T :=$ morphism $S \supset U \rightarrow T$. We'll always take the largest U such that $\varphi_{|U}$ is a morphism.

• φ is birational if $\exists U \subset S, V \subset T$ such that $\varphi : U \xrightarrow{\sim} V$

- then we say that S and T are birational.

2 A birational morphism is a composition of blowups.

Remark : 1 holds in higher dimension ("Hironaka's little roof"), but not 2.

Example: stereographic projection

 $Q \subset \mathbb{P}^3$ smooth quadric XT - YZ = 0. Segre embedding $s : \mathbb{P}^1 \times \mathbb{P}^1 \xrightarrow{\sim} Q \subset \mathbb{P}^3$, s(U, V; W, S) = (UW, US, VW, VS). For each $p = s(a, b) \in Q$, there are 2 lines $\subset Q$ passing through p: $s(\mathbb{P}^1 \times b)$ and $s(a \times \mathbb{P}^1)$.

Let $\Pi \subset \mathbb{P}^3$ plane $\not = p$. $\varphi : Q \dashrightarrow \Pi: q \neq p \rightsquigarrow \langle p, q \rangle \cap \Pi.$ Extension $f : \hat{Q} \to \Pi: \ell \in \mathbb{P}(T_p(Q)) \mapsto \ell \cap \Pi.$ f birational, contracts the 2 lines through p.

Some consequences

Corollary

$\varphi: S \dashrightarrow T$ rational. $\exists F \subset S$ finite, $\varphi: S \smallsetminus F \rightarrow T$ morphism.

Remark : Direct proof easy, see exercises.

Consequences : • Since $\operatorname{Div}(S) \xrightarrow{\sim} \operatorname{Div}(S \smallsetminus F)$ and $\operatorname{Pic}(S) \xrightarrow{\sim} \operatorname{Pic}(S \smallsetminus F)$, $\varphi^* : \operatorname{Div}(T) \to \operatorname{Div}(S)$ and $\operatorname{Pic}(T) \to \operatorname{Pic}(S)$ defined.

• For $C \subset S$, $\varphi(C) := \overline{\varphi(C \smallsetminus F)}$ well-defined.

•
$$\varphi: S \xrightarrow{\sim} T \Rightarrow H^0(T, K_T) \xrightarrow{\sim} H^0(S, K_S).$$

(Beware! Not true that $\varphi^* K_T = K_S$, think of blowups)

Proof: $\varphi^* : H^0(T, K_T) \to H^0(S \smallsetminus F, K_S) \xleftarrow{} H^0(S, K_S)$, then $(\varphi^{-1})^* : H^0(T, K_T) \to H^0(S, K_S)$ inverse of φ^* .

- $H^0(T, nK_T) \xrightarrow{\sim} H^0(S, nK_S)$ for n > 0 (same argument).
- $H^0(T, \Omega^1_T) \xrightarrow{\sim} H^0(S, \Omega^1_S)$ (same argument).

Birational invariants

• The numerical invariants $p_g(S) := h^0(K_S)$ (geometric genus), $P_n(S) := h^0(nK_S)$ (plurigenera), $q(S) := h^0(\Omega_S^1)$ (irregularity) are birational invariants.

Definition

A surface is **ruled** if it is birational to $C \times \mathbb{P}^1$.

Proposition

 $S \text{ ruled} \Rightarrow P_n(S) = 0 \ \forall n \ge 1.$

Proof : Suffices to prove it for $S = C \times \mathbb{P}^1$.

 $F = \{c\} \times \mathbb{P}^1$ satisfies $F^2 = 0$, hence $K \cdot F = -2$ (genus formula). If $nK \equiv D \ge 0$, D must contain $\{c\} \times \mathbb{P}^1$ for all $c \in C$, impossible.

Irregularity of ruled surfaces

The converse is true, but difficult:

Theorem (Enriques)

 $P_n(S) = 0 \ \forall n \Rightarrow S \text{ ruled.}$

In fact Enriques proved a more precise result: $P_{12} = 0 \implies S$ ruled.

Proposition

S birational to
$$C \times \mathbb{P}^1 \Rightarrow q(S) = g(C)$$
.

Proof: $S = C \times \mathbb{P}^1 \xrightarrow{p} C$. **Claim:** $p^* : H^0(C, K_C) \xrightarrow{\sim} H^0(S, \Omega_S^1)$. $\omega \in H^0(\Omega_S^1), s : C \hookrightarrow C \times \mathbb{P}^1, s(c) = (c, 0)$. Suffices: $\omega = p^* s^* \omega$. Local coordinates z on C, t on $\mathbb{P}^1 \longrightarrow \omega = a(z, t)dz + b(z, t)dt$. $\omega_{\{c\} \times \mathbb{P}^1} = 0 \Rightarrow b(c, t) \equiv 0 \forall c \Rightarrow b = 0$. $d\omega \in H^0(K_S) = 0 \Rightarrow \frac{\partial}{\partial t}a(z, t) = 0 \Rightarrow a(z, t) = a(z, 0),$ $\omega = a(z, 0)dz = p^* s^* \omega$.

Minimal surfaces

Definition

S minimal if any birational morphism $S \rightarrow T$ is an isomorphism.

Proposition

Every S admits a birational morphism onto a minimal surface.

Proof: If not, \exists an infinite chain $S \to S_1 \to \cdots \to S_n \to \cdots$ of blowups. This is impossible since $b_2(S_n) = b_2(S) - n$.

Theorem (Castelnuovo's criterion)

Let $E \subset S$, $E \cong \mathbb{P}^1$, $E^2 = -1$. There exists a surface T and a

blowing up $b: S \rightarrow T$ with exceptional curve E.

Corollary

S minimal
$$\Leftrightarrow$$
 S \Rightarrow E \cong \mathbb{P}^1 with $\mathbb{E}^2 = -1$.

Exercises

1) Let $b: \hat{S} \to S$ the blowup of $p \in S$, \hat{C} the strict transform of $C \subset S$. Using the genus formula, compute $g(\hat{C})$. Deduce that after a finite number of appropriate blowups, the strict transform of C becomes smooth.

2) Let $\sigma : \mathbb{P}^2 \dashrightarrow \mathbb{P}^2$ be given by $\sigma(X, Y, Z) = (YZ, ZX, XY)$ ("standard quadratic transformation"). Let $b : P \to \mathbb{P}^2$ be the blowup of \mathbb{P}^2 at the points (1, 0, 0), (0, 1, 0), (0, 0, 1). Show that there is an automorphism s of P, with $s^2 = \operatorname{Id}_P$ and $b \circ s = s \circ \sigma$.

3) Let $\varphi : S \dashrightarrow \mathbb{P}^n$ be a rational map.

a) Show that there exists rational functions $\varphi_0, \ldots, \varphi_n$ on S such that $\varphi(p) = [\varphi_0(p), \ldots, \varphi_n(p)]$ (observe that there is an open subset $U \subset S$ such that $\varphi_{|U}$ is a morphism into $\mathbb{A}^n \subset \mathbb{P}^n$).

Exercises

b) Prove that there is a finite subset $F \subset S$ such that φ is well-defined outside F (suppose φ is not defined along a curve C; let $p \in C$, $g \in \mathcal{O}_p$ a local equation for C. We can assume that all φ_i are in \mathcal{O}_p , with no common factor. But $\varphi_i = 0$ along $C \Rightarrow g \mid \varphi_i \forall i$, contradiction.)

4) Let $u: S \to T$ be a birational morphism of surfaces, $C \subset S$ an irreducible curve such that u(C) is a point. Show that $C \cong \mathbb{P}^1$, and $C^2 < 0$.

5) Let $S \subset \mathbb{P}^3$ be a smooth surface of degree d. Using $K_S \equiv (d-4)H$ and the exact sequence $0 \to \mathcal{O}_{\mathbb{P}^3}(-d) \to \mathcal{O}_{\mathbb{P}^3} \to \mathcal{O}_S \to 0$, compute $P_n(S)$.

Algebraic surfaces

Lecture III: minimal models

Arnaud Beauville

Université Côte d'Azur

July 2020

Geometrically ruled surfaces

Definition

- A surface S is **ruled** if it is birational to $C \times \mathbb{P}^1$.
- If $C = \mathbb{P}^1$, we say that S is rational.
- S is geometrically ruled if $\exists p : S \to C$ smooth, fibers $\cong \mathbb{P}^1$.

The last definition is justified by:

Theorem (Noether-Enriques)

 $p: S \rightarrow C$ geometrically ruled $\Rightarrow S$ ruled.

Note that this is specific to surfaces: there exist smooth morphisms $X \to S$ (S surface) with all fibers $\cong \mathbb{P}^1$, but X not birational to $S \times \mathbb{P}^1$ (Severi-Brauer varieties).

Minimal ruled surfaces

Theorem

S ruled not rational. S minimal \Leftrightarrow S geometrically ruled.

Proof: 1)
$$p: S \to C$$
 with fibers $\cong \mathbb{P}^1$, $g(C) \ge 1$.
If $E \subset S$, $p(E) = q \in \mathbb{P}^1$ since $g(C) \ge 1 \Rightarrow E = p^{-1}(q) \Rightarrow E^2 = 0$.
2) $S \cong C \times \mathbb{P}^1 \iff$ rational map $p: S \dashrightarrow C$, $g(C) \ge 1$.

Claim : *p* is a morphism.

 $E_n \subset S_n$ exceptional curve; since $g(C) \ge 1$, $v(E_n) = \{pt\} \Rightarrow can$ replace S_n by S_{n-1} , then ... till $S_0 \Rightarrow \square$.

End of the proof

3) $p: S \to C$, general fiber $F \cong \mathbb{P}^1$. Want to prove all fibers $\cong \mathbb{P}^1$. Recall: $F^2 = 0$, $K \cdot F = -2$ (genus formula).

- F irreducible $\Rightarrow F \cong \mathbb{P}^1$ (genus formula).
- F = mF'? Only possibility m = 2, $K \cdot F' = -1$, contradicts genus formula.
- $F = \sum n_i C_i$. Claim : $\Rightarrow C_i^2 < 0 \ \forall i$. Because: $n_i C_i^2 = C_i \cdot (F - \sum_{j \neq i} n_j C_j), \ C_i \cdot F = 0, \ C_i \cdot C_j \ge 0$, and $C_i \cdot C_j > 0$ for some j since F is connected.
- Then $K \cdot C_i = 2g(C_i) 2 C_i^2 \ge -1$, $= -1 \Leftrightarrow C_i$ exceptional.
- So if S minimal, $(K \cdot C_i) \ge 0 \ \forall i \implies (K \cdot F) \ge 0$, contradiction.

E rank 2 vector bundle on *C* \longrightarrow projective bundle $p : \mathbb{P}_{C}(E) \to C, \ p^{-1}(x) = \mathbb{P}(E_{x}), \text{ so } \mathbb{P}_{C}(E) \text{ is a geometrically}$ ruled surface.

The following can be deduced from the Noether-Enriques theorem:

Proposition

Every geometrically ruled surface is a projective bundle.

There is a highly developed theory of vector bundles on curves, particularly in rank 2; therefore the classification of minimal ruled surfaces is well understood.

Elementary transformation

 $f: S \to C$ geometrically ruled. Choose $p \in C$, $q \in F := f^{-1}(p)$. Blow up q. $\hat{f}: \hat{S} \xrightarrow{b} S \xrightarrow{f} C$. Fiber above $p = E \cup \hat{F}$. $0 = (\hat{f}^*p)^2 = (E + \hat{F})^2 = E^2 + \hat{F}^2 + 2 \Rightarrow$ $\hat{F}^2 = -1$, hence \hat{F} is an exceptional curve (Castelnuovo). Contraction $c: \hat{S} \to S'$:

 \hat{f} induces $g: S' \to C$ geometrically ruled.

Elementary transformation with section

Let $\Sigma \subset S$ be a section of f passing through q. Then Σ and F are transverse, so $\hat{\Sigma} \cap \hat{F} = \emptyset$ in \hat{S} , and c maps $\hat{\Sigma}$ isomorphically to Σ' section of g.

Then
$$\Sigma'^2 = \hat{\Sigma}^2 = (b^*\Sigma - E)^2 = \Sigma^2 - 1 \,. \label{eq:sigma}$$

Lemma

Suppose $\operatorname{Pic}(S) = \mathbb{Z}[F] \oplus \mathbb{Z}[\Sigma]$. Then $\operatorname{Pic}(S') = \mathbb{Z}[F'] \oplus \mathbb{Z}[\Sigma']$.

Proof : It suffices to prove that $(c^*F', c^*\Sigma', \hat{F})$ basis of $\operatorname{Pic}(\hat{S})$.

But $c^*F' = b^*F$, $c^*\Sigma' = \hat{\Sigma} = b^*\Sigma - E$, $\hat{F} = b^*F - E$ and $(b^*F, b^*\Sigma, E)$ basis of $Pic(\hat{S})$.

The surfaces \mathbb{F}_n

Proposition

- For $n \ge 0$, \exists a geometrically ruled rational surface $\mathbb{F}_n \to \mathbb{P}^1$, with a section Σ of square -n, and $\operatorname{Pic}(\mathbb{F}_n) = \mathbb{Z}[F] \oplus \mathbb{Z}[\Sigma]$.
- For n > 0, the curve Σ is the only curve of square < 0 on \mathbb{F}_n .

Proof: We start with $\mathbb{F}_0 := \mathbb{P}^1 \times \mathbb{P}^1$, with $f = \text{pr}_1$ and $\Sigma = \mathbb{P}^1 \times \{0\}$. Once (\mathbb{F}_n, Σ) is constructed, we choose $q \in \Sigma$: elementary transformation $\longrightarrow \mathbb{F}_{n+1} = S'$ with $\Sigma'^2 = -n - 1$.

• By the Lemma, $\mathsf{Pic}(\mathbb{F}_n) = \mathbb{Z}[F] \oplus \mathbb{Z}[\Sigma]$.

• Let $C \neq \Sigma$ irreducible curve on \mathbb{F}_n . $C \equiv a\Sigma + bF$. $(C \cdot F) \ge 0 \Rightarrow a \ge 0;$ $(C \cdot \Sigma) = -an + b \ge 0$ $\Rightarrow C^2 = -na^2 + 2ab = a(2b - an) \ge an^2 \ge 0.$

Corollary

 \mathbb{F}_n is minimal for $n \neq 1$.

 \mathbb{F}_1 is obtained by blowing up a point q in $\mathbb{P}^1 \times \mathbb{P}^1$ and contracting one of the lines through q; by stereographic projection, $\mathbb{F}_1 \cong \hat{\mathbb{P}}^2$.

Theorem

The minimal rational surfaces are \mathbb{P}^2 and \mathbb{F}_n for $n \neq 2$.

Remark : Being geometrically ruled, the surfaces \mathbb{F}_n are of the form $\mathbb{P}_{\mathbb{P}^1}(E)$. It is not difficult to show that all vector bundles on \mathbb{P}^1 are direct sums of line bundles; in fact, it was observed by Hirzebruch that $\mathbb{F}_n = \mathbb{P}_{\mathbb{P}^1}(\mathcal{O}_{\mathbb{P}^1} \oplus \mathcal{O}_{\mathbb{P}^1}(n))$.

Non-ruled surfaces

Theorem

Two birational minimal surfaces **not** ruled are isomorphic.

Thus a non-ruled surface admits a **unique** minimal model (up to isomorphism); the birational classification of these surfaces is reduced to the classification (up to isomorphism) of the minimal ones. In contrast, ruled surfaces have a simple birational model $(C \times \mathbb{P}^1)$, but the determination of the minimal ones is subtle.

The theorem follows easily from an important Lemma (admitted):

Key lemma

If S is minimal not ruled, $(K \cdot C) \ge 0$ for all curves C.

We say that K is **nef**. This is the crucial notion to extend the definition of minimal surface in higher dimension.

Let $\varphi: S \xrightarrow{\sim} T$, with S, T minimal not ruled. We want to prove that φ is an isomorphism.

We choose a diagram:

 $S_n \qquad v \text{ Dirational, } u = v, \qquad \dots = v$ with $n \ge 1$ minimal $\Rightarrow v$ maps E_n to a curve C. Since v is a composition of blowups, v birational, $u: S_n \to S_{n-1} \to \cdots \to S_0 = S$,

 $(K_T \cdot C) \leq (K_{S_n} \cdot E_n) = -1$, contradicting the key lemma.

Thus φ birational morphism; S minimal $\Rightarrow \varphi$ isomorphism.

Exercises

1) Let *C* be a curve of genus *g*. Show that the sections Σ of the fibration $C \times \mathbb{P}^1 \to C$ are in bijective correspondence with the maps $f : C \to \mathbb{P}^1$. Using the genus formula, compute Σ^2 in terms of the degree of *f*. Show that Σ^2 is even, nonnegative, and $\neq 2$ if g > 0. 2) a) Show that the canonical divisor of \mathbb{F}_n is $-2\Sigma + (n-2)F$ and that $K^2 = 8$.

b) We say that a divisor D (or the corresponding line bundle) on a surface S is *nef* if $D \cdot C \ge 0$ for all curves C on S. Show that the anticanonical divisor -K on \mathbb{F}_n is nef if and only if $n \le 2$.

c) We say that D is *ample* if $D \cdot C > 0$ for all curves C, and $D^2 > 0$. Show that $-K_{\mathbb{F}_n}$ is ample if and only if $n \leq 1$.

d) Let S be a surface with $-K_S$ ample. Show that S is obtained from \mathbb{P}^2 by blowing up ≤ 8 points (observe that if $-K_T$ is not ample for a surface T, any blowup of T has the same property).

3) We consider the divisor class H_k := Σ + kF on the surface F_n.
a) For k < n, show that the effective divisors = H_k are sum of Σ and k fibers.

b) Compute $\chi(H_k)$ by Riemann-Roch; deduce that $H^1(H_{n-1}) = 0$. c) Using the exact sequences $0 \rightarrow \mathcal{O}(H_k) \rightarrow \mathcal{O}(H_{k+1}) \rightarrow \mathcal{O}_{\mathbb{P}^1}(1) \rightarrow 0$, show that $H^1(H_k) = 0$ for $k \ge n-1$, and $h^0(H_k) = 2k + 2 - n$.

Algebraic surfaces

Lecture IV: Rational surfaces

Arnaud Beauville

Université Côte d'Azur

July 2020

Linear systems and rational maps

 $L = \mathcal{O}_{\mathcal{S}}(D) \in \operatorname{Pic}(\mathcal{S}). \text{ (Complete) linear system :} \\ |L| = |D| := \{E \ge 0 \mid E \equiv D\} = \mathbb{P}(H^0(L)).$

$$B_L$$
 = **Base locus** of $L := \bigcap_{E \in |L|} E = Z \bigcup \{p_1, \dots, p_s\}$

 $Z = \bigcup C_i$ = fixed part, p_i base points.

Rational map defined by L:

 $\varphi_L: S \smallsetminus B_L \to |L|^{\vee}, \ \varphi_L(p) = \{E \mid p \in E\} = \text{hyperplane in } |L|.$

If Z = fixed part of |L|, $\varphi_L = \varphi_{L(-Z)}$: can assume L has no fixed part, i.e. B_L finite.

$$E \in |L| \quad \text{whyperplane } H_E \subset |L|^{\vee};$$

$$\varphi_L^* H_E = \{ p \in S \setminus B_L \mid E \in \varphi_L(p) \Leftrightarrow p \in E \} = E \setminus B_L : \quad \varphi_L^* H_E = E.$$

Properties of φ_L

Properties of φ_L

- φ_L morphism $\Leftrightarrow |L|$ base point free (i.e. $B_L = \emptyset$).
- φ_L injective $\Leftrightarrow \forall p \neq q, \exists E \in |L|, p \in E, q \notin E$. If this holds:
- φ_L embedding $\Leftrightarrow \forall p, v \neq 0 \in T_p(S), \exists p \in E \in |L|, v \notin T_p(E).$

If this is the case, we say that *L* is **very ample**.

•
$$\varphi_L$$
 embedding $\Rightarrow \deg(\varphi_L(S)) = L^2$.

Remark : If D is very ample and |E| is base point free, D + E is very ample.

Examples : • Let *H* be a line in \mathbb{P}^2 . The linear system |nH| of curves of degree n ($n \ge 1$) is very ample. In particular, φ_{2H} is an isomorphism of \mathbb{P}^2 onto a surface $V \subset \mathbb{P}^5$, the Veronese surface. We have deg(V) = $(2H)^2 = 4$; the hyperplane sections of V are conics.

Examples

• On $\mathbb{P}^1 \times \mathbb{P}^1$, let $A = \mathbb{P}^1 \times \{0\}$ and $B = \{0\} \times \mathbb{P}^1$. The linear systems |A| and |B| are base point free, and φ_{A+B} is the Segre embedding in \mathbb{P}^3 . Hence aA + bB is very ample for $a, b \ge 1$. In particular, |2A + B| gives an isomorphism onto a surface of degree 4 in \mathbb{P}^5 ("quartic scroll"). Since $A \cdot (2A + B) = 1$, the curves in |A| are mapped to lines in \mathbb{P}^5 .

• Let $p_1, \ldots, p_s \in S$. Let |D| be a linear system on S, and $P \subset |D|$ the subspace of divisors passing through p_1, \ldots, p_s . Assume that at each p_i the curves of P have different tangent directions. Let $b: \hat{S} \to S$ be the blowing up of p_1, \ldots, p_s , E_i the exceptional curve above p_i . The system $\hat{D} := b^*D - \sum E_i$ is base point free and defines a morphism $\varphi_{\hat{D}}: \hat{S} \to |\hat{D}|^{\vee}$ to which we can apply the previous remarks.

Examples (continued)

• Let $p \in \mathbb{P}^2$; consider the system of conics passing through p. It is easy to check that $|2b^*H - E|$ on $\hat{\mathbb{P}}_p^2$ is very ample. It gives an isomorphism onto a surface $S \subset \mathbb{P}^4$, with $\deg(S) = (4H^2 + E^2) = 3$. The strict transforms of the lines through p in \mathbb{P}^2 form the linear system $b^*H - E$; since $(b^*H - E) \cdot (2b^*H - E) = 1$, they are mapped to lines in \mathbb{P}^4 . S is the cubic scroll.

• Now let us pass to linear systems of cubic curves.

Proposition

For $s \leq 6$, let $p_1, \ldots, p_s \in S = \mathbb{P}^2$, such that no 3 of them lie on a line and no 6 on a conic. The linear system |-K| on \hat{S} is very ample, and defines an isomorphism of \hat{S} onto a surface Σ_d of degree d := 9 - s in \mathbb{P}^d , called a **del Pezzo surface**.

In prticular, Σ_3 is a (smooth) cubic surface in \mathbb{P}^3 .

Sketch of proof

Sketch of proof : The proof is a long exercise, with no essential difficulty; I will just give an idea. We have $-K_{\hat{S}} = 3b^*H - \sum E_i$, corresponding to the system P of cubics passing through the p_i . Let us show that φ_{-K} is injective in the most difficult case s = 6.

- Let $p \neq q \in \mathbb{P}^2 \smallsetminus \{p_i\}$. Can assume p_1 is not on the line $\langle p, q \rangle$.
- \exists ! conic Q_{ij} passing through p and the p_k for $k \neq i, j$.
- $Q_{1i} \cap Q_{1j} = \{p\} \cup 3 \text{ other } p_k \Rightarrow q \in \text{at most one } Q_{1i}, \text{ say } Q_{12}.$
- q is at most on one $\langle p_1, p_i \rangle$, say $\langle p_1, p_3 \rangle$.
- Then $Q_{14} \cup \langle p_1, p_4 \rangle \in P$, $\exists p, \notin q \Rightarrow \varphi_{-K}(p) \neq \varphi_{-K}(q)$.

• Then: deg(Σ_d) = $(3b^*H - \sum E_i)^2 = 9 - s = d$; one has $h^0(3H) = 10$, and one checks that p_1, \ldots, p_s impose s independent conditions.

Example : Σ_3 is a smooth cubic surface in \mathbb{P}^3 ; we will see that one obtains all smooth cubic surfaces in that way.

Proposition

lines $\subset \Sigma_d$ = exceptional curves = the E_i , the strict transforms of the lines $\langle p_i, p_j \rangle$ and of the conics passing through 5 of the p_i (for s = 5 or 6). Their number is $s + {s \choose 2} + {s \choose 5}$.

Proof: $E \subset \hat{S} \iff$ line in $\Sigma \Leftrightarrow K_{\hat{S}} \cdot E = -1$, i.e. E exceptional. $E \neq E_i \Rightarrow E \equiv mb^*H - \sum a_iE_i$ in $\operatorname{Pic}(\hat{S})$; $a_i = E \cdot E_i = 0$ or 1. $(-K) \cdot E = 3m - \sum a_i = 1 \Rightarrow \sum a_i = 2$ and m = 1, or $\sum a_i = 5$ and m = 2.

Remark : We know more than the number of lines, namely their classes in $\operatorname{Pic}(\Sigma_d)$, their incidence properties, etc. The configuration of lines has been intensively studied in the 19th and 20th century. Let us just mention that the lattice $K^{\perp} \subset \operatorname{Pic}(\Sigma_d)$ is a *root system*, of type E_6 , D_5 , A_4 , $A_2 \times A_1$ for s = 6, 5, 4, 3.

Proposition

Any smooth cubic surface $S \subset \mathbb{P}^3$ is a del Pezzo surface Σ_3 . In particular, S contains 27 lines.

Strategy of the proof : show that S contains a line, then 2 skew lines; then deduce from that a map $S \to \mathbb{P}^2$ composite of blowups. There are many details to check, left to the reader.

$$(1) \mathbb{G} := \{ \text{lines} \subset \mathbb{P}^3 \}, \text{ dim } \mathbb{G} = 4$$

 $\mathcal{C} := |\mathcal{O}_{\mathbb{P}^3}(3)| = \{ \text{cubic surfaces} \subset \mathbb{P}^3 \} \cong \mathbb{P}^c \ (c = 19).$

Incidence correspondence: $Z \subset \mathbb{G} \times C = \{(\ell, S) | \ell \subset S\}.$

Fibers of $p \cong \mathbb{P}^{c-4}$ (S : F = 0 contains $Z = T = 0 \Leftrightarrow F$ has no X^3, X^2Y, XY^2, Y^3).

Thus dim $Z = \dim C$. We want q surjective.

If $q: Z \to C$ not surjective, dim $q(Z) \leq c - 1 \Rightarrow \dim q^{-1}(S) \geq 1$ for $S \in q(Z)$. But $q^{-1}(\Sigma_3)$ finite \Rightarrow impossible.

(2) $S \supset \ell$. The planes $\Pi \supset \ell$ cut S along a conic. **Claim**: 5 of these conics are degenerate, i.e. of the form $\ell_1 \cup \ell_2$. **Proof** : ℓ : $Z = T = 0 \Rightarrow$ $F = AX^{2} + 2BXY + CY^{2} + 2DX + 2EY + G$, with A..., G homogeneous polynomials in Z, T. The conic is degenerate $\Leftrightarrow \det \begin{vmatrix} A & B & D \\ B & C & E \\ D & E & G \end{vmatrix} = 0, \text{ degree 5 in } Z, T. \ge 2 \text{ distinct roots} \Rightarrow$ $S \supset 2$ triangles: $\ell \cup \ell_1 \cup \ell'_1, \ \ell \cup \ell_2 \cup \ell'_2$. Then $\ell_1 \cap \ell_2 = \emptyset$.

Cubic surface (continued)

(3) $\ell \subset S$, given by X = Y = 0. Projection from $\ell: S \xrightarrow{(X,Y)} \mathbb{P}^1$. Well-defined: S : XB - YA = 0, (X, Y) = (A, B) on S, $X = Y = A = B = 0 \implies S$ singular. $\varphi_i : S \to \mathbb{P}^1$ projection from $\ell_i \rightsquigarrow \varphi = (\varphi_1, \varphi_2) : S \to \mathbb{P}^1 \times \mathbb{P}^1$. Geometrically, $\varphi_i(p) = \text{plane } \langle \ell_i, p \rangle$ through ℓ_i . Birational: for $(\pi_1, \pi_2) \in \mathbb{P}^1 \times \mathbb{P}^1$, $\pi_1 \cap \pi_2 =$ line meeting ℓ_1 and ℓ_2 , intersects S along a unique third point p. $\Rightarrow \varphi =$ composition of blowups. Blowup of $\mathbb{P}^1 \times \mathbb{P}^1$ at 1 point = blowup of \mathbb{P}^2 at 2 points $\Rightarrow \varphi' : S \to \mathbb{P}^2$ composition of blowups. λ line contracted by $\varphi \iff \pi_1(\lambda) = \{p\}, \pi_2(\lambda) = \text{pts}$ $\iff \lambda$ meets ℓ_1 and ℓ_2 . For each of the 5 triangles $\ell_1, \ell'_1, \ell''_1, \ell_2$ meets one of $\ell'_1, \ell''_1 \Rightarrow$ 5 lines contracted $\Rightarrow S \cong \mathbb{P}^2$ with 6 points blown up.

Exercises

1) Show that the linear system $|\Sigma + nF|$ on \mathbb{F}_n defines a morphism $\mathbb{F}_n \to \mathbb{P}^{n+1}$, which is an embedding outside Σ and contracts Σ to a point p. Show that the image of \mathbb{F}_n is a cone with vertex p, and that the hyperplane sections not passing through p are rational normal curves of degree n in \mathbb{P}^n (use exercise 3 of Lecture II).

2) Show that the linear system $|\Sigma + kF|$ on \mathbb{F}_n for k > n defines an isomorphism of \mathbb{F}_n onto a surface of degree 2k - n in \mathbb{P}^{2k-n+1} . The images of the fibers are disjoint lines, and that of Σ is a rational normal curve of degree n + k.

3) Let S be the vector space of symmetric 3×3 matrices. Show that the locus of rank 1 matrices in $\mathbb{P}(S) \cong \mathbb{P}^5$ is a Veronese surface V. Deduce that all secants to V (i.e. the lines $\langle p, q \rangle$, $p \neq q \in V$) are contained in a cubic hypersurface.

[Note: the secant lines depend on 2 + 2 parameters, so one would expect that their union fills \mathbb{P}^5 . It is a classical theorem of Severi that the Veronese surface is the only smooth surface in \mathbb{P}^5 (not contained in a hyperplane) with this property.]

4) a) Let C be a smooth rational curve of degree e on a del Pezzo surface Σ_d. Show that C² = e - 2. Prove that the linear system |C| has dimension e - 1 (use the exact sequence 0 → O_S → O_S(C) → O_S(C)_{|C} → 0).
b) Describe in terms of P² with 9 - d points blown up the pencils (= linear systems of dimension 1) of conics on Σ_d. Find their number.

Exercises

c) We fix e = 3. Show that the linear system |C| is base point free, and defines a birational morphism to \mathbb{P}^2 (use the exact sequence of a). Conversely, any birational morphism $\Sigma_d \to \mathbb{P}^2$ is defined by a net (= linear systems of dimension 2) of twisted cubics. d) Describe the nets of twisted cubics on Σ_3 . Show that there are 72 such nets.

5) A double-six in P³ consists of 2 sets of disjoint lines l₁,..., l₆ and l'₁,..., l'₆, such that l_i ∩ l'_j ≠ Ø for i ≠ j and l_i ∩ l'_i = Ø.
a) Show that in a cubic surface Σ₃, the images of E₁,..., E₆ and of the conics passing through 5 of the p_i form a double-six.
b) Conversely, given a double-six (l_i, l'_j) on Σ₃, there is a birational morphism S₃ → P² contracting the l_i to points p_i and mapping the l'_j to conics through 5 of the p_i.

c) Conclude that there are 36 double-six on $\boldsymbol{\Sigma}_3.$

Algebraic surfaces

Lecture V: The Kodaira dimension

Arnaud Beauville

Université Côte d'Azur

July 2020

The key ingredient to distinguish different projective varieties is the behaviour of the canonical bundle.

Definition

The Kodaira dimension of a surface S is

$$\kappa(S) := \max_{n} \dim \varphi_{nK}(S)$$

with the convention dim $\emptyset = -\infty$.

Using the plurigenera $P_n = h^0(nK)$, this translates as

• $\kappa(S) = -\infty \iff P_n = 0 \ \forall n \iff S \text{ ruled (Enriques theorem)}.$

•
$$\kappa(S) = 0 \iff P_n = 0 \text{ or } 1 \forall n, \text{ and } = 1 \text{ for some } n.$$

• $\kappa(S) = 1 \iff P_n \ge 2$ for some *n*, and dim $\varphi_{mK}(S) \le 1 \ \forall m$;

• $\kappa(S) = 2 \iff \dim \varphi_{nK}(S) = 2$ for some n.

Examples

• Let B, C be two curves of genus b, c. Then:

•
$$\kappa(B \times C) = -\infty \iff bc = 0;$$

•
$$\kappa(B \times C) = 0 \iff b = c = 1;$$

•
$$\kappa(B \times C) = 1 \iff b \text{ or } c = 1, bc > 1;$$

•
$$\kappa(B \times C) = 2 \iff b \text{ and } c \ge 2.$$

• Let $S_d \subset \mathbb{P}^3$ of degree d; then S_d is rational for $d \leq 3$, $\kappa(S_4) = 0$, $\kappa(S_d) = 2$ for $d \geq 5$.

These examples show a general pattern: most surfaces have $\kappa = 2$ (they are called **of general type**), some have $\kappa = 1$, and the cases $\kappa = 0$ and $\kappa = -\infty$ are completely classified.

Remark : *S* minimal, $\kappa(S) \ge 0 \implies K_S^2 \ge 0$. Indeed $|nK_S| \ni E$ for some $n \ge 1$, and $K \cdot E \ge 0$ by the key lemma.

Proposition

Let S be a minimal surface. The following are equivalent:

- **1** $\kappa(S) = 2;$
- 2 $K^2 > 0$ and S not ruled;

③ φ_{nK} birational onto its image for $n \gg 0$.

Proof :
$$(3) \Rightarrow (1)$$
 clear.

(2) \Rightarrow (3): let *H* be a very ample divisor on *S*. Riemann-Roch $\rightsquigarrow \chi(nK - H) \sim \frac{1}{2}n^2K^2 > 0$ for $n \gg 0$, hence $h^0(nK - H) + h^0((1 - n)K + H) > 0$. But $((1 - n)K + H) \cdot K < 0$ for $n \gg 0$, hence $h^0 = 0$ by key Lemma $\Rightarrow h^0(nK - H) > 0$, hence $nK \equiv H + E$, $E \ge 0 \Rightarrow \varphi_{nK}$ birational.

$\kappa = 2$ (continued)

(1)
$$\Rightarrow$$
 (2): $\kappa(S) = 2 \Rightarrow S$ not ruled and $K^2 \ge 0$. But $K^2 > 0$ by:

Lemma

S minimal, $K^2 = 0$, |nK| = Z + M with *Z* fixed part. Then *M* is base-point free, and $\varphi_M = \varphi_{nK} : S \to C \subset |nK|^{\vee}$.

Proof: Key lemma $\Rightarrow (K \cdot Z)$ and $(K \cdot M) \ge 0$, hence = 0. $0 = M \cdot (Z + M) \Rightarrow M^2 = 0 \Rightarrow |M|$ base-point free, hence $\varphi_M : S \to C \subset |nK|^{\vee}$. $M^2 = 0 \Rightarrow C$ curve.

Remark: \exists much more precise results for (3) (Kodaira, Bombieri): φ_{nK} morphism for $n \ge 4$, birational for $n \ge 5$.

Example: For $S = B \times C$ as above,

$$\mathcal{K}^2_{B\times C} = (p^*\mathcal{K}_B \cdot q^*\mathcal{K}_C) = (2b-2)(2c-2): \ \mathcal{K}^2_X > 0 \Leftrightarrow b, c \ge 2.$$

Proposition

S minimal, $\kappa(S) = 1 \implies K^2 = 0$, and $\exists p : S \rightarrow B$ with general fiber elliptic curve.

(We say that *S* is an **elliptic surface**.)

Proof: Choose *n* such that $h^0(nK) \ge 2$, |nK| = Z + |M|. By the Lemma, $\varphi_M : S \to C \subset |nK|^{\vee}$.

Stein factorization: $\varphi_M : S \xrightarrow{p} B \to C$, with fibers of p connected.

F smooth fiber. $F \leq M \Rightarrow K \cdot F = 0$, $F^2 = 0 \Rightarrow g(F) = 1$ (genus formula).

Remark : An elliptic surface can be rational, ruled, or have $\kappa = 0$.

Surfaces with $\kappa = 0$

Theorem

- S minimal with $\kappa = 0$.
 - q = 0, $K \equiv 0$: S is a K3 surface;
 - Q = 0, 2K ≡ 0, K ≠ 0: S is an Enriques surface quotient of a K3 by a fixed-point free involution.
 - q = 1: S is a bielliptic surface, quotient of a product E × F of elliptic curves by a finite group acting freely (7 cases).
 - **(**q = 2: *S* is an **abelian surface** (projective complex torus).

We will treat only the cases with q = 0 (the other cases require the theory of the Albanese variety). If $K \equiv 0$, we are in case (1). We want to prove that q = 0, $K \neq 0 \Rightarrow 2K \equiv 0$.

S minimal, $q = 0, K \neq 0$

Proof: We have $h^0(nK) = 0$ or $1 \forall n \ge 1$, and $K^2 = 0$ by the case $\kappa = 2$. We first prove $p_g = h^0(K) = 0$. If $h^0(K) = 1$ Riemann-Roch gives $h^0(-K) + h^0(2K) \ge \chi(\mathcal{O}_S) = 1 - q + p_g = 2$,

 $h^{\circ}(-K) + h^{\circ}(2K) \ge \chi(O_{S}) = 1 - q + p_{g} = 2,$

hence $h^0(-K) \ge 1$. Thus $\exists A \in |K|, B \in |-K| \Rightarrow A + B \equiv 0$ $\Rightarrow A = B + 0, K \equiv 0$, excluded. Hence $h^0(K) = 0$.

Then: $h^0(-K) + h^0(2K) \ge \chi(\mathcal{O}_S) = 1.$ If $h^0(-K) > 0$, $|-K| \ge D \ge 0$, $|nK| \ge E \ge 0$, $nD + E \equiv 0 \implies D \equiv 0$, contradiction. Hence $h^0(2K) > 0.$ Riemann-Roch: $h^0(3K) + h^0(-2K) \ge 1.$ Suppose $h^0(3K) \ge 1.$ $D \in |2K|, E \in |3K|; 3D, 2E \in |6K| \implies 3D = 2E \implies D = 2F, E = 3F$ with $F \ge 0$. But $F \equiv E - D \equiv K$, contradiction. Therefore $h^0(-2K) > 0$, and $2K \equiv 0.$

The double cover of an Enriques surface

Let *S* be an Enriques surface. View \mathcal{K}_S as a line bundle $p : \mathcal{K} \to S$; we have a non-vanishing section ω of $H^0(2\mathcal{K})$. Let $X = \{x \in \mathcal{K} \mid x^2 = \omega(px)\}$

It is a closed subvariety of \mathcal{K} ; for each $y \in S$ there are 2 points in X above y, exchanged by the involution $\sigma : x \mapsto -x$. This involution acts freely, and p_X identifies S with X/σ .

The morphism $p_X : X \to S$ is étale, hence $p_X^* \mathcal{K}_S \cong \mathcal{K}_X$.

Consider the pull back diagram:
$$\begin{array}{c} \mathcal{K} \times_{S} \mathcal{K} \longrightarrow \mathcal{K} \\ \downarrow & \downarrow \\ \mathcal{K} \xrightarrow{p} & S \end{array}$$

p' has a canonical section $x \mapsto (x, x)$; this section does not vanish outside the zero section of \mathcal{K} . Therefore $p^*\mathcal{K}_{|S} = \mathcal{K}_X$ is trivial. We will admit q = 0, so X is a K3 surface.

Examples

• $S_4 \subset \mathbb{P}^3$ (smooth) is a K3 surface.

Indeed $K_{S_d} \equiv (d-4)H$, so $\equiv 0$ for d = 4. To prove q = 0 we

admit a classical result:

Lemma

 $H^{i}(\mathbb{P}^{n}, \mathcal{O}_{\mathbb{P}^{n}}(k)) = 0$ for all k and 0 < i < n.

Then from the exact sequence $0 \to \mathcal{O}_{\mathbb{P}^3}(-4) \to \mathcal{O}_{\mathbb{P}^3} \to \mathcal{O}_S \to 0$ we get $H^1(\mathcal{O}_S) = 0$.

• More generally, for each $g \ge 3$, there is a family of K3 surfaces of degree 2g - 2 in \mathbb{P}^g : in \mathbb{P}^4 we get the intersection of a quadric and a cubic, in \mathbb{P}^5 the intersection of 3 quadrics, etc. These surfaces have a rich geometry and have been, and still are, extensively studied. In \mathbb{P}^5 , with homogeneous coordinates $X_0, X_1, X_2, X_0', X_1', X_2'$, consider the surface S defined by

$$P(X) + P'(X') = Q(X) + Q'(X') = R(X) + R'(X') = 0,$$

where P, Q, R; P', Q', R' are general quadratic forms in 3 variables. The involution $\sigma : (X_i, X'_j) \mapsto (-X_i, X'_j)$ preserves S; its fixed points are the 2-planes $X_i = 0$ and $X'_j = 0$, which are not on Ssince the quadratic forms are general. The surface quotient S/σ is an Enriques surface.

Exercises

1)Let S be a K3 surface, $C \subset S$ a curve of genus g. a) Show that $C^2 = 2g - 2$ and $h^0(C) = g + 1$ (deduce from the exact sequence $0 \rightarrow \mathcal{O}_S(-C) \rightarrow \mathcal{O}_S \rightarrow \mathcal{O}_C \rightarrow 0$ that $H^1(\mathcal{O}_S(-C)) = 0$).

b) Show that the restriction of $\mathcal{O}_S(C)$ to C has degree 2g - 2 and $h^0 = g$, hence is $\cong \mathcal{K}_C$.

c) Deduce from b) that |C| is base point free. If C is not hyperelliptic, show the morphism φ_C is birational onto its image.

2) a) Let C, C' two cubic curves in \mathbb{P}^2 , which intersect transversally at 9 points p_1, \ldots, p_9 . Let \hat{P} be the bowup of \mathbb{P}^2 at these points. Show that the anticanonical system $|-K_{\hat{P}}|$ is base point free, and defines a morphism $\hat{P} \to \mathbb{P}^1$ whose general fiber is a plane cubic, hence an elliptic curve.

b) Let S be a smooth quartic surface in \mathbb{P}^3 containing a line ℓ , defined by X = Y = 0. Show that (X, Y) define a morphism $S \to \mathbb{P}^1$ whose general fiber is a plane cubic.

3) Let S be a K3 surface, D an effective divisor on S with $D^2 = 0$ and $D \cdot C \ge 0$ for every curve C on S. Show that $D \equiv mE$, where $m \ge 1$ and E is a smooth elliptic curve.

(Let Z be the fixed part of |D|, so that $D \equiv Z + M$; prove $D \cdot Z = 0$, then $Z^2 = 0$, which implies Z = 0 by Riemann-Roch. Then use the same argument as in the Lemma.)

Exercises

4) Let S be an Enriques surface, E an elliptic curve on S. Show that either |E| or |2E| is a base point free pencil of elliptic curves. (Use the exact sequence $0 \rightarrow \mathcal{O}_S \rightarrow \mathcal{O}_S(E) \rightarrow \mathcal{O}_S(E)_{|E} \rightarrow 0$. If $\mathcal{O}_S(E)_{|E} = \mathcal{O}_E$, |E| is a base point free pencil. If not, observe that |K + E| contains a divisor E' by Riemann-Roch; then |2E|contains 2E and 2E', and the above exact sequence tensored by $\mathcal{O}_S(E)$ shows that $h^0(2E) = 2$.)

5) Let *S* be a surface, $p: S \to B$ a morphism onto a curve with connected fibers. Suppose a fiber *F* is reducible, i.e. $F = \sum n_i C_i$. Let $D = \sum r_i C_i$, with $r_i \in \mathbb{Z}$. Show that $D^2 \leq 0$, and $D^2 = 0$ if and only if $D \equiv kF$ for some $k \in \mathbb{Q}$.

(Write
$$G_i = n_i C_i$$
 and $s_i = \frac{r_i}{n_i} \in \mathbb{Q}$, so that $D = \sum s_i G_i$; using $G_i^2 = G_i \cdot (F - \sum_{i \neq i} G_i)$, prove that $D^2 = \sum_{i \neq i} (s_i - s_j)^2 G_i \cdot G_j$.)
Arrand Beauville Algebraic surfaces

6) Let S be a minimal surface with a morphism $p: S \rightarrow B$ onto a curve, whose general fiber is an elliptic curve. By a theorem of Zariski all fibers of p are connected.

a) Suppose a fiber is reducible, hence $= \sum n_i C_i$. Using exercise 5, show that $C_i^2 < 0$ for all *i*. Deduce that C_i is smooth rational and $C_i^2 = -2$.

b) Suppose $\kappa(S) \ge 0$. Show that there exists an integer d such that $dK \equiv p^*D$ for some $D \ge 0$ on B (let $D \in |rK|$; since $D \cdot F = 0$, D is contained in some fibers. Apply exercise 5.)