Non-abelian theta functions and the theta map

Arnaud Beauville

Université de Nice

Berkeley, April 2009

C curve (= Riemann surface) of genus g.

C curve (= Riemann surface) of genus g. Topologically, line bundles on C are classified by the $degree \ \deg L \in \mathbb{Z}$.

C curve (= Riemann surface) of genus g. Topologically, line bundles on C are classified by the $degree \ \deg L \in \mathbb{Z}$.

 $J^d:=\{ {\sf isom. \ classes \ of \ line \ bundles \ of \ degree \ d \ on \ C} \} \ \cong$

C curve (= Riemann surface) of genus g. Topologically, line bundles on C are classified by the $degree \ \deg L \in \mathbb{Z}$.

 $J^d:=\{ {
m isom. classes of line bundles of degree } d {
m on } C\} \cong J^0={
m the Jacobian of } C\cong {
m complex torus } \mathbb{C}^g/\Gamma$

C curve (= Riemann surface) of genus g. Topologically, line bundles on C are classified by the $degree \ \deg L \in \mathbb{Z}$.

 $J^d:=\{ ext{isom. classes of line bundles of degree } d ext{ on } C \} \cong J^0= ext{the Jacobian of } C \cong ext{complex torus } \mathbb{C}^g/\Gamma$ We will focus on $J:=J^{g-1}$.

C curve (= Riemann surface) of genus g. Topologically, line bundles on C are classified by the $degree \ \deg L \in \mathbb{Z}$.

 $J^d:=\{ {
m isom. classes of line bundles of degree } d {
m on } C \} \cong J^0={
m the Jacobian of } C\cong {
m complex torus } \mathbb{C}^g/\Gamma$

We will focus on $J := J^{g-1}$.

 $\Theta := \{L \in J \mid H^0(L) \neq 0\}$ hypersurface in J (theta divisor).

C curve (= Riemann surface) of genus g. Topologically, line bundles on C are classified by the $degree \ \deg L \in \mathbb{Z}$.

 $J^d:=\{ {
m isom. classes of line bundles of degree } d {
m on } C \} \cong J^0={
m the Jacobian of } C \cong {
m complex torus } \mathbb{C}^g/\Gamma$

We will focus on $J := J^{g-1}$.

 $\Theta := \{L \in J \mid H^0(L) \neq 0\}$ hypersurface in J (theta divisor).

Definition

{theta functions of order k} := $H^0(J, \mathcal{O}_J(k\Theta))$

C curve (= Riemann surface) of genus g. Topologically, line bundles on C are classified by the $degree \ \deg L \in \mathbb{Z}$.

 $J^d:=\{ ext{isom. classes of line bundles of degree d on C}\cong J^0= ext{the Jacobian of $C\cong$ complex torus \mathbb{C}^g/Γ}$

We will focus on $J := J^{g-1}$.

 $\Theta := \{L \in J \mid H^0(L) \neq 0\}$ hypersurface in J (theta divisor).

Definition

 $\{\text{theta functions of order }k\} := H^0(J, \mathcal{O}_J(k\Theta))$

= {meromorphic functions on J with poles $\leq k\Theta$ };

C curve (= Riemann surface) of genus g. Topologically, line bundles on C are classified by the $degree \ \deg L \in \mathbb{Z}$.

 $J^d:=\{ {
m isom. classes of line bundles of degree } d {
m on } C \} \cong J^0={
m the Jacobian of } C \cong {
m complex torus } \mathbb{C}^g/\Gamma$

We will focus on $J := J^{g-1}$.

 $\Theta := \{L \in J \mid H^0(L) \neq 0\}$ hypersurface in J (theta divisor).

Definition

 $\{ \text{theta functions of order } k \} := H^0(J, \mathcal{O}_J(k\Theta))$

= {meromorphic functions on J with poles $\leq k\Theta$ };

line bundles trivial on $\mathbb{C}^g \Rightarrow$ theta functions lift to functions on \mathbb{C}^g , quasi-periodic w.r.t. Γ .

Notation: for L line bundle on a variety X,

$$|L| := \mathbb{P}(H^0(X, L)) = \{ \text{effective divisors } D \text{ s.t. } \mathcal{O}_X(D) \cong L \}$$

Notation: for L line bundle on a variety X,

$$|L| := \mathbb{P}(H^0(X, L)) = \{ \text{effective divisors } D \text{ s.t. } \mathcal{O}_X(D) \cong L \}$$

Rational map $\varphi_L: X \dashrightarrow |L|^*$ associated to L.

Notation: for L line bundle on a variety X,

$$|L| := \mathbb{P}(H^0(X, L)) = \{ \text{effective divisors } D \text{ s.t. } \mathcal{O}_X(D) \cong L \}$$

Rational map $\varphi_L: X \dashrightarrow |L|^*$ associated to L.

Notation: for L line bundle on a variety X,

$$|L| := \mathbb{P}(H^0(X, L)) = \{ \text{effective divisors } D \text{ s.t. } \mathcal{O}_X(D) \cong L \}$$

Rational map $\varphi_L: X \dashrightarrow |L|^*$ associated to L.

$$\dim H^0(J, \mathcal{O}J(k\Theta)) = k^g;$$

Notation: for L line bundle on a variety X,

$$|L| := \mathbb{P}(H^0(X, L)) = \{ \text{effective divisors } D \text{ s.t. } \mathcal{O}_X(D) \cong L \}$$

Rational map $\varphi_L: X \dashrightarrow |L|^*$ associated to L.

$$\dim H^0(J,\mathcal{O}J(k\Theta))=k^g;$$

$$\varphi_{k\Theta}: J \to |k\Theta|$$
 embedding for $k \geq 3$;

Notation: for L line bundle on a variety X,

$$|L| := \mathbb{P}(H^0(X, L)) = \{ \text{effective divisors } D \text{ s.t. } \mathcal{O}_X(D) \cong L \}$$

Rational map $\varphi_L: X \dashrightarrow |L|^*$ associated to L.

$$\dim H^0(J,\mathcal{O}J(k\Theta))=k^g;$$

$$\varphi_{k\Theta}: J \to |k\Theta|$$
 embedding for $k \ge 3$;

for
$$k=2$$
, $\varphi_{2\Theta}:J\twoheadrightarrow J/i:=K(J)\hookrightarrow |2\Theta|$, $i:L\mapsto K\otimes L^{-1}$.

Notation: for L line bundle on a variety X,

$$|L| := \mathbb{P}(H^0(X, L)) = \{ \text{effective divisors } D \text{ s.t. } \mathcal{O}_X(D) \cong L \}$$

Rational map $\varphi_L: X \dashrightarrow |L|^*$ associated to L.

Back to theta functions:

$$\dim H^0(J,\mathcal{O}J(k\Theta))=k^g;$$

$$\varphi_{k\Theta}: J \to |k\Theta|$$
 embedding for $k \ge 3$;

for
$$k=2$$
, $\varphi_{2\Theta}:J\twoheadrightarrow J/i:=K(J) \longleftrightarrow |2\Theta|$, $i:L\mapsto K\otimes L^{-1}$.

Gives explicit description of J as submanifold of \mathbb{P}^N ; much is known about its equations, geometry etc.

Line bundles $\leftrightarrow \mathbb{C}^*$ -bundles; replace \mathbb{C}^* by arbitrary semi-simple algebraic group G.

Line bundles $\leftrightarrow \mathbb{C}^*$ -bundles; replace \mathbb{C}^* by arbitrary semi-simple algebraic group G.

 $\mathcal{M}_{\mathcal{G}}:=\mathsf{moduli}\;\mathsf{space}\;\mathsf{of}\;(\mathsf{semi}\text{-stable})\;\mathcal{G}\text{-bundles}\;\mathsf{on}\;\mathcal{C}.$

Line bundles $\leftrightarrow \mathbb{C}^*$ -bundles; replace \mathbb{C}^* by arbitrary semi-simple algebraic group G.

 $\mathcal{M}_{\mathcal{G}}:=\mathsf{moduli}\;\mathsf{space}\;\mathsf{of}\;(\mathsf{semi}\text{-stable})\;\mathcal{G}\text{-bundles}\;\mathsf{on}\;\mathcal{C}.$

(For classical groups, G-bundle = vector bundle E + quadratic or symplectic form;

Line bundles $\leftrightarrow \mathbb{C}^*$ -bundles; replace \mathbb{C}^* by arbitrary semi-simple algebraic group G.

 $\mathcal{M}_G := \text{moduli space of (semi-stable) } G\text{-bundles on } C.$

(For classical groups, G-bundle = vector bundle E + quadratic or symplectic form; semi-stable $\Leftrightarrow E$ semi-stable)

Line bundles $\leftrightarrow \mathbb{C}^*$ -bundles; replace \mathbb{C}^* by arbitrary semi-simple algebraic group G.

 $\mathcal{M}_{\mathcal{G}} := \mathsf{moduli} \; \mathsf{space} \; \mathsf{of} \; (\mathsf{semi-stable}) \; \mathcal{G}\text{-bundles} \; \mathsf{on} \; \mathcal{C}.$

(For classical groups, G-bundle = vector bundle E + quadratic or symplectic form; semi-stable $\Leftrightarrow E$ semi-stable)

Important Fact : $\operatorname{Pic}(\mathcal{M}_G) = \mathbb{Z}[\mathcal{L}_G]$, \mathcal{L}_G determinant bundle

Line bundles $\leftrightarrow \mathbb{C}^*$ -bundles; replace \mathbb{C}^* by arbitrary semi-simple algebraic group G.

 $\mathcal{M}_{\mathcal{G}}:=\mathsf{moduli}\;\mathsf{space}\;\mathsf{of}\;(\mathsf{semi}\text{-stable})\;\mathcal{G}\text{-bundles}\;\mathsf{on}\;\mathcal{C}.$

(For classical groups, G-bundle = vector bundle E + quadratic or symplectic form; semi-stable $\Leftrightarrow E$ semi-stable)

Important Fact : $\operatorname{Pic}(\mathcal{M}_G) = \mathbb{Z}[\mathcal{L}_G], \ \mathcal{L}_G$ determinant bundle G-theta functions of level k := elements of $H^0(\mathcal{M}_G, \mathcal{L}^k)$

These spaces appear in math. physics, in (at least) 2 ways :

These spaces appear in math. physics, in (at least) 2 ways :

• In topological quantum field theory : $H^0(\mathcal{M}_G, \mathcal{L}^k)$ depends essentially only on the topology of C; $C \mapsto H^0(\mathcal{M}_G, \mathcal{L}^k)$ should be a TQFT in the sense of Atiyah.

These spaces appear in math. physics, in (at least) 2 ways :

- In topological quantum field theory: $H^0(\mathcal{M}_G, \mathcal{L}^k)$ depends essentially only on the topology of C; $C \mapsto H^0(\mathcal{M}_G, \mathcal{L}^k)$ should be a TQFT in the sense of Atiyah.
- ② In conformal field theory : $C \mapsto H^0(\mathcal{M}_G, \mathcal{L}^k)$ is the space of conformal blocks for the Wess-Zumino-Witten model.

These spaces appear in math. physics, in (at least) 2 ways :

- In topological quantum field theory : $H^0(\mathcal{M}_G, \mathcal{L}^k)$ depends essentially only on the topology of C; $C \mapsto H^0(\mathcal{M}_G, \mathcal{L}^k)$ should be a TQFT in the sense of Atiyah.
- ② In conformal field theory : $C \mapsto H^0(\mathcal{M}_G, \mathcal{L}^k)$ is the space of conformal blocks for the Wess-Zumino-Witten model.

Mathematical consequences:

These spaces appear in math. physics, in (at least) 2 ways :

- In topological quantum field theory : $H^0(\mathcal{M}_G, \mathcal{L}^k)$ depends essentially only on the topology of C; $C \mapsto H^0(\mathcal{M}_G, \mathcal{L}^k)$ should be a TQFT in the sense of Atiyah.
- ② In conformal field theory : $C \mapsto H^0(\mathcal{M}_G, \mathcal{L}^k)$ is the space of conformal blocks for the Wess-Zumino-Witten model.

Mathematical consequences:

① : when C varies, the $H^0(\mathcal{M}_G, \mathcal{L}^k)$ form a projectively flat vector bundle on the moduli space \mathcal{M}_g (Hitchin connection).

These spaces appear in math. physics, in (at least) 2 ways :

- In topological quantum field theory : $H^0(\mathcal{M}_G, \mathcal{L}^k)$ depends essentially only on the topology of C; $C \mapsto H^0(\mathcal{M}_G, \mathcal{L}^k)$ should be a TQFT in the sense of Atiyah.
- ② In conformal field theory : $C \mapsto H^0(\mathcal{M}_G, \mathcal{L}^k)$ is the space of conformal blocks for the Wess-Zumino-Witten model.

Mathematical consequences:

① : when C varies, the $H^0(\mathcal{M}_G,\mathcal{L}^k)$ form a projectively flat vector bundle on the moduli space \mathcal{M}_g (Hitchin connection). In other words, $H^0(\mathcal{M}_G,\mathcal{L}^k)$ carries a (projective) representation of the modular group $\Gamma_g = \pi_1(\mathcal{M}_g)$.

② gives the Verlinde formula for dim $H^0(\mathcal{M}_G, \mathcal{L}^k)$: for G = SL(r):

② gives the Verlinde formula for dim $H^0(\mathcal{M}_G, \mathcal{L}^k)$: for G = SL(r):

$$\dim H^0(\mathcal{M}_{SL(r)},\mathcal{L}^k) = \left(\frac{r}{r+k}\right)^g \sum_{\substack{S \subset [1,r+k] \\ |S| = r}} \prod_{\substack{s \in S \\ t \notin S}} \left|2\sin \pi \frac{s-t}{r+k}\right|^{g-1}.$$

② gives the Verlinde formula for dim $H^0(\mathcal{M}_G, \mathcal{L}^k)$: for G = SL(r):

$$\dim H^0(\mathcal{M}_{SL(r)},\mathcal{L}^k) = \left(\frac{r}{r+k}\right)^g \sum_{\substack{S \subset [1,r+k] \\ |S| = r}} \ \prod_{\substack{s \in S \\ t \not\in S}} \left| 2\sin \pi \frac{s-t}{r+k} \right|^{g-1} \,.$$

(many mathematical proofs by now.)

② gives the Verlinde formula for dim $H^0(\mathcal{M}_G, \mathcal{L}^k)$: for G = SL(r):

$$\dim H^0(\mathcal{M}_{SL(r)},\mathcal{L}^k) = \left(\frac{r}{r+k}\right)^g \sum_{\substack{S \subset [1,r+k] \\ |S| = r}} \ \prod_{\substack{s \in S \\ t \not\in S}} \left| 2\sin \pi \frac{s-t}{r+k} \right|^{g-1} \,.$$

(many mathematical proofs by now.)

Aim of the talk : understand $\mathcal L$ and $H^0(\mathcal M_G,\mathcal L)$, in particular, the **theta map** $\varphi_{\mathcal L}:\mathcal M_G--\succ |\mathcal L|^*$.

$$G = SL(r)$$

$$\mathcal{M}_{SL(r)} = \{ E \text{ (semi-stable) rank } r \mid \det E = \mathcal{O}_C \}$$
.

$$\mathcal{M}_{SL(r)}=\{E \ (ext{semi-stable}) \ ext{rank} \ r \mid \ \det E=\mathcal{O}_C \} \ .$$
 (semi-stable: every $E'\subset E$ has degree ≤ 0 .)

$$\mathcal{M}_{SL(r)} = \{ E \text{ (semi-stable) rank } r \mid \det E = \mathcal{O}_C \}$$
 .

(semi-stable: every $E' \subset E$ has degree ≤ 0 .)

Key construction : associate to $E \in \mathcal{M}_{SL(r)}$ a divisor on J

$$\mathcal{M}_{SL(r)} = \{ E \text{ (semi-stable) rank } r \mid \det E = \mathcal{O}_C \}$$
.

(semi-stable: every $E' \subset E$ has degree ≤ 0 .)

Key construction : associate to $E \in \mathcal{M}_{SL(r)}$ a divisor on J

$$\Theta_E := \{ L \in J \mid H^0(C, E \otimes L) \neq 0 \}$$

$$\mathcal{M}_{SL(r)} = \{ E \text{ (semi-stable) rank } r \mid \det E = \mathcal{O}_C \}$$
.

(semi-stable: every $E' \subset E$ has degree ≤ 0 .)

Key construction : associate to $E \in \mathcal{M}_{SL(r)}$ a divisor on J

$$\Theta_E := \{ L \in J \mid H^0(C, E \otimes L) \neq 0 \}$$

• either Θ_E is a hypersurface in J; then $\Theta_E \in |r\Theta|$,

$$\mathcal{M}_{SL(r)} = \{ E \text{ (semi-stable) rank } r \mid \det E = \mathcal{O}_C \}$$
.

(semi-stable: every $E' \subset E$ has degree ≤ 0 .)

Key construction : associate to $E \in \mathcal{M}_{SL(r)}$ a divisor on J

$$\Theta_E := \{ L \in J \mid H^0(C, E \otimes L) \neq 0 \}$$

- either Θ_E is a hypersurface in J; then $\Theta_E \in |r\Theta|$,
- or $\Theta_F = J$: E has no Theta divisor.

$$\mathcal{M}_{SL(r)} = \{ E \text{ (semi-stable) rank } r \mid \det E = \mathcal{O}_C \}$$
.

(semi-stable: every $E' \subset E$ has degree ≤ 0 .)

Key construction : associate to $E \in \mathcal{M}_{SL(r)}$ a divisor on J

$$\Theta_E := \{ L \in J \mid H^0(C, E \otimes L) \neq 0 \}$$

- either Θ_E is a hypersurface in J; then $\Theta_E \in |r\Theta|$,
- or $\Theta_F = J$: E has no Theta divisor.

Thus get map $\theta: \mathcal{M}_{SL(r)} - - > |r\Theta|$, $\theta(E) = \Theta_E$.

i.e. up to isomorphism, θ is the theta map.

i.e. up to isomorphism, θ is the theta map.

In particular $H^0(\mathcal{M}_{SL(r)}, \mathcal{L}) \xrightarrow{\sim} H^0(J, \mathcal{O}_J(r\Theta))^*$.

i.e. up to isomorphism, θ is the theta map.

In particular $H^0(\mathcal{M}_{SL(r)},\mathcal{L}) \xrightarrow{\sim} H^0(J,\mathcal{O}_J(r\Theta))^*$.

Consequence:

Indeterminacy locus of $\theta = \mathsf{Bs} \; |\mathcal{L}| = \{ E \in \mathcal{M}_{\mathit{SL}(r)} \; | \; \Theta_E = J \}$.

i.e. up to isomorphism, θ is the theta map.

In particular $H^0(\mathcal{M}_{SL(r)},\mathcal{L}) \stackrel{\sim}{\longrightarrow} H^0(J,\mathcal{O}_J(r\Theta))^*$.

Consequence:

Indeterminacy locus of $\theta = \mathsf{Bs} \; |\mathcal{L}| = \{ E \in \mathcal{M}_{\mathit{SL}(r)} \; | \; \Theta_E = J \}$.

Examples first constructed by Raynaud, exist for $r \ge 4$ in any genus (Pauly).

i.e. up to isomorphism, θ is the theta map.

In particular $H^0(\mathcal{M}_{SL(r)},\mathcal{L}) \stackrel{\sim}{\longrightarrow} H^0(J,\mathcal{O}_J(r\Theta))^*$.

Consequence:

Indeterminacy locus of $\theta = \mathsf{Bs} \; |\mathcal{L}| = \{ E \in \mathcal{M}_{\mathit{SL}(r)} \; | \; \Theta_E = J \}$.

Examples first constructed by Raynaud, exist for $r \ge 4$ in any genus (Pauly). One of the major difficulties in the study of θ .

Theorem

ullet For g=2, $heta:\mathcal{M}_{SL(2)}\stackrel{\sim}{\longrightarrow}|2\Theta|$ (Narasimhan-Ramanan)

Theorem

- For g=2, $\theta:\mathcal{M}_{SL(2)}\stackrel{\sim}{\longrightarrow}|2\Theta|$ (Narasimhan-Ramanan)
- For $g \ge 3$, C non hyperelliptic, $\theta : \mathcal{M}_{SL(2)} \longleftrightarrow |2\Theta|$ (Brivio-Verra + van Geemen-Izadi)

Theorem

- For g=2, $\theta:\mathcal{M}_{SL(2)}\stackrel{\sim}{\longrightarrow}|2\Theta|$ (Narasimhan-Ramanan)
- For $g \ge 3$, C non hyperelliptic, $\theta : \mathcal{M}_{SL(2)} \hookrightarrow |2\Theta|$ (Brivio-Verra + van Geemen-Izadi)
- For $g \ge 3$, C hyperelliptic, θ 2-to-1 onto explicit subvariety of $|2\Theta|$ (Bhosle-Ramanan).

Theorem

- For g=2, $\theta:\mathcal{M}_{SL(2)}\stackrel{\sim}{\longrightarrow}|2\Theta|$ (Narasimhan-Ramanan)
- For $g \ge 3$, C non hyperelliptic, $\theta : \mathcal{M}_{SL(2)} \hookrightarrow |2\Theta|$ (Brivio-Verra + van Geemen-Izadi)
- For $g \ge 3$, C hyperelliptic, θ 2-to-1 onto explicit subvariety of $|2\Theta|$ (Bhosle-Ramanan).

Example (Narasimhan-Ramanan)

g=3,~C non hyperelliptic : $\mathcal{M}_{SL(2)}$ quartic hypersurface $\mathcal{Q}\subset |2\Theta|\cong \mathbb{P}^7,$

Theorem

- For g=2, $\theta:\mathcal{M}_{SL(2)}\overset{\sim}{\longrightarrow}|2\Theta|$ (Narasimhan-Ramanan)
- For $g \ge 3$, C non hyperelliptic, $\theta : \mathcal{M}_{SL(2)} \hookrightarrow |2\Theta|$ (Brivio-Verra + van Geemen-Izadi)
- For $g \ge 3$, C hyperelliptic, θ 2-to-1 onto explicit subvariety of $|2\Theta|$ (Bhosle-Ramanan).

Example (Narasimhan-Ramanan)

g=3, C non hyperelliptic : $\mathcal{M}_{SL(2)}$ quartic hypersurface

 $\mathcal{Q} \subset |2\Theta| \cong \mathbb{P}^7$, singular along the Kummer variety $K(J) \Longrightarrow$

Theorem

- For g=2, $\theta:\mathcal{M}_{SL(2)}\stackrel{\sim}{\longrightarrow}|2\Theta|$ (Narasimhan-Ramanan)
- For $g \ge 3$, C non hyperelliptic, $\theta : \mathcal{M}_{SL(2)} \hookrightarrow |2\Theta|$ (Brivio-Verra + van Geemen-Izadi)
- For $g \ge 3$, C hyperelliptic, θ 2-to-1 onto explicit subvariety of $|2\Theta|$ (Bhosle-Ramanan).

Example (Narasimhan-Ramanan)

g=3, C non hyperelliptic : $\mathcal{M}_{SL(2)}$ quartic hypersurface

 $\mathcal{Q} \subset |2\Theta| \cong \mathbb{P}^7$, singular along the Kummer variety $K(J) \Longrightarrow$

Q is the Coble quartic.

G = SL(r), g(C) = 2

$$G = SL(r), g(C) = 2$$

$$G = SL(r), g(C) = 2$$

Proposition

For g = 2, θ is generically finite.

$$G = SL(r), g(C) = 2$$

Proposition

For g = 2, θ is generically finite.

NOTE: θ is not a morphism for $r \ge 4$; some fibres have dimension $\ge \left[\frac{r}{2}\right] - 1$.

$$G = SL(r), g(C) = 2$$

Proposition

For g = 2, θ is generically finite.

NOTE : θ is not a morphism for $r \ge 4$; some fibres have dimension $\ge \left[\frac{r}{2}\right] - 1$.

Example (Ortega)

(g=2) $\theta: \mathcal{M}_{SL(3)} \to |3\Theta| \cong \mathbb{P}^8$ is a double covering, branched along a sextic hypersurface $S \subset |3\Theta|$.

$$G = SL(r), g(C) = 2$$

Proposition

For g = 2, θ is generically finite.

NOTE : θ is not a morphism for $r \ge 4$; some fibres have dimension $\ge \left[\frac{r}{2}\right] - 1$.

Example (Ortega)

(g=2) $\theta: \mathcal{M}_{SL(3)} \to |3\Theta| \cong \mathbb{P}^8$ is a double covering, branched along a sextic hypersurface $\mathcal{S} \subset |3\Theta|$.

 $\mathcal{S}^* \subset |3\Theta|^*$ is the Coble cubic, the unique cubic hypersurface in $|3\Theta|^*$ singular along the image of J.

$$\mathcal{M}_{\mathcal{O}(r)} \cong \{(E, q) \mid E \text{ semi-stable rk } r, q : \operatorname{Sym}^2 E \to \mathcal{O}_{\mathcal{C}} \text{ non-deg.} \}$$

$$\mathcal{M}_{\mathcal{O}(r)} \cong \{(E,q) \mid E \text{ semi-stable rk } r \ , q : \mathrm{Sym}^2 E \to \mathcal{O}_{\mathcal{C}} \text{ non-deg.} \}$$

$$\mathcal{M}_{SO(r)} \cong \{ (E, q, \omega) \mid (E, q) \in \mathcal{M}_{O(r)}, \ \omega \in H^0(C, \wedge^r E), q(\omega) = 1) \}$$

$$\mathcal{M}_{O(r)} \cong \{(E,q) \mid E \text{ semi-stable rk } r \ , q : \mathrm{Sym}^2E \to \mathcal{O}_C \text{ non-deg.} \}$$

$$\mathcal{M}_{SO(r)} \cong \{(E,q,\omega) \mid (E,q) \in \mathcal{M}_{O(r)} \ , \ \omega \in H^0(C,\wedge^rE) \ , q(\omega) = 1) \}$$

$$\mathsf{Map} \ \mathcal{M}_{SO(r)} \twoheadrightarrow \mathcal{M}_{O(r)}^{\mathcal{O}} := \{(E,q) \in \mathcal{M}_{O(r)} \mid \ \wedge^rE = \mathcal{O}_C \} \ .$$

$$\mathcal{M}_{O(r)} \cong \{(E,q) \mid E \text{ semi-stable rk } r \ , q : \mathrm{Sym}^2E \to \mathcal{O}_C \text{ non-deg.} \}$$

$$\mathcal{M}_{SO(r)} \cong \{(E,q,\omega) \mid (E,q) \in \mathcal{M}_{O(r)} \ , \ \omega \in H^0(C,\wedge^rE) \ , q(\omega) = 1) \}$$

$$\mathsf{Map} \ \mathcal{M}_{SO(r)} \twoheadrightarrow \mathcal{M}_{O(r)}^{\mathcal{O}} := \{(E,q) \in \mathcal{M}_{O(r)} \mid \ \wedge^rE = \mathcal{O}_C \} \ .$$

• For r odd, $-1 \in \operatorname{Aut}(E,q)$ exchanges ω and $-\omega \implies \mathcal{M}_{SO(r)} \stackrel{\sim}{\longrightarrow} \mathcal{M}_{O(r)}^{\mathcal{O}}$.

$$\mathcal{M}_{\mathcal{O}(r)}\cong\{(E,q)\mid E \text{ semi-stable rk } r\ , q:\mathrm{Sym}^2E o\mathcal{O}_{\mathcal{C}} \ \mathsf{non\text{-}deg.}\}$$

$$\mathcal{M}_{SO(r)}\cong\{(E,q,\omega)\,|\,(E,q)\in\mathcal{M}_{O(r)}\,,\,\omega\in H^0(C,\wedge^rE)\,,q(\omega)=1)\}$$

$$\mathsf{Map}\ \mathcal{M}_{SO(r)} \twoheadrightarrow \mathcal{M}_{O(r)}^{\mathcal{O}} := \{(E,q) \in \mathcal{M}_{O(r)} \mid \ \wedge^r E = \mathcal{O}_C\} \,.$$

• For r odd, $-1 \in \operatorname{Aut}(E,q)$ exchanges ω and $-\omega$ \Rightarrow

$$\mathcal{M}_{SO(r)} \stackrel{\sim}{\longrightarrow} \mathcal{M}_{O(r)}^{\mathcal{O}}$$
.

ullet For r even, $\mathcal{M}_{SO(r)} \xrightarrow{2:1} \mathcal{M}_{O(r)}^{\mathcal{O}}$.

Technical point: O(r) versus GL(r)

Theorem (Serman)

The map $\mathcal{M}_{O(r)} \to \mathcal{M}_{GL(r)}$ is an embedding.

Technical point: O(r) versus GL(r)

Theorem (Serman)

The map $\mathcal{M}_{O(r)} \to \mathcal{M}_{GL(r)}$ is an embedding.

Remarks

Technical point: O(r) versus GL(r)

Theorem (Serman)

The map $\mathcal{M}_{O(r)} \to \mathcal{M}_{GL(r)}$ is an embedding.

Remarks

1 $\mathcal{M}_{SO(r)}$ has 2 components $\mathcal{M}_{SO(r)}^{\pm}$, distinguished by the Stiefel-Whitney class $w_2 \in \{\pm 1\}$.

Technical point: O(r) versus GL(r)

Theorem (Serman)

The map $\mathcal{M}_{O(r)} \to \mathcal{M}_{GL(r)}$ is an embedding.

Remarks

- $\mathcal{M}_{SO(r)}$ has 2 components $\mathcal{M}_{SO(r)}^{\pm}$, distinguished by the Stiefel-Whitney class $w_2 \in \{\pm 1\}$.
- ② For $(E,q) \in \mathcal{M}_{O(r)}$, $E \cong E^*$, hence $\Theta_E = \Theta_{E^*} = i^*\Theta_E$, where i is the involution $L \mapsto K \otimes L^{-1}$ of J.

Technical point: O(r) versus GL(r)

Theorem (Serman)

The map $\mathcal{M}_{O(r)} \to \mathcal{M}_{GL(r)}$ is an embedding.

Remarks

- **1** $\mathcal{M}_{SO(r)}$ has 2 components $\mathcal{M}_{SO(r)}^{\pm}$, distinguished by the Stiefel-Whitney class $w_2 \in \{\pm 1\}$.
- ② For $(E,q) \in \mathcal{M}_{O(r)}$, $E \cong E^*$, hence $\Theta_E = \Theta_{E^*} = i^*\Theta_E$, where i is the involution $L \mapsto K \otimes L^{-1}$ of J.

Thus $\Theta_E \in |r\Theta|^+$ or $|r\Theta|^-$, the eigenspaces of i^* in $|r\Theta|$.

$$H^0(\mathcal{M}^{\pm}_{SO(r)},\mathcal{L})$$

Theorem

$$\mathcal{M}_{SO(r)}^{\pm} \xrightarrow{\theta^{\pm}} |r\Theta|^{\pm}$$

$$\downarrow \qquad \qquad \downarrow$$

$$\mathcal{M}_{SL(r)} \xrightarrow{\theta^{-}} |r\Theta|$$

$$heta^\pm=$$
 theta map for $\,\mathcal{M}^\pm_{\mathsf{SO}(r)}$.

$H^0(\mathcal{M}^{\pm}_{SO(r)},\mathcal{L})$

Theorem

In particular, $H^0(\mathcal{M}_{SO(r)}^{\pm},\mathcal{L}) \stackrel{\sim}{\longrightarrow} (H^0(J,\mathcal{O}_J(r\Theta))^*)^{\pm}$.

$$H^0(\mathcal{M}^{\pm}_{SO(r)},\mathcal{L})$$

Theorem

In particular, $H^0(\mathcal{M}_{SO(r)}^{\pm}, \mathcal{L}) \xrightarrow{\sim} (H^0(J, \mathcal{O}_J(r\Theta))^*)^{\pm}$.

(Essential ingredient: Verlinde formula for SO(r).)

$$\mathcal{M}_{SO(3)}^{-} \hookrightarrow \mathcal{M}_{SL(3)} \longleftrightarrow \mathcal{M}_{SO(3)}^{+}$$

$$\downarrow^{\theta^{-}} \qquad \qquad \downarrow^{\theta} \qquad \qquad \downarrow^{\theta^{+}}$$

$$|3\Theta|_{(\cong\mathbb{P}^{3})}^{-} \hookrightarrow |3\Theta|_{(\cong\mathbb{P}^{8})} \longleftrightarrow |3\Theta^{+}|_{(\cong\mathbb{P}^{4})} \longleftrightarrow \mathcal{Q}$$

$$\mathcal{S}^{-} \stackrel{\cup}{=} \cup H_{p} \qquad \stackrel{\smile}{\mathcal{S}}$$

$$\mathcal{M}_{SO(3)}^{-} \hookrightarrow \mathcal{M}_{SL(3)} \longleftrightarrow \mathcal{M}_{SO(3)}^{+}$$

$$\downarrow^{\theta^{-}} \qquad \qquad \downarrow^{\theta} \qquad \qquad \downarrow^{\theta^{+}}$$

$$|3\Theta|_{(\cong\mathbb{P}^{3})}^{-} \hookrightarrow \qquad |3\Theta|_{(\cong\mathbb{P}^{8})} \longleftrightarrow |3\Theta^{+}|_{(\cong\mathbb{P}^{4})} \longleftrightarrow \mathcal{Q}$$

$$\mathcal{S}^{-} \stackrel{\cup}{=} \cup H_{p} \qquad \qquad \stackrel{\smile}{\mathcal{S}}$$

$$\mathcal{S} \cap |3\Theta^-| := \mathcal{S}^- = \text{union of 6 planes}$$

$$\mathcal{M}_{SO(3)}^{-} \hookrightarrow \mathcal{M}_{SL(3)} \longleftrightarrow \mathcal{M}_{SO(3)}^{+}$$

$$\downarrow^{\theta^{-}} \qquad \downarrow^{\theta} \qquad \downarrow^{\theta^{+}}$$

$$|3\Theta|_{(\cong\mathbb{P}^{3})}^{-} \hookrightarrow |3\Theta|_{(\cong\mathbb{P}^{8})} \longleftrightarrow |3\Theta^{+}|_{(\cong\mathbb{P}^{4})} \longleftrightarrow \mathcal{Q}$$

$$\mathcal{S}^{-} \stackrel{\cup}{=} \cup H_{p} \qquad \stackrel{\smile}{\mathcal{S}}$$

$$\mathcal{S} \cap |3\Theta^-| := \mathcal{S}^- = \text{union of 6 planes}$$

$$\mathcal{S} \cap |3\Theta^+| = \mathcal{Q} + 2H$$
, $\mathcal{Q} = \text{Igusa quartic}$, $H = \Theta + |2\Theta| \subset |3\Theta|^+$.

$$\mathcal{M}_{Sp(2r)} = \{(E, \varphi) \mid E \in \mathcal{M}_{SL(2r)}, \ \varphi : \wedge^2 E \to \mathcal{O}_C \ \text{non-deg.} \}$$

$$\mathcal{M}_{Sp(2r)} = \{ (E, \varphi) \mid E \in \mathcal{M}_{SL(2r)} , \ \varphi : \wedge^2 E \to \mathcal{O}_C \text{ non-deg.} \}$$
 Again $\mathcal{M}_{Sp(2r)} \longleftrightarrow \mathcal{M}_{SL(2r)}$ (Serman).

$$\mathcal{M}_{Sp(2r)} = \{(E, \varphi) \mid E \in \mathcal{M}_{SL(2r)}, \ \varphi : \wedge^2 E \to \mathcal{O}_C \text{ non-deg.} \}$$

Again $\mathcal{M}_{Sp(2r)} \longleftrightarrow \mathcal{M}_{SL(2r)}$ (Serman).

$$E \cong E^* \Rightarrow \Theta_E \in |2r\Theta|^+$$

$$\mathcal{M}_{Sp(2r)} = \{ (E, \varphi) \mid E \in \mathcal{M}_{SL(2r)} , \ \varphi : \wedge^2 E \to \mathcal{O}_C \text{ non-deg.} \}$$

$$\mathsf{Again} \ \mathcal{M}_{Sp(2r)} \longleftrightarrow \mathcal{M}_{SL(2r)} \text{ (Serman)}.$$

$$E \cong E^* \ \Rightarrow \ \Theta_E \in |2r\Theta|^+ \ \leadsto \quad \theta : \left\{ \begin{array}{c} \mathcal{M}_{Sp(2r)} \dashrightarrow & |2r\Theta|^+ \\ E \mapsto \Theta_E \end{array} \right.$$

$$\mathcal{M}_{Sp(2r)} = \{(E, \varphi) \mid E \in \mathcal{M}_{SL(2r)}, \ \varphi : \wedge^2 E \to \mathcal{O}_C \ \text{non-deg.} \}$$

Again $\mathcal{M}_{Sp(2r)} \hookrightarrow \mathcal{M}_{SL(2r)}$ (Serman).

$$E \cong E^* \Rightarrow \Theta_E \in |2r\Theta|^+ \rightsquigarrow \theta : \begin{cases} \mathcal{M}_{Sp(2r)} & \longrightarrow & |2r\Theta|^+ \\ E & \mapsto & \Theta_E \end{cases}$$

Then $\mathcal{L}_{Sp(2r)} = \theta^* \mathcal{O}(1)$, but θ^+ is not the theta map for $r \geq 3$.

$$\mathcal{M}_{\mathit{Sp}(2r)} = \{(E,\varphi) \mid E \in \mathcal{M}_{\mathit{SL}(2r)} \ , \ \varphi : \wedge^2 E \to \mathcal{O}_{\mathit{C}} \ \mathsf{non\text{-}deg.} \}$$

Again $\mathcal{M}_{Sp(2r)} \longrightarrow \mathcal{M}_{SL(2r)}$ (Serman).

$$E \cong E^* \Rightarrow \Theta_E \in |2r\Theta|^+ \rightsquigarrow \theta : \begin{cases} \mathcal{M}_{Sp(2r)} & \longrightarrow & |2r\Theta|^+ \\ E & \mapsto & \Theta_E \end{cases}$$

Then $\mathcal{L}_{Sp(2r)} = \theta^* \mathcal{O}(1)$, but θ^+ is not the theta map for $r \geq 3$.

$$\Big(\mathsf{That}\ \mathsf{is},\ \big(H^0(J,\mathcal{O}_J(2r\Theta))^*\big)^+\longrightarrow H^0(\mathcal{M}_{\mathcal{Sp}(2r)},\mathcal{L})\ \mathsf{not}\ \mathsf{bijective}\Big)$$

$$H^0(\mathcal{M}_{Sp(2r)},\mathcal{L})$$

Replace J by $\mathcal{N}:=\{F\in\mathcal{M}_{GL(2)}\mid \det F=K_C\} \ (\cong\mathcal{M}_{SL(2)})$

Replace J by $\mathcal{N} := \{ F \in \mathcal{M}_{GL(2)} \mid \det F = K_C \}$ $(\cong \mathcal{M}_{SL(2)})$ and Θ by $\Delta := \{ F \in \mathcal{N} \mid H^0(C, F) \neq 0 \}.$

Replace J by $\mathcal{N}:=\{F\in\mathcal{M}_{GL(2)}\mid \det F=K_C\}\ (\cong\mathcal{M}_{SL(2)})$ and Θ by $\Delta:=\{F\in\mathcal{N}\mid H^0(C,F)\neq 0\}.$

To $E \in \mathcal{M}_{Sp(2r)}$ associate $\Delta_E := \{ F \in \mathcal{N} \mid H^0(C, E \otimes F) \neq 0 \}.$

Replace J by $\mathcal{N}:=\{F\in\mathcal{M}_{GL(2)}\mid \det F=K_C\} \ (\cong\mathcal{M}_{SL(2)})$ and Θ by $\Delta:=\{F\in\mathcal{N}\mid H^0(C,F)\neq 0\}.$

To $E \in \mathcal{M}_{Sp(2r)}$ associate $\Delta_E := \{ F \in \mathcal{N} \mid H^0(C, E \otimes F) \neq 0 \}.$

Then : either $\Delta_E = \mathcal{N}$, or $\Delta_E \in |r\Delta|$.

Replace J by $\mathcal{N}:=\{F\in\mathcal{M}_{GL(2)}\mid \det F=K_C\} \ (\cong\mathcal{M}_{SL(2)})$ and Θ by $\Delta:=\{F\in\mathcal{N}\mid H^0(C,F)\neq 0\}.$

To $E \in \mathcal{M}_{Sp(2r)}$ associate $\Delta_E := \{ F \in \mathcal{N} \mid H^0(C, E \otimes F) \neq 0 \}.$

Then : either $\Delta_E = \mathcal{N}$, or $\Delta_E \in |r\Delta|$.

Theorem

Replace J by $\mathcal{N}:=\{F\in\mathcal{M}_{GL(2)}\mid \det F=\mathcal{K}_C\}\ (\cong\mathcal{M}_{SL(2)})$ and Θ by $\Delta:=\{F\in\mathcal{N}\mid H^0(C,F)\neq 0\}.$

To $E \in \mathcal{M}_{Sp(2r)}$ associate $\Delta_E := \{ F \in \mathcal{N} \mid H^0(C, E \otimes F) \neq 0 \}.$

Then : either $\Delta_E = \mathcal{N}$, or $\Delta_E \in |r\Delta|$.

Theorem

In particular, $H^0(\mathcal{M}_{Sp(2r)},\mathcal{L}) \stackrel{\sim}{\longrightarrow} H^0(\mathcal{N},\mathcal{O}_{\mathcal{N}}(r\Delta))^*$.

Replace J by $\mathcal{N}:=\{F\in\mathcal{M}_{GL(2)}\mid \det F=K_C\}\ (\cong\mathcal{M}_{SL(2)})$ and Θ by $\Delta:=\{F\in\mathcal{N}\mid H^0(C,F)\neq 0\}.$

To $E \in \mathcal{M}_{Sp(2r)}$ associate $\Delta_E := \{ F \in \mathcal{N} \mid H^0(C, E \otimes F) \neq 0 \}.$

Then : either $\Delta_E = \mathcal{N}$, or $\Delta_E \in |r\Delta|$.

Theorem

In particular, $H^0(\mathcal{M}_{Sp(2r)},\mathcal{L}) \stackrel{\sim}{\longrightarrow} H^0(\mathcal{N},\mathcal{O}_{\mathcal{N}}(r\Delta))^*$.

(Proof relies on the rank-level duality SL(2) - GL(r) proved by Marian-Oprea and Belkale.)

The end

