Non-abelian theta functions and the theta map

Arnaud Beauville

Université de Nice

Berkeley, April 2009

Abelian theta functions

C curve ($=$ Riemann surface) of genus g.

Abelian theta functions

C curve (= Riemann surface) of genus g. Topologically, line bundles on C are classified by the degree $\operatorname{deg} L \in \mathbb{Z}$.

Abelian theta functions

C curve (= Riemann surface) of genus g. Topologically, line bundles on C are classified by the degree $\operatorname{deg} L \in \mathbb{Z}$. $J^{d}:=\{$ isom. classes of line bundles of degree d on $C\} \cong$

Abelian theta functions

C curve (= Riemann surface) of genus g. Topologically, line bundles on C are classified by the degree $\operatorname{deg} L \in \mathbb{Z}$. $J^{d}:=\{$ isom. classes of line bundles of degree d on $C\} \cong$ $J^{0}=$ the Jacobian of $C \cong$ complex torus \mathbb{C}^{g} / Γ

Abelian theta functions

C curve (= Riemann surface) of genus g. Topologically, line bundles on C are classified by the degree $\operatorname{deg} L \in \mathbb{Z}$. $J^{d}:=\{$ isom. classes of line bundles of degree d on $C\} \cong$ $J^{0}=$ the Jacobian of $C \cong$ complex torus \mathbb{C}^{g} / Γ

We will focus on $J:=J^{g-1}$.

Abelian theta functions

C curve (= Riemann surface) of genus g. Topologically, line bundles on C are classified by the degree $\operatorname{deg} L \in \mathbb{Z}$. $J^{d}:=\{$ isom. classes of line bundles of degree d on $C\} \cong$ $J^{0}=$ the Jacobian of $C \cong$ complex torus \mathbb{C}^{g} / Γ

We will focus on $J:=J^{g-1}$.

$$
\Theta:=\left\{L \in J \mid H^{0}(L) \neq 0\right\} \text { hypersurface in } J \text { (theta divisor). }
$$

Abelian theta functions

C curve (= Riemann surface) of genus g. Topologically, line bundles on C are classified by the degree $\operatorname{deg} L \in \mathbb{Z}$. $J^{d}:=\{$ isom. classes of line bundles of degree d on $C\} \cong$ $J^{0}=$ the Jacobian of $C \cong$ complex torus \mathbb{C}^{g} / Γ

We will focus on $J:=J^{g-1}$.

$$
\Theta:=\left\{L \in J \mid H^{0}(L) \neq 0\right\} \text { hypersurface in } J \text { (theta divisor). }
$$

Definition

$\{$ theta functions of order $k\}:=H^{0}\left(J, \mathcal{O}_{J}(k \Theta)\right)$

Abelian theta functions

C curve (= Riemann surface) of genus g. Topologically, line bundles on C are classified by the degree $\operatorname{deg} L \in \mathbb{Z}$.
$J^{d}:=\{$ isom. classes of line bundles of degree d on $C\} \cong$
$J^{0}=$ the Jacobian of $C \cong$ complex torus \mathbb{C}^{g} / Γ
We will focus on $J:=J^{g-1}$.

$$
\Theta:=\left\{L \in J \mid H^{0}(L) \neq 0\right\} \text { hypersurface in } J \text { (theta divisor). }
$$

Definition

$\{$ theta functions of order $k\}:=H^{0}\left(J, \mathcal{O}_{J}(k \Theta)\right)$
$=\{$ meromorphic functions on J with poles $\leq k \Theta\} ;$

Abelian theta functions

C curve (= Riemann surface) of genus g. Topologically, line bundles on C are classified by the degree $\operatorname{deg} L \in \mathbb{Z}$.
$J^{d}:=\{$ isom. classes of line bundles of degree d on $C\} \cong$
$J^{0}=$ the Jacobian of $C \cong$ complex torus \mathbb{C}^{g} / Γ
We will focus on $J:=J^{g-1}$.

$$
\Theta:=\left\{L \in J \mid H^{0}(L) \neq 0\right\} \text { hypersurface in } J \text { (theta divisor). }
$$

Definition

\{theta functions of order $k\}:=H^{0}\left(J, \mathcal{O}_{J}(k \Theta)\right)$
$=\{$ meromorphic functions on J with poles $\leq k \Theta\} ;$
line bundles trivial on $\mathbb{C}^{g} \Rightarrow$ theta functions lift to functions on \mathbb{C}^{g}, quasi-periodic w.r.t. 「.

Algebro-geometric properties

Algebro-geometric properties

Notation: for L line bundle on a variety X,

$$
|L|:=\mathbb{P}\left(H^{0}(X, L)\right)=\left\{\text { effective divisors } D \text { s.t. } \mathcal{O}_{X}(D) \cong L\right\}
$$

Algebro-geometric properties

Notation: for L line bundle on a variety X,

$$
|L|:=\mathbb{P}\left(H^{0}(X, L)\right)=\left\{\text { effective divisors } D \text { s.t. } \mathcal{O}_{X}(D) \cong L\right\}
$$

Rational map $\varphi_{L}: X \rightarrow|L|^{*}$ associated to L.

Algebro-geometric properties

Notation: for L line bundle on a variety X,

$$
|L|:=\mathbb{P}\left(H^{0}(X, L)\right)=\left\{\text { effective divisors } D \text { s.t. } \mathcal{O}_{X}(D) \cong L\right\}
$$

Rational map $\varphi_{L}: X \rightarrow|L|^{*}$ associated to L.
Back to theta functions:

Algebro-geometric properties

Notation: for L line bundle on a variety X,

$$
|L|:=\mathbb{P}\left(H^{0}(X, L)\right)=\left\{\text { effective divisors } D \text { s.t. } \mathcal{O}_{X}(D) \cong L\right\}
$$

Rational map $\varphi_{L}: X \rightarrow|L|^{*}$ associated to L.
Back to theta functions:
$\operatorname{dim} H^{0}(J, \mathcal{O} J(k \Theta))=k^{g} ;$

Algebro-geometric properties

Notation: for L line bundle on a variety X,

$$
|L|:=\mathbb{P}\left(H^{0}(X, L)\right)=\left\{\text { effective divisors } D \text { s.t. } \mathcal{O}_{X}(D) \cong L\right\}
$$

Rational map $\varphi_{L}: X \rightarrow|L|^{*}$ associated to L.
Back to theta functions:
$\operatorname{dim} H^{0}(J, \mathcal{O} J(k \Theta))=k^{g}$;
$\varphi_{k \Theta}: J \rightarrow|k \Theta|$ embedding for $k \geq 3$;

Algebro-geometric properties

Notation: for L line bundle on a variety X,

$$
|L|:=\mathbb{P}\left(H^{0}(X, L)\right)=\left\{\text { effective divisors } D \text { s.t. } \mathcal{O}_{X}(D) \cong L\right\}
$$

Rational map $\varphi_{L}: X \rightarrow|L|^{*}$ associated to L.
Back to theta functions:
$\operatorname{dim} H^{0}(J, \mathcal{O} J(k \Theta))=k^{g} ;$
$\varphi_{k \Theta}: J \rightarrow|k \Theta|$ embedding for $k \geq 3$;
for $k=2, \varphi_{2 \Theta}: J \rightarrow J / i:=K(J) \longleftrightarrow|2 \Theta|, \quad i: L \mapsto K \otimes L^{-1}$.

Algebro-geometric properties

Notation: for L line bundle on a variety X,

$$
|L|:=\mathbb{P}\left(H^{0}(X, L)\right)=\left\{\text { effective divisors } D \text { s.t. } \mathcal{O}_{X}(D) \cong L\right\}
$$

Rational map $\varphi_{L}: X \rightarrow|L|^{*}$ associated to L.
Back to theta functions: $\operatorname{dim} H^{0}(J, \mathcal{O} J(k \Theta))=k^{g}$;
$\varphi_{k \Theta}: J \rightarrow|k \Theta|$ embedding for $k \geq 3$;
for $k=2, \varphi_{2 \Theta}: J \rightarrow J / i:=K(J) \longleftrightarrow|2 \Theta|, \quad i: L \mapsto K \otimes L^{-1}$.
Gives explicit description of J as submanifold of \mathbb{P}^{N}; much is known about its equations, geometry etc.

Non-abelian theta functions

Non-abelian theta functions

Line bundles $\leftrightarrow \mathbb{C}^{*}$-bundles; replace \mathbb{C}^{*} by arbitrary semi-simple algebraic group G.

Non-abelian theta functions

Line bundles $\leftrightarrow \mathbb{C}^{*}$-bundles; replace \mathbb{C}^{*} by arbitrary semi-simple algebraic group G.

$$
\mathcal{M}_{G}:=\text { moduli space of (semi-stable) } G \text {-bundles on } C \text {. }
$$

Non-abelian theta functions

Line bundles $\leftrightarrow \mathbb{C}^{*}$-bundles; replace \mathbb{C}^{*} by arbitrary semi-simple algebraic group G.

$$
\mathcal{M}_{G}:=\text { moduli space of (semi-stable) } G \text {-bundles on } C \text {. }
$$

(For classical groups, G-bundle $=$ vector bundle $E+$ quadratic or symplectic form;

Non-abelian theta functions

Line bundles $\leftrightarrow \mathbb{C}^{*}$-bundles; replace \mathbb{C}^{*} by arbitrary semi-simple algebraic group G.

$$
\mathcal{M}_{G}:=\text { moduli space of (semi-stable) } G \text {-bundles on } C \text {. }
$$

(For classical groups, G-bundle $=$ vector bundle $E+$ quadratic or symplectic form; semi-stable $\Leftrightarrow E$ semi-stable)

Non-abelian theta functions

Line bundles $\leftrightarrow \mathbb{C}^{*}$-bundles; replace \mathbb{C}^{*} by arbitrary semi-simple algebraic group G.

$$
\mathcal{M}_{G}:=\text { moduli space of (semi-stable) } G \text {-bundles on } C \text {. }
$$

(For classical groups, G-bundle $=$ vector bundle $E+$ quadratic or symplectic form; semi-stable $\Leftrightarrow E$ semi-stable)

Important Fact $: \operatorname{Pic}\left(\mathcal{M}_{G}\right)=\mathbb{Z}\left[\mathcal{L}_{G}\right], \mathcal{L}_{G}$ determinant bundle

Non-abelian theta functions

Line bundles $\leftrightarrow \mathbb{C}^{*}$-bundles; replace \mathbb{C}^{*} by arbitrary semi-simple algebraic group G.

$$
\mathcal{M}_{G}:=\text { moduli space of (semi-stable) } G \text {-bundles on } C \text {. }
$$

(For classical groups, G-bundle $=$ vector bundle $E+$ quadratic or symplectic form; semi-stable $\Leftrightarrow E$ semi-stable)

Important Fact $: \operatorname{Pic}\left(\mathcal{M}_{G}\right)=\mathbb{Z}\left[\mathcal{L}_{G}\right], \mathcal{L}_{G}$ determinant bundle G-theta functions of level $k:=$ elements of $H^{0}\left(\mathcal{M}_{G}, \mathcal{L}^{k}\right)$

Relation with physics

Relation with physics

These spaces appear in math. physics, in (at least) 2 ways :

Relation with physics

These spaces appear in math. physics, in (at least) 2 ways :
(1) In topological quantum field theory: $H^{0}\left(\mathcal{M}_{G}, \mathcal{L}^{k}\right)$ depends essentially only on the topology of $C ; C \mapsto H^{0}\left(\mathcal{M}_{G}, \mathcal{L}^{k}\right)$ should be a TQFT in the sense of Atiyah.

Relation with physics

These spaces appear in math. physics, in (at least) 2 ways :
(1) In topological quantum field theory: $H^{0}\left(\mathcal{M}_{G}, \mathcal{L}^{k}\right)$ depends essentially only on the topology of $C ; C \mapsto H^{0}\left(\mathcal{M}_{G}, \mathcal{L}^{k}\right)$ should be a TQFT in the sense of Atiyah.
(2) In conformal field theory: $C \mapsto H^{0}\left(\mathcal{M}_{G}, \mathcal{L}^{k}\right)$ is the space of conformal blocks for the Wess-Zumino-Witten model.

Relation with physics

These spaces appear in math. physics, in (at least) 2 ways :
(1) In topological quantum field theory: $H^{0}\left(\mathcal{M}_{G}, \mathcal{L}^{k}\right)$ depends essentially only on the topology of $C ; C \mapsto H^{0}\left(\mathcal{M}_{G}, \mathcal{L}^{k}\right)$ should be a TQFT in the sense of Atiyah.
(2) In conformal field theory: $C \mapsto H^{0}\left(\mathcal{M}_{G}, \mathcal{L}^{k}\right)$ is the space of conformal blocks for the Wess-Zumino-Witten model.

Mathematical consequences :

Relation with physics

These spaces appear in math. physics, in (at least) 2 ways :
(1) In topological quantum field theory: $H^{0}\left(\mathcal{M}_{G}, \mathcal{L}^{k}\right)$ depends essentially only on the topology of $C ; C \mapsto H^{0}\left(\mathcal{M}_{G}, \mathcal{L}^{k}\right)$ should be a TQFT in the sense of Atiyah.
(2) In conformal field theory: $C \mapsto H^{0}\left(\mathcal{M}_{G}, \mathcal{L}^{k}\right)$ is the space of conformal blocks for the Wess-Zumino-Witten model.

Mathematical consequences :

(1) : when C varies, the $H^{0}\left(\mathcal{M}_{G}, \mathcal{L}^{k}\right)$ form a projectively flat vector bundle on the moduli space \mathcal{M}_{g} (Hitchin connection).

Relation with physics

These spaces appear in math. physics, in (at least) 2 ways :
(1) In topological quantum field theory: $H^{0}\left(\mathcal{M}_{G}, \mathcal{L}^{k}\right)$ depends essentially only on the topology of $C ; C \mapsto H^{0}\left(\mathcal{M}_{G}, \mathcal{L}^{k}\right)$ should be a TQFT in the sense of Atiyah.
(2) In conformal field theory: $C \mapsto H^{0}\left(\mathcal{M}_{G}, \mathcal{L}^{k}\right)$ is the space of conformal blocks for the Wess-Zumino-Witten model.

Mathematical consequences :

(1) : when C varies, the $H^{0}\left(\mathcal{M}_{G}, \mathcal{L}^{k}\right)$ form a projectively flat vector bundle on the moduli space \mathcal{M}_{g} (Hitchin connection). In other words, $H^{0}\left(\mathcal{M}_{G}, \mathcal{L}^{k}\right)$ carries a (projective) representation of the modular group $\Gamma_{g}=\pi_{1}\left(\mathcal{M}_{g}\right)$.
(2) gives the Verlinde formula for $\operatorname{dim} H^{0}\left(\mathcal{M}_{G}, \mathcal{L}^{k}\right)$: for $G=S L(r)$:
(2) gives the Verlinde formula for $\operatorname{dim} H^{0}\left(\mathcal{M}_{G}, \mathcal{L}^{k}\right)$: for $G=S L(r)$:

$$
\operatorname{dim} H^{0}\left(\mathcal{M}_{S L(r)}, \mathcal{L}^{k}\right)=\left(\frac{r}{r+k}\right)^{g} \sum_{\substack{s \in[\mid, r+k] \\|s|=r}} \prod_{\substack{s \in S \\ t \notin S}}\left|2 \sin \pi \frac{s-t}{r+k}\right|^{g-1} .
$$

(2) gives the Verlinde formula for $\operatorname{dim} H^{0}\left(\mathcal{M}_{G}, \mathcal{L}^{k}\right)$: for $G=S L(r)$:

$$
\operatorname{dim} H^{0}\left(\mathcal{M}_{S L(r)}, \mathcal{L}^{k}\right)=\left(\frac{r}{r+k}\right)^{g} \sum_{\substack{s \in[1, r+k] \\|S|=r}} \prod_{\substack{s \in S \\ t \notin S}}\left|2 \sin \pi \frac{s-t}{r+k}\right|^{g-1}
$$

(many mathematical proofs by now.)
(2) gives the Verlinde formula for $\operatorname{dim} H^{0}\left(\mathcal{M}_{G}, \mathcal{L}^{k}\right)$: for $G=S L(r)$:

$$
\operatorname{dim} H^{0}\left(\mathcal{M}_{S L(r)}, \mathcal{L}^{k}\right)=\left(\frac{r}{r+k}\right)^{g} \sum_{\substack{s \in[1, r+k] \\|S|=r}} \prod_{\substack{s \in S \\ t \notin S}}\left|2 \sin \pi \frac{s-t}{r+k}\right|^{g-1}
$$

(many mathematical proofs by now.)

Aim of the talk: understand \mathcal{L} and $H^{0}\left(\mathcal{M}_{G}, \mathcal{L}\right)$, in particular, the theta map $\varphi_{\mathcal{L}}: \mathcal{M}_{G-->|\mathcal{L}|^{*} .}$

$G=S L(r)$

$G=S L(r)$

$$
\mathcal{M}_{S L(r)}=\left\{E \text { (semi-stable) rank } r \mid \operatorname{det} E=\mathcal{O}_{C}\right\}
$$

$G=S L(r)$

$$
\mathcal{M}_{S L(r)}=\left\{E \text { (semi-stable) rank } r \mid \operatorname{det} E=\mathcal{O}_{C}\right\}
$$

(semi-stable: every $E^{\prime} \subset E$ has degree ≤ 0.)

$G=S L(r)$

$$
\mathcal{M}_{S L(r)}=\left\{E \text { (semi-stable) rank } r \mid \operatorname{det} E=\mathcal{O}_{C}\right\}
$$

(semi-stable: every $E^{\prime} \subset E$ has degree ≤ 0.)
Key construction : associate to $E \in \mathcal{M}_{S L(r)}$ a divisor on J

$G=S L(r)$

$$
\mathcal{M}_{S L(r)}=\left\{E \text { (semi-stable) rank } r \mid \operatorname{det} E=\mathcal{O}_{C}\right\}
$$

(semi-stable: every $E^{\prime} \subset E$ has degree ≤ 0.)
Key construction : associate to $E \in \mathcal{M}_{S L(r)}$ a divisor on J

$$
\Theta_{E}:=\left\{L \in J \mid H^{0}(C, E \otimes L) \neq 0\right\}
$$

$G=S L(r)$

$$
\mathcal{M}_{S L(r)}=\left\{E \text { (semi-stable) rank } r \mid \operatorname{det} E=\mathcal{O}_{C}\right\}
$$

(semi-stable: every $E^{\prime} \subset E$ has degree ≤ 0.)
Key construction : associate to $E \in \mathcal{M}_{S L(r)}$ a divisor on J

$$
\Theta_{E}:=\left\{L \in J \mid H^{0}(C, E \otimes L) \neq 0\right\}
$$

- either Θ_{E} is a hypersurface in J; then $\Theta_{E} \in|r \Theta|$,

$G=S L(r)$

$$
\mathcal{M}_{S L(r)}=\left\{E \text { (semi-stable) rank } r \mid \operatorname{det} E=\mathcal{O}_{C}\right\}
$$

(semi-stable: every $E^{\prime} \subset E$ has degree ≤ 0.)
Key construction : associate to $E \in \mathcal{M}_{S L(r)}$ a divisor on J

$$
\Theta_{E}:=\left\{L \in J \mid H^{0}(C, E \otimes L) \neq 0\right\}
$$

- either Θ_{E} is a hypersurface in J; then $\Theta_{E} \in|r \Theta|$,
- or $\Theta_{E}=J: E$ has no Theta divisor.

$G=S L(r)$

$$
\mathcal{M}_{S L(r)}=\left\{E \text { (semi-stable) rank } r \mid \operatorname{det} E=\mathcal{O}_{C}\right\}
$$

(semi-stable: every $E^{\prime} \subset E$ has degree ≤ 0.)
Key construction : associate to $E \in \mathcal{M}_{S L(r)}$ a divisor on J

$$
\Theta_{E}:=\left\{L \in J \mid H^{0}(C, E \otimes L) \neq 0\right\}
$$

- either Θ_{E} is a hypersurface in J; then $\Theta_{E} \in|r \Theta|$,
- or $\Theta_{E}=J: E$ has no Theta divisor.

Thus get map $\theta: \mathcal{M}_{S L(r)}-->|r \Theta|, \theta(E)=\Theta_{E}$.

Theorem (Narasimhan, Ramanan, AB)

Theorem (Narasimhan, Ramanan, AB)

i.e. up to isomorphism, θ is the theta map.

Theorem (Narasimhan, Ramanan, AB)

i.e. up to isomorphism, θ is the theta map.

In particular $\quad H^{0}\left(\mathcal{M}_{S L(r)}, \mathcal{L}\right) \xrightarrow{\sim} H^{0}\left(J, \mathcal{O}_{J}(r \Theta)\right)^{*}$.

BNR

Theorem (Narasimhan, Ramanan, AB)

i.e. up to isomorphism, θ is the theta map.

In particular $\quad H^{0}\left(\mathcal{M}_{S L(r)}, \mathcal{L}\right) \xrightarrow{\sim} H^{0}\left(J, \mathcal{O}_{J}(r \Theta)\right)^{*}$.

Consequence :
Indeterminacy locus of $\theta=\mathrm{Bs}|\mathcal{L}|=\left\{E \in \mathcal{M}_{S L(r)} \mid \Theta_{E}=J\right\}$.

BNR

Theorem (Narasimhan, Ramanan, AB)

i.e. up to isomorphism, θ is the theta map.

In particular $\quad H^{0}\left(\mathcal{M}_{S L(r)}, \mathcal{L}\right) \xrightarrow{\sim} H^{0}\left(J, \mathcal{O}_{J}(r \Theta)\right)^{*}$.

Consequence :
Indeterminacy locus of $\theta=\operatorname{Bs}|\mathcal{L}|=\left\{E \in \mathcal{M}_{S L(r)} \mid \Theta_{E}=J\right\}$.
Examples first constructed by Raynaud, exist for $r \geq 4$ in any genus (Pauly).

BNR

Theorem (Narasimhan, Ramanan, AB)

i.e. up to isomorphism, θ is the theta map.

In particular $\quad H^{0}\left(\mathcal{M}_{S L(r)}, \mathcal{L}\right) \xrightarrow{\sim} H^{0}\left(J, \mathcal{O}_{J}(r \Theta)\right)^{*}$.

Consequence :
Indeterminacy locus of $\theta=\operatorname{Bs}|\mathcal{L}|=\left\{E \in \mathcal{M}_{S L(r)} \mid \Theta_{E}=J\right\}$.
Examples first constructed by Raynaud, exist for $r \geq 4$ in any genus (Pauly). One of the major difficulties in the study of θ.

$G=S L(2)$

Theorem

$G=S L(2)$

Theorem

- For $g=2, \theta: \mathcal{M}_{S L(2)} \xrightarrow{\sim}|2 \Theta|$ (Narasimhan-Ramanan)

$G=S L(2)$

Theorem

- For $g=2, \theta: \mathcal{M}_{S L(2)} \xrightarrow{\sim}|2 \Theta|$ (Narasimhan-Ramanan)
- For $g \geq 3, C$ non hyperelliptic, $\theta: \mathcal{M}_{S L(2)} \longleftrightarrow|2 \Theta|$ (Brivio-Verra + van Geemen-Izadi)

$G=S L(2)$

Theorem

- For $g=2, \theta: \mathcal{M}_{S L(2)} \xrightarrow{\sim}|2 \Theta|$ (Narasimhan-Ramanan)
- For $g \geq 3, C$ non hyperelliptic, $\theta: \mathcal{M}_{S L(2)} \longleftrightarrow|2 \Theta|$ (Brivio-Verra + van Geemen-Izadi)
- For $g \geq 3, C$ hyperelliptic, θ 2-to-1 onto explicit subvariety of $|2 \Theta|$ (Bhosle-Ramanan).

$G=S L(2)$

Theorem

- For $g=2, \theta: \mathcal{M}_{S L(2)} \xrightarrow{\sim}|2 \Theta|$ (Narasimhan-Ramanan)
- For $g \geq 3, C$ non hyperelliptic, $\theta: \mathcal{M}_{S L(2)} \longleftrightarrow|2 \Theta|$ (Brivio-Verra + van Geemen-Izadi)
- For $g \geq 3, C$ hyperelliptic, θ 2-to- 1 onto explicit subvariety of $|2 \Theta|$ (Bhosle-Ramanan).

Example (Narasimhan-Ramanan)

$g=3, C$ non hyperelliptic: $\mathcal{M}_{S L(2)}$ quartic hypersurface
$\mathcal{Q} \subset|2 \Theta| \cong \mathbb{P}^{7}$,

$G=S L(2)$

Theorem

- For $g=2, \theta: \mathcal{M}_{S L(2)} \xrightarrow{\sim}|2 \Theta|$ (Narasimhan-Ramanan)
- For $g \geq 3, C$ non hyperelliptic, $\theta: \mathcal{M}_{S L(2)} \longleftrightarrow|2 \Theta|$ (Brivio-Verra + van Geemen-Izadi)
- For $g \geq 3, C$ hyperelliptic, θ 2-to-1 onto explicit subvariety of $|2 \Theta|$ (Bhosle-Ramanan).

Example (Narasimhan-Ramanan)

$g=3, C$ non hyperelliptic: $\mathcal{M}_{S L(2)}$ quartic hypersurface
$\mathcal{Q} \subset|2 \Theta| \cong \mathbb{P}^{7}$,singular along the Kummer variety $K(J) \Longrightarrow$

$G=S L(2)$

Theorem

- For $g=2, \theta: \mathcal{M}_{S L(2)} \xrightarrow{\sim}|2 \Theta|$ (Narasimhan-Ramanan)
- For $g \geq 3, C$ non hyperelliptic, $\theta: \mathcal{M}_{S L(2)} \longleftrightarrow|2 \Theta|$ (Brivio-Verra + van Geemen-Izadi)
- For $g \geq 3, C$ hyperelliptic, θ 2-to- 1 onto explicit subvariety of $|2 \Theta|$ (Bhosle-Ramanan).

Example (Narasimhan-Ramanan)

$g=3, C$ non hyperelliptic: $\mathcal{M}_{S L(2)}$ quartic hypersurface
$\mathcal{Q} \subset|2 \Theta| \cong \mathbb{P}^{7}$,singular along the Kummer variety $K(J) \Longrightarrow$
\mathcal{Q} is the Coble quartic.

$G=S L(r), g(C)=2$

$G=S L(r), g(C)=2$

In genus 2, $\operatorname{dim} \mathcal{M}_{S L(r)}=\operatorname{dim}|r \Theta|=r^{2}-1$.

$G=S L(r), g(C)=2$

In genus 2, $\operatorname{dim} \mathcal{M}_{S L(r)}=\operatorname{dim}|r \Theta|=r^{2}-1$.

Proposition

For $g=2, \theta$ is generically finite.

$G=S L(r), g(C)=2$

In genus 2, $\operatorname{dim} \mathcal{M}_{S L(r)}=\operatorname{dim}|r \Theta|=r^{2}-1$.

Proposition

For $g=2, \theta$ is generically finite.
Note : θ is not a morphism for $r \geq 4$; some fibres have dimension $\geq\left[\frac{r}{2}\right]-1$.

$G=S L(r), g(C)=2$

In genus 2, $\operatorname{dim} \mathcal{M}_{S L(r)}=\operatorname{dim}|r \Theta|=r^{2}-1$.

Proposition

For $g=2, \theta$ is generically finite.
Note : θ is not a morphism for $r \geq 4$; some fibres have dimension $\geq\left[\frac{r}{2}\right]-1$.

Example (Ortega)

$(g=2) \theta: \mathcal{M}_{S L(3)} \rightarrow|3 \Theta| \cong \mathbb{P}^{8}$ is a double covering, branched along a sextic hypersurface $\mathcal{S} \subset|3 \Theta|$.

$G=S L(r), g(C)=2$

In genus 2, $\operatorname{dim} \mathcal{M}_{S L(r)}=\operatorname{dim}|r \Theta|=r^{2}-1$.

Proposition

For $g=2, \theta$ is generically finite.
Note : θ is not a morphism for $r \geq 4$; some fibres have dimension $\geq\left[\frac{r}{2}\right]-1$.

Example (Ortega)

$(g=2) \theta: \mathcal{M}_{S L(3)} \rightarrow|3 \Theta| \cong \mathbb{P}^{8}$ is a double covering, branched along a sextic hypersurface $\mathcal{S} \subset|3 \Theta|$.
$\mathcal{S}^{*} \subset|3 \Theta|^{*}$ is the Coble cubic, the unique cubic hypersurface in $|3 \Theta|^{*}$ singular along the image of J.

$S O(r)$ versus $O(r)$

$S O(r)$ versus $O(r)$

$\mathcal{M}_{O(r)} \cong\left\{(E, q) \mid E\right.$ semi-stable $r k r, q: \operatorname{Sym}^{2} E \rightarrow \mathcal{O}_{C}$ non-deg. $\}$

$S O(r)$ versus $O(r)$

$\mathcal{M}_{O(r)} \cong\left\{(E, q) \mid E\right.$ semi-stable $r k r, q: \operatorname{Sym}^{2} E \rightarrow \mathcal{O}_{C}$ non-deg. $\}$

$$
\left.\mathcal{M}_{S O(r)} \cong\left\{(E, q, \omega) \mid(E, q) \in \mathcal{M}_{O(r)}, \omega \in H^{0}\left(C, \wedge^{r} E\right), q(\omega)=1\right)\right\}
$$

$S O(r)$ versus $O(r)$

$\mathcal{M}_{O(r)} \cong\left\{(E, q) \mid E\right.$ semi-stable rk $r, q: \operatorname{Sym}^{2} E \rightarrow \mathcal{O}_{C}$ non-deg. $\}$
$\left.\mathcal{M}_{S O(r)} \cong\left\{(E, q, \omega) \mid(E, q) \in \mathcal{M}_{O(r)}, \omega \in H^{0}\left(C, \wedge^{r} E\right), q(\omega)=1\right)\right\}$
Map $\mathcal{M}_{S O(r)} \rightarrow \mathcal{M}_{O(r)}^{\mathcal{O}}:=\left\{(E, q) \in \mathcal{M}_{O(r)} \mid \wedge^{r} E=\mathcal{O}_{C}\right\}$.

$S O(r)$ versus $O(r)$

$\mathcal{M}_{O(r)} \cong\left\{(E, q) \mid E\right.$ semi-stable rk $r, q: \operatorname{Sym}^{2} E \rightarrow \mathcal{O}_{C}$ non-deg. $\}$
$\left.\mathcal{M}_{S O(r)} \cong\left\{(E, q, \omega) \mid(E, q) \in \mathcal{M}_{O(r)}, \omega \in H^{0}\left(C, \wedge^{r} E\right), q(\omega)=1\right)\right\}$
Map $\mathcal{M}_{S O(r)} \rightarrow \mathcal{M}_{O(r)}^{\mathcal{O}}:=\left\{(E, q) \in \mathcal{M}_{O(r)} \mid \wedge^{r} E=\mathcal{O}_{C}\right\}$.

- For r odd, $-1 \in \operatorname{Aut}(E, q)$ exchanges ω and $-\omega \Rightarrow$

$$
\mathcal{M}_{S O(r)}^{\sim} \xrightarrow{\sim} \mathcal{M}_{O(r)}^{\mathcal{O}} .
$$

$S O(r)$ versus $O(r)$

$\mathcal{M}_{O(r)} \cong\left\{(E, q) \mid E\right.$ semi-stable rk $r, q: \operatorname{Sym}^{2} E \rightarrow \mathcal{O}_{C}$ non-deg. $\}$
$\left.\mathcal{M}_{S O(r)} \cong\left\{(E, q, \omega) \mid(E, q) \in \mathcal{M}_{O(r)}, \omega \in H^{0}\left(C, \wedge^{r} E\right), q(\omega)=1\right)\right\}$
Map $\mathcal{M}_{S O(r)} \rightarrow \mathcal{M}_{O(r)}^{\mathcal{O}}:=\left\{(E, q) \in \mathcal{M}_{O(r)} \mid \wedge^{r} E=\mathcal{O}_{C}\right\}$.

- For r odd, $-1 \in \operatorname{Aut}(E, q)$ exchanges ω and $-\omega \Rightarrow$

$$
\mathcal{M}_{S O(r)} \xrightarrow{\sim} \mathcal{M}_{O(r)}^{\mathcal{O}} .
$$

- For r even,

$$
\mathcal{M}_{S O(r)} \xrightarrow{2: 1} \mathcal{M}_{O(r)}^{\mathcal{O}} .
$$

Theorem (Serman)

The $\operatorname{map} \mathcal{M}_{O(r)} \rightarrow \mathcal{M}_{G L(r)}$ is an embedding.

Technical point: $O(r)$ versus $G L(r)$

Theorem (Serman)

The $\operatorname{map} \mathcal{M}_{O(r)} \rightarrow \mathcal{M}_{G L(r)}$ is an embedding.

Remarks

Technical point: $O(r)$ versus $G L(r)$

Theorem (Serman)

The $\operatorname{map} \mathcal{M}_{O(r)} \rightarrow \mathcal{M}_{G L(r)}$ is an embedding.

Remarks

(1) $\mathcal{M}_{S O(r)}$ has 2 components $\mathcal{M}_{S O(r)}^{ \pm}$, distinguished by the Stiefel-Whitney class $w_{2} \in\{ \pm 1\}$.

Technical point: $O(r)$ versus $G L(r)$

Theorem (Serman)

The $\operatorname{map} \mathcal{M}_{O(r)} \rightarrow \mathcal{M}_{G L(r)}$ is an embedding.

Remarks

(1) $\mathcal{M}_{S O(r)}$ has 2 components $\mathcal{M}_{S O(r)}^{ \pm}$, distinguished by the Stiefel-Whitney class $w_{2} \in\{ \pm 1\}$.
(2) For $(E, q) \in \mathcal{M}_{O(r)}, E \cong E^{*}$, hence $\Theta_{E}=\Theta_{E^{*}}=i^{*} \Theta_{E}$, where i is the involution $L \mapsto K \otimes L^{-1}$ of J.

Technical point: $O(r)$ versus $G L(r)$

Theorem (Serman)

The $\operatorname{map} \mathcal{M}_{O(r)} \rightarrow \mathcal{M}_{G L(r)}$ is an embedding.

Remarks

(1) $\mathcal{M}_{S O(r)}$ has 2 components $\mathcal{M}_{S O(r)}^{ \pm}$, distinguished by the Stiefel-Whitney class $w_{2} \in\{ \pm 1\}$.
(2) For $(E, q) \in \mathcal{M}_{O(r)}, E \cong E^{*}$, hence $\Theta_{E}=\Theta_{E^{*}}=i^{*} \Theta_{E}$, where i is the involution $L \mapsto K \otimes L^{-1}$ of J.

Thus $\Theta_{E} \in|r \Theta|^{+}$or $|r \Theta|^{-}$, the eigenspaces of i^{*} in $|r \Theta|$.

Theorem

$$
\begin{aligned}
& \mathcal{M}_{S O(r)}^{ \pm}-\theta_{-}^{\theta^{ \pm}}>|r \Theta|^{ \pm} \\
& \downarrow \\
& \mathcal{M}_{S L(r)}-{ }_{-}^{\theta} \rightarrow|r \Theta|
\end{aligned}
$$

Theorem

$$
\begin{aligned}
& \mathcal{M}_{S O(r)}^{ \pm}{ }^{-\theta_{-}^{ \pm}}>|r \Theta|^{ \pm} \\
& \downarrow \quad \downarrow \\
& \theta^{ \pm}=\text {theta map for } \mathcal{M}_{S O(r)}^{ \pm} \text {. } \\
& \mathcal{M}_{S L(r)}{ }^{-}{ }_{-}>|r \Theta|
\end{aligned}
$$

In particular, $\quad H^{0}\left(\mathcal{M}_{S O(r)}^{ \pm}, \mathcal{L}\right) \xrightarrow{\sim}\left(H^{0}\left(J, \mathcal{O}_{J}(r \Theta)\right)^{*}\right)^{ \pm}$.

$H^{0}\left(\mathcal{M}_{S O(r)}^{ \pm}, \mathcal{L}\right)$

Theorem

$$
\theta^{ \pm}=\text {theta map for } \mathcal{M}_{S O(r)}^{ \pm}
$$

In particular, $\quad H^{0}\left(\mathcal{M}_{S O(r)}^{ \pm}, \mathcal{L}\right) \xrightarrow{\sim}\left(H^{0}\left(J, \mathcal{O}_{J}(r \Theta)\right)^{*}\right)^{ \pm}$.
(Essential ingredient: Verlinde formula for $S O(r)$.)

$$
\begin{aligned}
& \mathcal{M}_{S O(r)}^{ \pm} \stackrel{\theta^{ \pm}}{-}|r \Theta|^{ \pm} \\
& \downarrow \quad \downarrow \\
& \mathcal{M}_{S L(r)}{ }^{-\theta}-|r \Theta|
\end{aligned}
$$

Example $(g=2, r=3)$

Example $(g=2, r=3)$

$$
\begin{aligned}
& \mathcal{M}_{S O(3)}^{-} \longleftrightarrow \mathcal{M}_{S L(3)} \longleftrightarrow \mathcal{M}_{S O(3)}^{+} \\
& \downarrow^{\theta^{-}} \quad \downarrow^{\theta} \quad \downarrow^{\theta^{+}} \\
& |3 \Theta|_{\left(\cong \mathbb{P}^{3}\right)}^{-} \longleftrightarrow|3 \Theta|_{\left(\cong \mathbb{P}^{8}\right)} \longleftarrow\left|3 \Theta^{+}\right|_{\left(\cong \mathbb{P}^{4}\right)} \longleftarrow \mathcal{Q} \\
& \mathcal{S}^{-}=\cup H_{p} \\
& \breve{\mathcal{S}}
\end{aligned}
$$

Example $(g=2, r=3)$

$$
\begin{aligned}
& \mathcal{M}_{S O(3)}^{-} \longleftrightarrow \mathcal{M}_{S L(3)} \longleftrightarrow \mathcal{M}_{S O(3)}^{+} \\
& \downarrow^{\theta^{-}} \quad \downarrow^{\theta} \quad \downarrow^{\theta^{+}} \\
& \left.\left|3 \Theta_{\left(\cong \mathbb{P}^{3}\right)}^{-} \longleftrightarrow\right| 3 \Theta\right|_{\left(\cong \mathbb{P}^{8}\right)} \longleftrightarrow\left|3 \Theta^{+}\right|_{\left(\cong \mathbb{P}^{4}\right)} \longleftrightarrow \mathcal{Q} \\
& \mathcal{S}^{-}=\cup H_{p} \\
& \breve{\mathcal{S}}
\end{aligned}
$$

$\mathcal{S} \cap\left|3 \Theta^{-}\right|:=\mathcal{S}^{-}=$union of 6 planes

Example $(g=2, r=3)$

$$
\begin{aligned}
& \mathcal{M}_{S O(3)}^{-} \longleftrightarrow \mathcal{M}_{S L(3)} \longleftrightarrow \mathcal{M}_{S O(3)}^{+} \\
& \downarrow^{\theta^{-}} \quad \downarrow^{\prime} \quad \downarrow^{\theta^{+}} \\
& \left.\left|3 \Theta_{\left(\cong \mathbb{P}^{3}\right)}^{-} \longleftrightarrow\right| 3 \Theta\right|_{\left(\cong \mathbb{P}^{8}\right)} \longleftrightarrow\left|3 \Theta^{+}\right|_{\left(\cong \mathbb{P}^{4}\right)} \longleftrightarrow \mathcal{Q} \\
& \mathcal{S}^{-}=\cup H_{p} \quad \breve{\mathcal{S}} \\
& \underset{\left.\mathcal{P}, \mathbb{P}^{4}\right)}{ }
\end{aligned}
$$

$\mathcal{S} \cap\left|3 \Theta^{-}\right|:=\mathcal{S}^{-}=$union of 6 planes
$\mathcal{S} \cap\left|3 \Theta^{+}\right|=\mathcal{Q}+2 H, \quad \mathcal{Q}=$ Igusa quartic, $H=\Theta+|2 \Theta| \subset|3 \Theta|^{+}$.

$G=S p(2 r)$

$$
\mathcal{M}_{S p(2 r)}=\left\{(E, \varphi) \mid E \in \mathcal{M}_{S L(2 r)}, \varphi: \wedge^{2} E \rightarrow \mathcal{O}_{C} \text { non-deg. }\right\}
$$

$G=S p(2 r)$

$\mathcal{M}_{S p(2 r)}=\left\{(E, \varphi) \mid E \in \mathcal{M}_{S L(2 r)}, \varphi: \wedge^{2} E \rightarrow \mathcal{O}_{C}\right.$ non-deg. $\}$
Again $\mathcal{M}_{S p(2 r)} \longleftrightarrow \mathcal{M}_{S L(2 r)}$ (Serman).

$G=S p(2 r)$

$\mathcal{M}_{S p(2 r)}=\left\{(E, \varphi) \mid E \in \mathcal{M}_{S L(2 r)}, \varphi: \wedge^{2} E \rightarrow \mathcal{O}_{C}\right.$ non-deg. $\}$
Again $\mathcal{M}_{S p(2 r)} \hookrightarrow \mathcal{M}_{S L(2 r)}$ (Serman).
$E \cong E^{*} \Rightarrow \Theta_{E} \in|2 r \Theta|^{+}$

$G=S p(2 r)$

$\mathcal{M}_{S p(2 r)}=\left\{(E, \varphi) \mid E \in \mathcal{M}_{S L(2 r)}, \varphi: \wedge^{2} E \rightarrow \mathcal{O}_{C}\right.$ non-deg. $\}$
Again $\mathcal{M}_{S p(2 r)} \longleftrightarrow \mathcal{M}_{S L(2 r)}$ (Serman).
$E \cong E^{*} \Rightarrow \Theta_{E} \in|2 r \Theta|^{+} \rightsquigarrow \quad \theta:\left\{\begin{array}{lll}\mathcal{M}_{S p(2 r)} & -\cdots & |2 r \Theta|^{+} \\ E & \mapsto & \Theta_{E}\end{array}\right.$

$G=S p(2 r)$

$\mathcal{M}_{S p(2 r)}=\left\{(E, \varphi) \mid E \in \mathcal{M}_{S L(2 r)}, \varphi: \wedge^{2} E \rightarrow \mathcal{O}_{C}\right.$ non-deg. $\}$
Again $\mathcal{M}_{S p(2 r)} \longleftrightarrow \mathcal{M}_{S L(2 r)}$ (Serman).
$E \cong E^{*} \Rightarrow \Theta_{E} \in|2 r \Theta|^{+} \rightsquigarrow \quad \theta:\left\{\begin{array}{lll}\mathcal{M}_{S p(2 r)} & -\cdots & |2 r \Theta|^{+} \\ E & \mapsto & \Theta_{E}\end{array}\right.$
Then $\mathcal{L}_{S_{p}(2 r)}=\theta^{*} \mathcal{O}(1)$, but θ^{+}is not the theta map for $r \geq 3$.

$G=S p(2 r)$

$\mathcal{M}_{S p(2 r)}=\left\{(E, \varphi) \mid E \in \mathcal{M}_{S L(2 r)}, \varphi: \wedge^{2} E \rightarrow \mathcal{O}_{C}\right.$ non-deg. $\}$
Again $\mathcal{M}_{S p(2 r)} \longleftrightarrow \mathcal{M}_{S L(2 r)}$ (Serman).
$E \cong E^{*} \Rightarrow \Theta_{E} \in|2 r \Theta|^{+} \rightsquigarrow \quad \theta:\left\{\begin{array}{lll}\mathcal{M}_{S p(2 r)} & -\cdots & |2 r \Theta|^{+} \\ E & \mapsto & \Theta_{E}\end{array}\right.$
Then $\mathcal{L}_{S_{p(2 r)}}=\theta^{*} \mathcal{O}(1)$, but θ^{+}is not the theta map for $r \geq 3$.
(That is, $\left(H^{0}\left(J, \mathcal{O}_{J}(2 r \Theta)\right)^{*}\right)^{+} \longrightarrow H^{0}\left(\mathcal{M}_{S p(2 r)}, \mathcal{L}\right)$ not bijective $)$

$H^{0}\left(\mathcal{M}_{s_{p}(2 r)}, \mathcal{L}\right)$

Replace J by $\mathcal{N}:=\left\{F \in \mathcal{M}_{G L(2)} \mid \operatorname{det} F=K_{C}\right\} \quad\left(\cong \mathcal{M}_{S L(2)}\right)$

$H^{0}\left(\mathcal{M}_{S_{p}(2 r)}, \mathcal{L}\right)$

Replace J by $\mathcal{N}:=\left\{F \in \mathcal{M}_{G L(2)} \mid \operatorname{det} F=K_{C}\right\} \quad\left(\cong \mathcal{M}_{S L(2)}\right)$ and Θ by $\Delta:=\left\{F \in \mathcal{N} \mid H^{0}(C, F) \neq 0\right\}$.

$H^{0}\left(\mathcal{M}_{S_{p}(2 r)}, \mathcal{L}\right)$

Replace J by $\mathcal{N}:=\left\{F \in \mathcal{M}_{G L(2)} \mid \operatorname{det} F=K_{C}\right\} \quad\left(\cong \mathcal{M}_{S L(2)}\right)$ and Θ by $\Delta:=\left\{F \in \mathcal{N} \mid H^{0}(C, F) \neq 0\right\}$.

To $E \in \mathcal{M}_{S p(2 r)}$ associate $\Delta_{E}:=\left\{F \in \mathcal{N} \mid H^{0}(C, E \otimes F) \neq 0\right\}$.

$H^{0}\left(\mathcal{M}_{S_{p}(2 r)}, \mathcal{L}\right)$

Replace J by $\mathcal{N}:=\left\{F \in \mathcal{M}_{G L(2)} \mid \operatorname{det} F=K_{C}\right\} \quad\left(\cong \mathcal{M}_{S L(2)}\right)$ and Θ by $\Delta:=\left\{F \in \mathcal{N} \mid H^{0}(C, F) \neq 0\right\}$.

To $E \in \mathcal{M}_{S p(2 r)}$ associate $\Delta_{E}:=\left\{F \in \mathcal{N} \mid H^{0}(C, E \otimes F) \neq 0\right\}$.
Then : either $\Delta_{E}=\mathcal{N}$, or $\Delta_{E} \in|r \Delta|$.

Replace J by $\mathcal{N}:=\left\{F \in \mathcal{M}_{G L(2)} \mid \operatorname{det} F=K_{C}\right\} \quad\left(\cong \mathcal{M}_{S L(2)}\right)$ and Θ by $\Delta:=\left\{F \in \mathcal{N} \mid H^{0}(C, F) \neq 0\right\}$.

To $E \in \mathcal{M}_{S p(2 r)}$ associate $\Delta_{E}:=\left\{F \in \mathcal{N} \mid H^{0}(C, E \otimes F) \neq 0\right\}$.
Then : either $\Delta_{E}=\mathcal{N}$, or $\Delta_{E} \in|r \Delta|$.

Theorem

Replace J by $\mathcal{N}:=\left\{F \in \mathcal{M}_{G L(2)} \mid \operatorname{det} F=K_{C}\right\} \quad\left(\cong \mathcal{M}_{S L(2)}\right)$ and Θ by $\Delta:=\left\{F \in \mathcal{N} \mid H^{0}(C, F) \neq 0\right\}$.

To $E \in \mathcal{M}_{S p(2 r)}$ associate $\Delta_{E}:=\left\{F \in \mathcal{N} \mid H^{0}(C, E \otimes F) \neq 0\right\}$.
Then : either $\Delta_{E}=\mathcal{N}$, or $\Delta_{E} \in|r \Delta|$.

Theorem

$$
\begin{aligned}
& \mathcal{M}_{S_{p}(2 r)-\underset{E}{-} \bar{\Delta}_{E}^{-}} \rightarrow|r \Delta|
\end{aligned}
$$

In particular, $\quad H^{0}\left(\mathcal{M}_{S p(2 r)}, \mathcal{L}\right) \xrightarrow{\sim} H^{0}\left(\mathcal{N}, \mathcal{O}_{\mathcal{N}}(r \Delta)\right)^{*}$.

Replace J by $\mathcal{N}:=\left\{F \in \mathcal{M}_{G L(2)} \mid \operatorname{det} F=K_{C}\right\} \quad\left(\cong \mathcal{M}_{S L(2)}\right)$ and Θ by $\Delta:=\left\{F \in \mathcal{N} \mid H^{0}(C, F) \neq 0\right\}$.
To $E \in \mathcal{M}_{S_{P(2 r)}}$ associate $\Delta_{E}:=\left\{F \in \mathcal{N} \mid H^{0}(C, E \otimes F) \neq 0\right\}$.
Then : either $\Delta_{E}=\mathcal{N}$, or $\Delta_{E} \in|r \Delta|$.

Theorem

In particular, $\quad H^{0}\left(\mathcal{M}_{S p(2 r)}, \mathcal{L}\right) \xrightarrow{\sim} H^{0}\left(\mathcal{N}, \mathcal{O}_{\mathcal{N}}(r \Delta)\right)^{*}$.
(Proof relies on the rank-level duality $S L(2)-G L(r)$ proved by Marian-Oprea and Belkale.)

The end

