Algebraic cycles on K3 and derived equivalences

Arnaud Beauville

Université de Nice

Banff, December 2008

Arnaud Beauville Algebraic cycles on K3 and derived equivalences

The canonical class in $CH^2(S)$

S K3 surface over
$$\mathbb{C}$$
. Chow ring $CH(S)$:
 $CH^0(S) = \mathbb{Z}$, $CH^1(S) = Pic(S)$, $CH^2(S)$ very large.

Theorem (Voisin, AB)

 $\exists c_S \in CH^2(S)$, deg $c_S = 1$, such that:

(i)
$$\operatorname{Pic}(S) \otimes \operatorname{Pic}(S) \longrightarrow \mathbb{Z} \cdot c_{S} \subset CH^{2}(S);$$

(ii) $c_2(S) = 24c_S$.

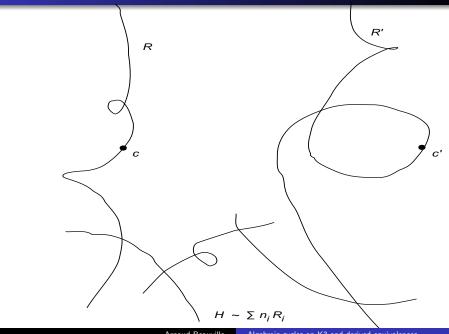
Proof of (i):

Key point : Any effective divisor on S is a sum of rational curves (Mumford; the curves are singular in general).

Pick up R rational curve and $c \in R$.

Claim : $[c] \in CH^2(S)$ independant of choices.

Proof of claim:



End of proof:

We want to prove: $D \cdot D' = \deg(D \cdot D') c_S$ for D, D' divisors on S.

By linearity, suffices to do it for D, D' rational curves: obvious.

Proof of (ii) much more involved: use 1-dimensional family of elliptic curves on S to get relations in $CH(S \times S)$.

Define $R(S) := \mathbb{Z} \oplus \operatorname{Pic}(S) \oplus \mathbb{Z} \cdot c_S$.

Equivalent formulation

There exists a subring R(S) of CH(S), containing $c_i(S)$, such that the cycle class map $CH(S) \to H^*_{alg}(S, \mathbb{Z})$ maps R(S)isomorphically onto $H^*_{alg}(S, \mathbb{Z})$.

Digression

I suspect this holds for every holomorphic symplectic manifold X.

Out of reach, but the following consequence is easier to check :

Conjecture

Any polynomial relation

$$P(\ell_1,\ldots,\ell_k;c_2(S),\ldots,c_n(S))=0$$
 in $H^*(X,\mathbb{Z})$

with $\ell_1, \ldots, \ell_k \in \operatorname{Pic}(X)$, already holds in CH(X).

This has been checked by C. Voisin for $X = S^{[n]}$ (the Hilbert scheme of length *n* subschemes of a K3 *S*) for $n \le 8$, and for X = variety of lines contained in a cubic fourfold.

Remark

For S K3 over $\overline{\mathbb{Q}}$, Beilinson conjectures imply CH(S) = R(S).

Reminder on derived categories

X smooth projective variety. D(X) = (bounded) derived category

of X (objects = bounded complexes of vector bundles).

We are interested in equivalences $D(X) \xrightarrow{\sim} D(Y)$. Recall:

Theorem (Bondal-Orlov)

Assume K_X or $-K_X$ ample.

(i) If $D(X) \cong D(Y)$, $X \cong Y$.

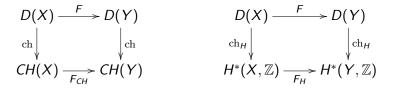
(ii) The group $\operatorname{Aut}(D(X))$ is generated by $\operatorname{Aut}(X)$, the shift, and $\operatorname{Pic}(X)$ acting by $E \mapsto E \otimes L$.

Much more interesting when K_X trivial, in particular X K3:

- There are non-isomorphic K3 X, S with $D(X) \cong D(S)$;
- The group Aut(D(X)) is large.

Huybrechts' theorem

FACT : An equivalence $F : D(X) \xrightarrow{\sim} D(Y)$ induces



(Experts rather use the *Mukai vector* $v_X(E) := \operatorname{Todd}_X^{1/2} \cdot \operatorname{ch}(E)$; irrelevant for our purpose.)

Theorem (Huybrechts)

X, S K3 with Picard number \geq 2, F : $D(X) \xrightarrow{\sim} D(S) \implies$

 F_{CH} maps R(X) onto R(S).

(The result should hold with no restriction on the Picard number.)

- *F_{CH}(R(X))* is spanned by ch(*E*) for certain objects *E* in *D(S)*, called spherical.
- **2** $F_{CH}(R(X))$ is spanned by ch(E) for E spherical vector bundle.
- So For Pic(S) = Z, the Lazarsfeld bundles F_{C,A} on S are spherical; check ch(F_{C,A}) ∈ R(S).
- For $\operatorname{rk}\operatorname{Pic}(S) \ge 2$, deduce the result by specialization.

F_{CH}(R(X)) is spanned by ch(*E*) for certain objects *E* in *D(S)*, called spherical.

Observation : R(X) spanned by ch(L) for $L \in Pic(X)$, hence $F_{CH}(R(X))$ is spanned by $F_{CH}(L) = ch(F(L))$. What do we know about F(L)? It is spherical :

$$E \in D(X) \text{ spherical if } \left\{ egin{array}{l} \operatorname{Ext}^i(E,E) = 0 \ ext{for } i
eq 0,2, \ \ \operatorname{Ext}^0(E,E) = \operatorname{Ext}^2(E,E) = \mathbb{C} \end{array}
ight.$$

Spherical objects in D(X) are poorly understood, but :

• A vector bundle is spherical iff it is simple and rigid.

$$L \in \operatorname{Pic}(X)$$
 is spherical, hence also $F(L)$.

• $F_{CH}(R(X))$ is spanned by ch(E) for E spherical vector bundle.

Key ingredient:

Theorem

$$F, G: D(X) \xrightarrow{\sim} D(S) , F_H = G_H \Rightarrow F_{CH} = G_{CH} .$$

Compare with Bloch's conjecture : $\Gamma, \Delta \in CH^2(X \times S)$,

$$\Gamma_* = \Delta_* \text{ on } H^{2,0}(X) \Rightarrow \Gamma_* = \Delta_* \text{ on } CH^2(X)_{deg=0}.$$

The proof uses formal deformation to the general non-algebraic case.

Corollary (not immediate)

 $E, E' \in D(X)$ spherical, $\operatorname{ch}_H(E) = \operatorname{ch}_H(E') \Rightarrow \operatorname{ch}(E) = \operatorname{ch}(E').$

Step 2, continued

Want to prove: $E \in D(S)$ spherical \Rightarrow ch $(E) \in R(S)$.

Define quadratic form q on $H^*(S,\mathbb{Z})$ by

$$q(r, \alpha, s) = \alpha^2 - 2r(r+s)$$
 (Mukai pairing)

For $E \in D(S)$ spherical, Riemann-Roch \rightsquigarrow

$$q(\operatorname{ch}_{H}(E)) = -\chi(\operatorname{\mathcal{E}nd}(E)) = -2$$
.

Theorem (Kuleshov)

For $\xi \in H^*_{alg}(S, \mathbb{Z})$ with $q(\xi) = -2$, there exists F spherical vector bundle with $ch_H(F) = \xi$.

Apply to $\xi = \operatorname{ch}_H(E) \rightsquigarrow F$ spherical vector bundle with $\operatorname{ch}_H(E) = \operatorname{ch}_H(F) \Rightarrow \operatorname{ch}(E) = \operatorname{ch}(F)$ by Corollary. So it suffices to prove $\operatorname{ch}(F) \in R(S)$ for each spherical v.b. F.

Step 3: the Lazarsfeld bundles

For Pic(X) =, the Lazarsfeld bundles F_{C,A} on S are spherical; check ch(F_{C,A}) ∈ R(S).

S K3, $i: C \hookrightarrow S$ smooth curve, A line bundle on C generated by $H^0(C, A)$. Define vector bundle $F_{C,A}$ on S by

$$0 \to F^*_{C,A} \longrightarrow H^0(C,A) \otimes \mathcal{O}_S \longrightarrow A \to 0$$
.

Then: $\operatorname{rk} F_{C,A} = h^0(A)$, $c_1(F_{C,A}) = [C]$, $c_2(F_{C,A}) = i_*[A]$, $\chi(\mathcal{E}nd(F)) = 2 - 2\rho(A)$ with $\rho(A) := g(C) - h^0(A)h^1(A)$ (*Brill-Noether number*)

Proposition (Lazarsfeld)

Assume $\operatorname{Pic}(S) = \mathbb{Z}[C]$ and $\rho(A) = 0$. Then $F_{C,A}$ is spherical.

Step 3, continued

Proposition

$$ch(F_{C,A}) \in R(S)$$
 (equivalently, $c_2(F_{C,A}) \in R(S)$).

Proof :

Dual sequence:
$$0 \to H^0(C, A)^* \otimes \mathcal{O}_S \to F_{C,A} \to \omega_C \otimes A^{-1} \to 0.$$

$$\mathcal{S} := \{ \text{subspaces } V \subset H^0(F_{C,A}), \dim V = h^0(A), V \otimes \mathcal{O}_S \stackrel{j}{\hookrightarrow} F_{C,A} \}$$

$$\mathsf{Map} \ \mathcal{S} \to |\mathcal{C}|, \ \mathcal{V} \mapsto \mathcal{C}_{\mathcal{V}} := \mathrm{Supp} \operatorname{Coker}(j);$$

 $c_2(F_{C,A})$ is supported on C_V .

Brill-Noether $\Rightarrow S \rightarrow |C|$ dominant, so C_V specializes to $R \in |C|$ rational, with $c_2(F_{C,A})$ supported on R, hence multiple of c_S .

Corollary

$$\operatorname{Pic}(S) = \mathbb{Z}[C], E \text{ spherical bundle with } c_1(E) = [C] \Rightarrow \operatorname{ch}(E) \in R(S).$$

Proof :

Put
$$\operatorname{ch}_H(E) = (r, C, s); \ q(r, C, s) = -2 \Leftrightarrow r(r+s) = g(C).$$

By B-N theory there exists A on C with $h^0(A) = r$, $h^1(A) = r + s$

$$\Rightarrow \operatorname{ch}_{H}(F_{C,A}) = (r, C, s) = \operatorname{ch}_{H}(E), \text{ hence } \operatorname{ch}(E) = \operatorname{ch}(F_{C,A})$$

(Step 2) and $\operatorname{ch}(E) \in R(S)$.

• For $\operatorname{rk}\operatorname{Pic}(S) \geq 2$, deduce the result by specialization.

Want to prove : *E* spherical bundle \Rightarrow ch(*E*) \in *R*(*S*).

1) Assume $H := \det E$ primitive and ample. Deform (S, H) to (S_{η}, H_{η}) with $\operatorname{Pic}(S_{\eta}) = \mathbb{Z}[H_{\eta}].$

Deformation theory \Rightarrow *E* extends to E_η spherical bundle on S_η

Obstruction lies in
$$H^2(\mathcal{E}nd(E)) \xrightarrow[Tr]{}{\sim} H^2(\mathcal{O}_S)$$

= obstruction to deform det(E)
= 0.

 $\operatorname{ch}(E_\eta) \in R(S_\eta)$ by Step 3 \Rightarrow $\operatorname{ch}(E) \in R(S)$.

2) General case (with $\operatorname{rk}\operatorname{Pic}(S) \ge 2$). Write $\operatorname{ch}_{H}(E) = (r, kL, s)$ with L primitive in $\operatorname{Pic}(S)$.

$$q(r, kL, s) = k^2 L^2 - 2r(r+s) = -2 \implies (k, r) = 1$$
.

Pick $M \in \text{Pic}(S)$ primitive, $\neq L^j$, sufficiently ample. Then kL + rM primitive and ample, so $\operatorname{ch}(E \otimes M) \in R(S)$ by 1).

THE END