Algebraic cycles on K3 and derived equivalences

Arnaud Beauville

Université de Nice

Banff, December 2008

The canonical class in $\mathrm{CH}^{2}(S)$

$S \mathrm{~K} 3$ surface over \mathbb{C}. Chow ring $\mathrm{CH}(\mathrm{S})$:

$$
C H^{0}(S)=\mathbb{Z}, C H^{1}(S)=\operatorname{Pic}(S), C H^{2}(S) \text { very large. }
$$

Theorem (Voisin, AB)

$\exists c_{S} \in C H^{2}(S), \operatorname{deg} c_{S}=1$, such that:
(i) $\operatorname{Pic}(S) \otimes \operatorname{Pic}(S) \longrightarrow \mathbb{Z} \cdot c_{S} \subset \mathrm{CH}^{2}(S)$;
(ii) $c_{2}(S)=24 c_{s}$.

Proof of (i):

Key point : Any effective divisor on S is a sum of rational curves (Mumford; the curves are singular in general).

Pick up R rational curve and $c \in R$.
Claim : $[c] \in C H^{2}(S)$ independant of choices.

Proof of claim:

End of proof:

We want to prove: $D \cdot D^{\prime}=\operatorname{deg}\left(D \cdot D^{\prime}\right) c_{S}$ for D, D^{\prime} divisors on S. By linearity, suffices to do it for D, D' rational curves: obvious.

Proof of (ii) much more involved: use 1-dimensional family of elliptic curves on S to get relations in $\mathrm{CH}(S \times S)$.

Define $R(S):=\mathbb{Z} \oplus \operatorname{Pic}(S) \oplus \mathbb{Z} \cdot c_{S}$.

Equivalent formulation

There exists a subring $R(S)$ of $C H(S)$, containing $c_{i}(S)$, such that the cycle class map $\mathrm{CH}(S) \rightarrow H_{\text {alg }}^{*}(S, \mathbb{Z})$ maps $R(S)$ isomorphically onto $H_{\text {alg }}^{*}(S, \mathbb{Z})$.

Digression

suspect this holds for every holomorphic symplectic manifold X.
Out of reach, but the following consequence is easier to check:

Conjecture

Any polynomial relation

$$
P\left(\ell_{1}, \ldots, \ell_{k} ; c_{2}(S), \ldots, c_{n}(S)\right)=0 \quad \text { in } H^{*}(X, \mathbb{Z})
$$

with $\ell_{1}, \ldots, \ell_{k} \in \operatorname{Pic}(X)$, already holds in $\mathrm{CH}(X)$.
This has been checked by C. Voisin for $X=S^{[n]}$ (the Hilbert scheme of length n subschemes of a K3 S) for $n \leq 8$, and for $X=$ variety of lines contained in a cubic fourfold.

Remark

For S K3 over $\overline{\mathbb{Q}}$, Beilinson conjectures imply $\mathrm{CH}(S)=R(S)$.

Reminder on derived categories

X smooth projective variety. $D(X)=$ (bounded) derived category of X (objects = bounded complexes of vector bundles).

We are interested in equivalences $D(X) \xrightarrow{\sim} D(Y)$. Recall:

Theorem (Bondal-Orlov)

Assume K_{X} or $-K_{X}$ ample.
(i) If $D(X) \cong D(Y), X \cong Y$.
(ii) The group $\operatorname{Aut}(D(X))$ is generated by $\operatorname{Aut}(X)$, the shift, and $\operatorname{Pic}(X)$ acting by $E \mapsto E \otimes L$.

Much more interesting when K_{X} trivial, in particular $X \mathrm{~K} 3$:

- There are non-isomorphic K3 X, S with $D(X) \cong D(S)$;
- The group $\operatorname{Aut}(D(X))$ is large.

Huybrechts' theorem

FACT : An equivalence $F: D(X) \xrightarrow{\sim} D(Y)$ induces

(Experts rather use the Mukai vector $v_{X}(E):=\operatorname{Todd}_{X}^{1 / 2} \cdot \operatorname{ch}(E)$; irrelevant for our purpose.)

Theorem (Huybrechts)

$X, S K 3$ with Picard number $\geq 2, F: D(X) \xrightarrow{\sim} D(S) \Longrightarrow$
$F_{C H}$ maps $R(X)$ onto $R(S)$.
(The result should hold with no restriction on the Picard number.)

Strategy of the proof

(1) $F_{C H}(R(X))$ is spanned by $\operatorname{ch}(E)$ for certain objects E in $D(S)$, called spherical.
(2) $F_{C H}(R(X))$ is spanned by $\operatorname{ch}(E)$ for E spherical vector bundle.
(3) For $\operatorname{Pic}(S)=\mathbb{Z}$, the Lazarsfeld bundles $F_{C, A}$ on S are spherical; check $\operatorname{ch}\left(F_{C, A}\right) \in R(S)$.
(9) For $\operatorname{rk} \operatorname{Pic}(S) \geq 2$, deduce the result by specialization.
(1) $F_{C H}(R(X))$ is spanned by $\operatorname{ch}(E)$ for certain objects E in $D(S)$, called spherical.

Observation : $R(X)$ spanned by $\operatorname{ch}(L)$ for $L \in \operatorname{Pic}(X)$, hence $F_{C H}(R(X))$ is spanned by $F_{C H}(L)=\operatorname{ch}(F(L))$.

What do we know about $F(L)$? It is spherical :
$E \in D(X)$ spherical if $\left\{\begin{array}{l}\operatorname{Ext}^{i}(E, E)=0 \text { for } i \neq 0,2, \\ \operatorname{Ext}^{0}(E, E)=\operatorname{Ext}^{2}(E, E)=\mathbb{C}\end{array}\right.$
Spherical objects in $D(X)$ are poorly understood, but :

- A vector bundle is spherical iff it is simple and rigid.
$L \in \operatorname{Pic}(X)$ is spherical, hence also $F(L)$.

Step ${ }^{2}$

(2) $F_{C H}(R(X))$ is spanned by $\operatorname{ch}(E)$ for E spherical vector bundle.

Key ingredient:

Theorem

$$
F, G: D(X) \xrightarrow{\sim} D(S), F_{H}=G_{H} \Rightarrow F_{C H}=G_{C H} .
$$

Compare with Bloch's conjecture : $\Gamma, \Delta \in C H^{2}(X \times S)$,
$\Gamma_{*}=\Delta_{*}$ on $H^{2,0}(X) \Rightarrow \Gamma_{*}=\Delta_{*}$ on $C H^{2}(X)_{\operatorname{deg}=0}$.
The proof uses formal deformation to the general non-algebraic case.

Corollary (not immediate)

$E, E^{\prime} \in D(X)$ spherical, $\operatorname{ch}_{H}(E)=\operatorname{ch}_{H}\left(E^{\prime}\right) \Rightarrow \operatorname{ch}(E)=\operatorname{ch}\left(E^{\prime}\right)$.

Step 2, continued

Want to prove: $E \in D(S)$ spherical $\Rightarrow \operatorname{ch}(E) \in R(S)$.
Define quadratic form q on $H^{*}(S, \mathbb{Z})$ by

$$
q(r, \alpha, s)=\alpha^{2}-2 r(r+s)
$$

(Mukai pairing)
For $E \in D(S)$ spherical, Riemann-Roch \rightsquigarrow

$$
q\left(\operatorname{ch}_{H}(E)\right)=-\chi(\mathcal{E} n d(E))=-2 .
$$

Theorem (Kuleshov)

For $\xi \in H_{\text {alg }}^{*}(S, \mathbb{Z})$ with $q(\xi)=-2$, there exists F spherical vector bundle with $\mathrm{ch}_{H}(F)=\xi$.

Apply to $\xi=\operatorname{ch}_{H}(E) \rightsquigarrow F$ spherical vector bundle with $\operatorname{ch}_{H}(E)=\operatorname{ch}_{H}(F) \Rightarrow \operatorname{ch}(E)=\operatorname{ch}(F)$ by Corollary.
So it suffices to prove $\operatorname{ch}(F) \in R(S)$ for each spherical v.b. F.

Step 3: the Lazarsfeld bundles

(3) For $\operatorname{Pic}(X)=$, the Lazarsfeld bundles $F_{C, A}$ on S are spherical; check $\operatorname{ch}\left(F_{C, A}\right) \in R(S)$.
$S \mathrm{~K} 3, i: C \hookrightarrow S$ smooth curve, A line bundle on C generated by $H^{0}(C, A)$. Define vector bundle $F_{C, A}$ on S by

$$
0 \rightarrow F_{C, A}^{*} \longrightarrow H^{0}(C, A) \otimes \mathcal{O}_{S} \longrightarrow A \rightarrow 0
$$

Then: $\operatorname{rk} F_{C, A}=h^{0}(A), \quad c_{1}\left(F_{C, A}\right)=[C], \quad c_{2}\left(F_{C, A}\right)=i_{*}[A]$,
$\chi(\mathcal{E} n d(F))=2-2 \rho(A)$ with $\rho(A):=g(C)-h^{0}(A) h^{1}(A)$
(Brill-Noether number)

Proposition (Lazarsfeld)

Assume $\operatorname{Pic}(S)=\mathbb{Z}[C]$ and $\rho(A)=0$. Then $F_{C, A}$ is spherical.

Step 3, continued

Proposition

$\operatorname{ch}\left(F_{C, A}\right) \in R(S)$ (equivalently, $c_{2}\left(F_{C, A}\right) \in R(S)$).

Proof :

Dual sequence: $0 \rightarrow H^{0}(C, A)^{*} \otimes \mathcal{O}_{S} \rightarrow F_{C, A} \rightarrow \omega_{C} \otimes A^{-1} \rightarrow 0$.
$\mathcal{S}:=\left\{\right.$ subspaces $\left.V \subset H^{0}\left(F_{C, A}\right), \operatorname{dim} V=h^{0}(A), V \otimes \mathcal{O}_{S} \stackrel{j}{\longrightarrow} F_{C, A}\right\}$
Map $\mathcal{S} \rightarrow|C|, \quad V \mapsto C_{V}:=\operatorname{Supp} \operatorname{Coker}(j)$; $c_{2}\left(F_{C, A}\right)$ is supported on C_{V}.

Brill-Noether $\Rightarrow \mathcal{S} \rightarrow|C|$ dominant, so C_{V} specializes to $R \in|C|$ rational, with $c_{2}\left(F_{C, A}\right)$ supported on R, hence multiple of c_{S}.

End of Step 3

Corollary

$\operatorname{Pic}(S)=\mathbb{Z}[C], E$ spherical bundle with $c_{1}(E)=[C] \Rightarrow$ $\operatorname{ch}(E) \in R(S)$.

Proof :

Put $\operatorname{ch}_{H}(E)=(r, C, s) ; q(r, C, s)=-2 \Leftrightarrow r(r+s)=g(C)$.
By B-N theory there exists A on C with $h^{0}(A)=r, h^{1}(A)=r+s$
$\Rightarrow \operatorname{ch}_{H}\left(F_{C, A}\right)=(r, C, s)=\operatorname{ch}_{H}(E)$, hence $\operatorname{ch}(E)=\operatorname{ch}\left(F_{C, A}\right)$
(Step 2) and $\operatorname{ch}(E) \in R(S)$.
(9) For $\operatorname{rk} \operatorname{Pic}(S) \geq 2$, deduce the result by specialization.

Want to prove : E spherical bundle $\Rightarrow \operatorname{ch}(E) \in R(S)$.

1) Assume $H:=\operatorname{det} E$ primitive and ample. Deform (S, H) to $\left(S_{\eta}, H_{\eta}\right)$ with $\operatorname{Pic}\left(S_{\eta}\right)=\mathbb{Z}\left[H_{\eta}\right]$.

Deformation theory $\Rightarrow E$ extends to E_{η} spherical bundle on S_{η}

$$
\begin{aligned}
& \left(\begin{array}{rl}
\text { Obstruction lies in } H^{2}(\mathcal{E} n d(E)) \xrightarrow[\operatorname{Tr}]{\sim} H^{2}\left(\mathcal{O}_{S}\right) \\
& =\text { obstruction to } \operatorname{deform} \operatorname{det}(E) \\
& =0
\end{array}\right. \\
& \operatorname{ch}\left(E_{\eta}\right) \in R\left(S_{\eta}\right) \text { by Step } 3 \Rightarrow \operatorname{ch}(E) \in R(S)
\end{aligned}
$$

Step 4, end

2) General case (with $\operatorname{rk} \operatorname{Pic}(S) \geq 2)$. Write $\operatorname{ch}_{H}(E)=(r, k L, s)$ with L primitive in $\operatorname{Pic}(S)$.

$$
q(r, k L, s)=k^{2} L^{2}-2 r(r+s)=-2 \Rightarrow(k, r)=1 .
$$

Pick $M \in \operatorname{Pic}(S)$ primitive, $\neq L^{j}$, sufficiently ample. Then $k L+r M$ primitive and ample, so $\operatorname{ch}(E \otimes M) \in R(S)$ by 1$)$.

THE END

