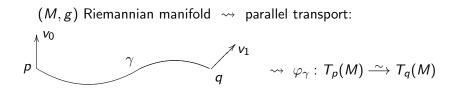
Riemannian holonomy and algebraic geometry

Arnaud Beauville

Université de Nice

Berkeley, April 2009

Arnaud Beauville Riemannian holonomy and algebraic geometry



with $\varphi_{\gamma} \circ \varphi_{\delta} = \varphi_{\delta\gamma}$.

Idea : $\gamma : [0,1] \to M$, we look for $t \mapsto v(t) \in T_{\gamma(t)}(M)$

• If $M = \mathbb{R}^n$ (euclidean), one imposes $\dot{v}(t) = 0$;

• If $M \subset \mathbb{R}^n$, one imposes $\dot{v}(t) \perp T_{\gamma(t)}(M)$;

linear first order ODE, unique solution with $v(0) = v_0$.

In particular, $\varphi : \{ \text{loops at } p \} \longrightarrow O(T_p(M))$

Image = H_p = holonomy (sub-)group at p

• independent of *p* up to conjugacy (*M* connected).

For simplicity, we assume M simply connected and compact.

 $\Rightarrow H_p \text{ compact, connected Lie subgroup of } SO(T_p(M))$ (Borel-Lichnerowicz)

Theorem (de Rham)

$$T_p(M) = \bigoplus_i V_i$$
 stable under $H_p \Rightarrow M \cong \prod_i M_i$ et $H_p \cong \prod_i H_{p_i}$.

We are reduced to irreducible manifolds, i.e. with irreducible holonomy representation.

We first exclude a well-known class of manifolds, the symmetric spaces: G/H, with G compact Lie group, $H = Fix(\sigma)^{\circ}$, σ involution of G. Complete list (E. Cartan), $H_p = H$.

Berger's theorem

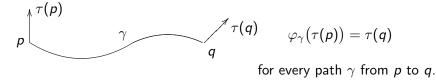
Theorem (Berger)

M irreducible $(\pi_1(M) = 0)$, non symmetric. Then H =

Н	$\dim(M)$	metric
SO(n)	n	generic
U(m)	2m	Kähler
$SU(m)$ $(m \ge 3)$	2m	Calabi-Yau
$\operatorname{Sp}(r)$	4r	hyperkähler
$\begin{array}{ c c }\hline & \mathrm{Sp}(r)\mathrm{Sp}(1) \\ & (r \geq 2) \end{array}$	4r	quaternion-Kähler
G_2	7	
Spin(7)	8	

What is holonomy good for?

A vector field (more generally, a tensor field) au is parallel if



Holonomy principle

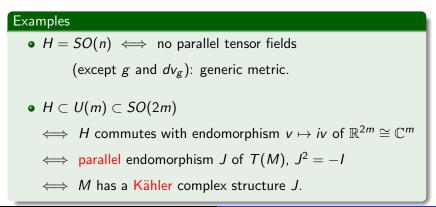
Evaluation at p gives a bijective correspondence between:

- parallel tensor fields;
- tensors on $T_p(M)$ invariant under H_p .

Examples: SO, U

Hence : fixing $H \iff$ imposing certain parallel tensor fields. (small holonomy \Rightarrow special manifold)

 $SU(m) \subset U(m) \subset SO(2m) \,, \, Sp(r) \subset SU(2r) \,, \, Sp(r) \subset Sp(1)Sp(r)$



 $H \subset SU(m) \iff H \subset U(m)$ and H preserves the \mathbb{C} -multilinear alternating m-form det : $\mathbb{C}^m \to \mathbb{C}$

$$\iff M \quad \text{K\"ahler} + \text{holomorphic parallel } m \text{-form } \omega \neq 0$$

$$(\text{locally, } \omega = f(z) \, dz_1 \wedge \ldots \wedge dz_m)$$

Theorem (Yau)

M complex manifold, dim_{\mathbb{C}}(*M*) = *m*.

- M admits a Kähler metric with holonomy \subset SU(m);
- M kählerian, \exists holomorphic m-form everywhere $\neq 0$.

 \Rightarrow many examples: hypersurfaces of degree n+1 in \mathbb{P}^n , etc.

Sp(r) – hyperkähler point of view

 $Sp(r) := U(r, \mathbb{H}) =$ subgroup of $GL(r, \mathbb{H})$ preserving the hermitian form $\psi(x, y) = \sum x_i \overline{y}_i$.

2 ways of looking at quaternions:

• "Hamilton": $\mathbb{H} = \mathbb{R} + \mathbb{R}i + \mathbb{R}j + \mathbb{R}k$, $\mathbb{H}^r \cong \mathbb{R}^{4r}$. Sp(r) =subgroup of $O(\mathbb{R}^{4r})$ commuting with i, j, k. $H \subset Sp(r) \iff$ parallel complex structures I, J, K, actually a sphere \mathbb{S}^2 :

$$\mathbb{S}^2 = \{ aI + bJ + cK, \ a^2 + b^2 + c^2 = 1 \}$$
.

We say that *M* est hyperkähler.

Sp(r) – holomorphic symplectic point of view

• "Cayley":
$$\mathbb{C} = \mathbb{R} + \mathbb{R}i$$
, $\mathbb{H} = \mathbb{C}(j)$ with $jz = \bar{z}j$; $\mathbb{H}^r \cong \mathbb{C}^{2r}$.

 $\psi = h + \varphi j$ with h C-hermitian and φ C-bilinear alternating.

Thus
$$Sp(r) = U(2r, \mathbb{C}) \cap Sp(2r, \mathbb{C})$$
.

 $H = Sp(r) \iff \begin{cases} \text{ complex K\"ahler structure } + \\ \text{ parallel holomorphic symplectic 2-form } \varphi, \\ \text{ unique up to a scalar} \end{cases}$

Theorem

M kählerian with holomorphic symplectic 2-form $\varphi \Rightarrow$

M admits a hyperkähler metric.

Proof: φ^r (2r)-form $\neq 0 \Rightarrow M$ admits a Kähler metric with holonomy \subset SU(m) (Yau); for such a metric, every holomorphic tensor field is parallel (Bochner).

Examples of hyperkähler manifolds

Examples

• r = 1: Sp(1) = SU(2), M = complex surface (compact)with holomorphic 2-form everywhere $\neq 0 \stackrel{\text{def}}{=} \text{K3 surface.}$

• r > 1? Idea: S^r admits symplectic forms, in fact too many:

 $\sigma = \lambda_1 p_1^* \varphi + \ldots + \lambda_r p_r^* \varphi$, with $\lambda_1, \ldots, \lambda_r \in \mathbb{C}^*$.

To get unicity, try to impose $\lambda_1 = \ldots = \lambda_r$, i.e.: σ comes from $S^{(r)} := S^r / \mathfrak{S}_r$.

 $S^{(r)}$ is singular, but admits a resolution $S^{[r]}$, the Hilbert scheme (or Douady space).

 σ symplectic form on $S^{[r]} \Rightarrow S^{[r]}$ hyperkähler.

Examples of hyperkähler manifolds 2

Examples (continued)

Analogous construction starting from a 2-dim'l complex torus

 \rightsquigarrow generalized Kummer varieties K_r .

2 isolated examples (O'Grady), of dimension 6 and 10.

No other example known! (up to deformation)

Sp(1)Sp(r)

 $\mathit{Sp}(r) = \mathit{U}(r,\mathbb{H})$ commutes with homotheties, in particular with

 $\mathbb{H}_1^{\scriptscriptstyle \times} = \{ {\tt quaternions with norm 1} \} \cong \textit{Sp}(1) \ ,$

hence a group $Sp(1)Sp(r) \subset SO(4r), \not\subset U(2r).$

It preserves the sphere

$$\mathbb{S}^2 = \{ aI + bJ + cK, \ a^2 + b^2 + c^2 = 1 \} \subset \operatorname{End}(\mathbb{R}^{4r}) \ .$$

For M with holonomy Sp(1)Sp(r) ("quaternion-Kähler"), get sphere $\mathbb{S}_p^2 \subset \operatorname{End}(T_p(M))$ at each $p \in M$.

The union of these spheres is the twistor space $t: Z \rightarrow M$.

Theorem (Salamon)

Z has a natural complex structure, such that $t^{-1}(m) \cong \mathbb{P}^1 \quad \forall m$,

and a holomorphic contact structure.

Contact and complex structures on Z

contact structure = odd-dim'l analogue of symplectic structure

= sub-bundle of hyperplanes $H \subset T(Z)$,

defined locally by 1-form η such that $d\eta_{|H}$ symplectic.

Idea of the construction

For
$$(p, J) \in Z$$
, $T_{(p,J)}(Z) = T_p(M) \oplus T_J(\mathbb{S}^2)$

- complex structure J on $T_p(M)$, standard on $T_J(\mathbb{S}^2)$
- contact structure: $H_{(p,J)} = T_p(M) \subset T_{(p,J)}(Z)$.

Two cases, according to the sign of the scalar curvature.

Negative case: Z not Kähler, no example known.

Contact projective manifolds

Positive case : Z is a projective manifold, even Fano. (i.e.: K_z^{-N} has many sections for $N \gg 0$).

Examples of contact projective manifolds

- $\mathbb{P}T^*(X)$ for every projective manifold X;
- g simple Lie algebra; O_{min} ⊂ P(g) unique closed adjoint orbit.
 (example: rank 1 matrices in P(sl_r).)

Conjectures

- These are the only contact projective manifolds.
- 2 Every quaternion-Kähler positive manifold is symmetric.

 $(1) \Rightarrow (2) : Z \text{ Fano } \Rightarrow Z = \mathcal{O}_{min} \Rightarrow M \text{ symmetric (Wolf space)}.$

Every contact projective manifold is $\mathbb{P}T^*(X)$ or \mathcal{O}_{min} ?

Partial results

Z contact projective manifold, L := T(Z)/H

- If Z is not Fano, Z ≅ ℙT*(X)
 (Kebekus, Peternell, Sommese, Wiśniewski + Demailly)
- Solution 2 General L has "enough sections" $\Rightarrow Z \cong \mathcal{O}_{min} \subset \mathbb{P}(\mathfrak{g})$ (AB; note: Z Fano $\Rightarrow L^N$ has many sections for $N \gg 0$)

THE END