The decomposition theorem: the smooth case

Arnaud Beauville

Université Côte d'Azur

CIRM, April 2018 (virtual)

Arnaud Beauville The decomposition theorem: the smooth case

The decomposition theorem

This introductory talk is devoted to the history of the following theorem:

Decomposition theorem

Let *M* be a compact Kähler manifold with $c_1(M) = 0$ in $H^2(M, \mathbb{R})$. There exists $M' \to M$ finite étale with $M' = T \times \prod_i X_i \times \prod_i Y_j$

- *T* = complex torus;
- $X_i = X$ simply connected projective, dim ≥ 3 , $H^0(X, \Omega_X^*) = \mathbb{C} \oplus \mathbb{C}\omega$, where ω is a generator of K_X (Calabi-Yau manifolds).
- Y_j = Y compact simply connected, H⁰(Y, Ω_Y^{*}) = C[σ], where σ ∈ H⁰(Y, Ω_Y²) is everywhere non-degenerate (irreducible symplectic manifolds).

Splitting the Theorem in two

To describe the history, it is convenient to split it in two theorems:

Theorem A

Let *M* be a compact Kähler manifold with $c_1(M) = 0$ in $H^2(M, \mathbb{R})$. There exists $T \times X \to M$ finite étale,

T complex torus, X compact simply connected with $K_X \cong \mathscr{O}_X$.

This has highly nontrivial consequences:

Corollary 1) $\mathcal{K}_{M}^{\otimes n} \cong \mathcal{O}_{M}$ for some n. 2) $\pi_{1}(M)$ is virtually abelian.

Theorem B

M compact simply connected Kähler manifold with $K_M \cong \mathcal{O}_M$ $\implies M \cong \prod_i X_i \times \prod_j Y_j$ as in the Theorem.

The Calabi conjecture

At the ICM 1954, Calabi announced (as a theorem) his now famous conjecture. In our case:

Calabi's conjecture

 $c_1^{\mathbb{R}}(M) = 0 \implies M$ admits a **Ricci-flat** Kähler metric.

In a 1957 paper, he restates it as a conjecture, and gives as its main application a weak version of Theorem A:

Proposition (Calabi)

M admits a Ricci-flat Kähler metric \Rightarrow Theorem A' :

 $\exists T \times X \to M$ finite étale, T complex torus, $H^0(X, \Omega^1_X) = 0$.

By studying the automorphism group, Matsushima proved:

Proposition (Matsushima, 1969)

Theorem A' holds for M projective (with $c_1^{\mathbb{R}}(M) = 0$).

In 1974 appear 2 papers by Bogomolov:

- 1) Kähler manifolds with trivial canonical class;
- ② On the decomposition of Kähler manifolds with trivial canonical class.

In (1) he reproves Theorem A' in the projective case, and proves (?) $K_M^{\otimes n} \cong \mathscr{O}_M$ in the Kähler case.

In (2) he announces Theorem B (a slightly weaker form): $K_M \cong \mathscr{O}_M$ and $\pi_1(M) = 0 \Rightarrow M \cong X \times \prod_j Y_j$, with $H^0(X, \Omega_X^2) = 0$, Y_j symplectic.

The attempted proof of Theorem B

Sketch of proof: The heart of the proof is the following statement:

If $T_M = E \oplus F$ with E, F integrable and $\det(E) = \det(F) = \mathcal{O}_{\mathcal{M}}$, $M \cong X \times Y$ with $E \cong T_X$, $F \cong T_Y$.

Without the condition $det(E) = det(F) = \mathcal{O}_{\mathcal{M}}$, this is an open problem – there are partial results by Druel, Höring, Brunella-Pereira-Touzet. It is hard to see how the extra condition on det could help. What the paper says:

"There exists a linear connection on M for which E and F are parallel. Hence the result".

The connection cannot be holomorphic (this would imply $c_i(M) = 0$ for all *i*). There certainly exists such a \mathscr{C}^{∞} connection on *M* (just take one on *E* and one on *F*), but then??

In 1977 Yau announces his proof of the Calabi conjecture (the proof appears in 1978). As we will see below, the decomposition theorem is a direct consequence of Yau's theorem, plus some basic results in differential geometry.

I believe that this became soon common knowledge among differential geometers, but for some reason nobody bothered to write it down explicitely. Here is why I did it 5 years later.

In 1978 Bogomolov published another paper Hamiltonian Kähler manifolds where he claims that no holomorphic symplectic manifold exists in dimension > 2. The error lies in an algebraic manipulation, where I do not understand how he moves from one line to the next.

In 1982 Fujiki constructed a counter-example in dimension 4. I soon realized how to extend his construction in any dimension, then I started to study these manifolds and found a number of interesting features.

I gave a talk at Harvard beginning of 83; Phil Griffiths, who was an influential editor of the JDG at the time, suggested that I submit my paper there. He added that the JDG was looking for papers with a survey aspect, so that general remarks on manifolds with $c_1 = 0$ would be welcome. This is why I wrote a detailed proof of the decomposition theorem.

Now let me sketch how the theorem indeed follows from the Calabi conjecture.

Basics on holonomy

_∦ ν₀

D

(M,g) Riemannian manifold \longrightarrow parallel transport:

In particular, $\varphi : \{ \text{loops at } p \} \longrightarrow O(T_{\rho}(M));$

Im $\varphi := H_p$ = holonomy (sub-)group at p, closed in $O(T_p(M))$.

A tensor field τ is parallel if $\varphi_{\gamma}(\tau(p)) = \tau(q)$ for every γ .

Holonomy principle

Evaluation at p gives a bijective correspondence between:

- parallel tensor fields;
- tensors on $T_p(M)$ invariant under H_p .

Examples

(M,g) with complex structure $J \in \text{End}(T_M)$, $J^2 = -I$.

(1) (g, J) Kähler $\iff J$ parallel $\iff H_p \subset U(T_p(M))$.

(2) g Ricci-flat $\iff (K_M, g)$ flat $\iff H_p \subset SU(T_p(M)).$

(3) The symplectic group: $\operatorname{Sp}(r) = \operatorname{U}(2r) \cap \operatorname{Sp}(2r, \mathbb{C}) \subset \operatorname{GL}(\mathbb{C}^{2r}) = \operatorname{U}(r, \mathbb{H}) \subset \operatorname{GL}(\mathbb{H}^r).$ $H_p \subset \operatorname{Sp}(T_p(M)) \iff \exists \sigma 2\text{-form holomorphic symplectic parallel}$

 $\iff \exists I, J, K \text{ parallel complex structures defining } \mathbb{H} \to \text{End}(T_M)$ (*M* is hyperkähler).

It is a remarkable fact that there are very few possibilities for the holonomy representation:

The de Rham and Berger theorems

From now on we assume that M is **compact** and **simply connected**.

Theorem (de Rham)

$$\begin{aligned} T_p(M) &= \bigoplus_i V_i \text{ stable under } H_p \implies M \cong \prod_i M_i, \text{ with } \\ V_i &= T_{p_i}(M_i) \text{ and } H_p \cong \prod_i H_{p_i}. \end{aligned}$$

Thus we are reduced to **irreducible** manifolds, i.e. with irreducible holonomy representation.

In his thesis (1955), Berger gave a complete list of these representations. In the special case of Kähler manifolds:

Theorem (Berger)

(M,g) Kähler non symmetric, H_p irreducible $\Rightarrow H_p = U, SU$ or Sp.

Sketch of proof of Theorem B

Theorem B: *M* compact Kähler with $\pi_1(M) = 0$, $K_M = \mathcal{O}_M$. By Yau's theorem *M* carries a Kähler metric which is Ricci-flat, that is, with holonomy contained in SU. By the de Rham and Berger theorems, $M \cong \prod_i X_i \times \prod_j Y_j$, where the *X*'s have holonomy SU(*n*) and the *Y*'s Sp(*r*) (we view SU(2) as Sp(1)). To compute $H^0(\Omega^*)$ we use the holonomy principle, plus the

Bochner principle

On a compact Kähler Ricci-flat manifold, a holomorphic tensor field is parallel.

• For H = SU(n), the only invariant tensor is the determinant. Thus $H^0(X, \Omega_X^*) = \mathbb{C} \oplus \mathbb{C}\omega$. Then $h^{2,0} = 0 \Rightarrow X$ projective.

• For H = Sp(r), the only invariant tensors are the powers of the symplectic form, hence $H^0(Y, \Omega_Y^*) = \mathbb{C}[\sigma]$.

M compact Kähler Ricci-flat.

Cheeger-Gromoll (1971): isometric isomorphism $\widetilde{M} \xrightarrow{\sim} \mathbb{C}^k \times X$, with X compact simply connected.

Thus $M = (\mathbb{C}^k \times X) / \Gamma$, with $\Gamma \subset \operatorname{Aut}(\mathbb{C}^k) \times \operatorname{Aut}(X)$.

Aut(X) finite $\Rightarrow \exists \Gamma' \subset \Gamma$ of finite index acting trivially on X.

Bieberbach's theorem $\Rightarrow \exists \Gamma'' \subset \Gamma'$ of finite index acting on \mathbb{C}^k by translations.

Then $(\mathbb{C}^k \times X)/\Gamma'' \cong T \times X \to M$ finite étale.

THE END