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Classical theta functions and their generalization

Arnaud Beauville

Abstract. We first recall the modern theory of classical theta functions,

viewed as sections of line bundles on complex tori. We emphasize the case

of theta functions associated to an algebraic curve C : they are sections of a

natural line bundle (and of its tensor powers) on the Jacobian of C , a complex

torus which parametrizes topologically trivial line bundles on C . Then we ex-

plain how replacing the Jacobian by the moduli space of higher rank vector

bundles leads to a natural generalization (“non-abelian theta functions”). We

present some of the main results and open problems about these new theta

functions.

Introduction

Theta functions are holomorphic functions on Cg , quasi-periodic with respect
to a lattice. For g = 1 they have been introduced by Jacobi; in the general case
they have been thoroughly studied by Riemann and his followers. From a modern
point of view they are sections of line bundles on certain complex tori; in particular,
the theta functions associated to an algebraic curve C are viewed as sections of a
natural line bundle (and of its tensor powers) on a complex torus associated to C ,
the Jacobian, which parametrizes topologically trivial line bundles on C .

Around 1980, under the impulsion of mathematical physics, the idea emerged
gradually that one could replace in this definition line bundles by higher rank
vector bundles. The resulting sections are called generalized (or non-abelian) theta
functions; they turn out to share some (but not all) of the beautiful properties of
classical theta functions.

These notes follow closely my lectures in the Duksan workshop on algebraic
curves and Jacobians. I will first develop the modern theory of classical theta func-
tions (complex tori, line bundles, Jacobians), then explain how it can be generalized
by considering higher rank vector bundles. A more detailed version can be found
in [B5].
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1. The cohomology of a torus

1.1. Real tori. Let V be a real vector space, of dimension n . A lattice in V

is a Z-module Γ ⊂ V such that the induced map Γ⊗Z R→ V is an isomorphism;
equivalently, any basis of Γ over Z is a basis of V . In particular Γ ∼= Zn .

The quotient T := V/Γ is a smooth, compact Lie group, isomorphic to (S1)n .
The quotient homomorphism π : V → V/Γ is the universal covering of T . Thus Γ
is identified with the fundamental group π1(T ).

We want to consider the cohomology algebra H∗(T,C). We think of it as being
de Rham cohomology: recall that a smooth p -form ω on T is closed if dω = 0,
exact if ω = dη for some (p− 1)-form η . Then

Hp(T,C) =
{closed p-forms}
{exact p-forms}

·

Let ` be a linear form on V . The 1-form d` on V is invariant by translation,
hence is the pull back by π of a 1-form on T that we will still denote d` . Let
(x1, . . . , xn) be a system of coordinates on V . The forms (dx1, . . . , dxn) form a
basis of the cotangent space T ∗a (T ) at each point a ∈ T ; thus a p -form ω on T

can be written in a unique way

ω =
∑

i1<...<ip

ωi1...ip(x) dxi1 ∧ . . . ∧ dxip

where the ωi1...ip are smooth functions on T (with complex values).
An important role in what follows will be played by the translations ta : x 7→ x+a

of T . We say that a p -form ω is constant if it is invariant by translation, that is,
t∗aω = ω for all a ∈ T ; in terms of the above expression for ω , it means that the
functions ωi1...ip are constant. Such a form is determined by its value at 0, which is
a skew-symmetric p-linear form on V = T0(T ). We will denote by Altp(V,C) the
space of such forms, and identify it to the space of constant p-forms. A constant
form is closed, hence we have a linear map δp : Altp(V,C)→ Hp(T,C). Note that
Alt1(V,C) is simply HomR(V,C), and δ1 maps a linear form ` to d` .

Proposition 1.1. The map δp : Altp(V,C)→ Hp(T,C) is an isomorphism.

Proof : There are various elementary proofs of this, see for instance [D], III.4. To
save time we will use the Künneth formula. We choose our coordinates (x1, . . . , xn)
so that V = Rn , Γ = Zn . Then T = T1 × . . .× Tn , with Ti ∼= S1 for each i , and
dxi is a 1-form on Ti , which generates H1(Ti,C). The Künneth formula gives
an isomorphism of graded algebras H∗(T,C) ∼−→

⊗
iH
∗(Ti,C). This means that

H∗(T,C) is the exterior algebra on the vector space with basis (dx1, . . . , dxn), and
this is equivalent to the assertion of the Proposition.

What about H∗(T,Z)? The Künneth isomorphism shows that it is torsion
free, so it can be considered as a subgroup of H∗(T,C). By definition of the de
Rham isomorphism the image of Hp(T,Z) in Hp(T,C) is spanned by the closed
p -forms ω such that

∫
σ
ω ∈ Z for each p -cycle σ in Hp(T,Z). Write again
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T = Rn/Zn ; the closed paths γi : t 7→ tei , for t ∈ [0, 1], form a basis of H1(T,Z),
and we have

∫
γi
d` = `(ei). Thus H1(T,Z) is identified with the subgroup of

H1(T,C) = HomR(V,C) consisting of linear forms V → C which take integral
values on Γ; it is isomorphic to HomZ(Γ,Z). Applying again the Künneth formula
gives:

Proposition 1.2. For each p , the image of Hp(T,Z) in Hp(T,C) ∼= Altp(V,C)
is the subgroup of forms which take integral values on Γ ; it is isomorphic to
Altp(Γ,Z) .

1.2. Complex tori. From now on we assume that V has a complex structure,
that is, V is a complex vector space, of dimension g . Thus V ∼= Cg and Γ ∼= Z2g .
Then T := V/Γ is a complex manifold, of dimension g , in fact a complex Lie group;
the covering map π : V → V/Γ is holomorphic. We say that T is a complex torus.
Beware : while all real tori of dimension n are diffeomorphic to (S1)n , there are
many non-isomorphic complex tori of dimension g – more about that in section 3.3
below.

The complex structure of V provides a natural decomposition

HomR(V,C) = V ∗ ⊕ V ∗ ,

where V ∗ := HomC(V,C) and V
∗

= HomC(V ,C) are the subspaces of C -linear
and C-antilinear forms respectively. We write the corresponding decomposition of
H1(T,C)

H1(T,C) = H1,0(T )⊕H0,1(T ) .

If (z1, . . . , zg) is a coordinate system on V , H1,0(T ) is the subspace spanned by
the classes of dz1, . . . , dzg , while H1,0(T ) is spanned by the classes of dz̄1, . . . , dz̄g .

The decomposition HomR(V,C) = V ∗ ⊕ V ∗ gives rise to a decomposition

Altp(V,C) ∼= ∧pV ∗ ⊕ (∧p−1V ∗ ⊗ V ∗)⊕ . . .⊕ ∧pV ∗

which we write
Hp(T,C) = Hp,0(T )⊕ . . .⊕H0,p(T ) .

The forms in Altp(V,C) which belong to Hp,0(T ) (resp. H0,p(T )) are those which
are C -linear (resp. C -antilinear) in each variable. It is not immediate to charac-
terize those which belong to Hq,r(T ) for q, r > 0; for p = 2 we have:

Proposition 1.3. Via the identification H2(T,C) = Alt2(V,C) , H2,0 is the space
of C-bilinear forms, H0,2 the space of C-biantilinear forms, and H1,1 is the space
of R-bilinear forms E such that E(ix, iy) = E(x, y) .

Proof : We have only to prove the last assertion. For ε ∈ {±1} , let Eε be
the space of forms E ∈ Alt2(V,C) satisfying E(ix, iy) = εE(x, y). We have
Alt2(V,C) = E1 ⊕ E−1 , and H2,0 and H0,2 are contained in E−1 .

For ` ∈ V ∗ , `′ ∈ V ∗ , v, w ∈ V , we have

(` ∧ `′)(iv, iw) = `(iv)`′(iw)− `(iw)`′(iv) = (` ∧ `′)(v, w) ,
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hence H1,1 is contained in E1 ; it follows that H2,0⊕H0,2 = E−1 and H1,1 = E1 .

2. Line bundles on complex tori

2.1. The Picard group of a manifold. Our next goal is to describe all
holomorphic line bundles on our complex torus T . Recall that line bundles on a
complex manifold M form a group, the Picard group Pic(M) (the group structure
is given by the tensor product of line bundles). It is canonically isomorphic to
the first cohomology group H1(M,O∗M ) of the sheaf O∗M of invertible holomorphic
functions on M . To compute this group a standard tool is the exponential exact
sequence of sheaves

0→ ZM → OM
e−→ O∗M → 1

where e(f) := exp(2πif), and ZM denotes the sheaf of locally constant functions
on M with integral values. This gives a long exact sequence in cohomology

(1) H1(M,Z) −→ H1(M,OM ) −→ Pic(M) c1−→ H2(M,Z) −→ H2(M,OM )

For L ∈ Pic(M), the class c1(L) ∈ H2(M,Z) is the first Chern class of L . It
is a topological invariant, which depends only on L as a topological complex line
bundle (this is easily seen by replacing holomorphic functions by continuous ones
in the exponential exact sequence).

When M is a projective (or compact Kähler) manifold, Hodge theory provides
more information on this exact sequence.1 The image of c1 is the kernel of the
natural map H2(M,Z) → H2(M,OM ). This map is the composition of the maps
H2(M,Z) → H2(M,C) → H2(M,OM ) deduced from the injections of sheaves
ZM ↪→ CM ↪→ OM . Now the map H2(M,C) → H2(M,OM ) ∼= H0,2 is the
projection onto the last summand of the Hodge decomposition

H2(M,C) = H2,0 ⊕H1,1 ⊕H0,2

(for the experts: this can be seen by comparing the de Rham complex with the
Dolbeault complex.)

Thus the image of c1 consists of classes α ∈ H2(M,Z) whose image αC =
α0,2 + α1,1 + α0,2 in H2(M,C) satisfies α0,2 = 0. But since αC comes from
H2(M,R) we have α2,0 = α0,2 = 0: the image of c1 consists of the classes in
H2(M,Z) whose image in H2(M,C) belongs to H1,1 (“Lefschetz theorem”).

The kernel of c1 , denoted Pico(M), is the group of topologically trivial line
bundles. The exact sequence (1) shows that it is isomorphic to the quotient of
H1(M,OM ) by the image of H1(M,Z). We claim that this image is a lattice
in H1(M,OM ) : this is equivalent to saying that the natural map H1(M,R) →
H1(M,OM ) is bijective. By Hodge theory, this map is identified with the re-
striction to H1(M,R) of the projection of H1(M,C) = H1,0 ⊕ H0,1 onto H0,1 .

1In this section and the following we use standard Hodge theory, as explained in [G-H], 0.6.

Note that Hodge theory is much easier in the two cases of interest for us, namely complex tori

and algebraic curves.
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Since H1(M,R) is the subspace of classes α + ᾱ in H1(M,C), the projection
H1(M,R) → H0,1 is indeed bijective. Thus Pico(M) is naturally identified with
the complex torus H1(M,OM )/H1(M,Z).

2.2. Systems of multipliers. We go back to our complex torus T = V/Γ.

Lemma 2.1. Every line bundle on V is trivial.

Proof : We have H2(V,Z) = 0 and H1(V,OV ) = 0 (see [G-H], p. 46), hence
Pic(V ) = 0 by the exact sequence (1).

Let L be a line bundle on T . We consider the diagram

π∗L //

��

L

��
V

π // T

The action of Γ on V lifts to an action on π∗L = V ×T L . We know that π∗L
is trivial; we choose a trivialization π∗L ∼−→ V × C . We obtain an action of Γ on
V ×C , so that L is the quotient of V ×C by this action. An element γ of Γ acts
linearly on the fibers, hence by

γ · (z, t) = (z + γ, eγ(z) t) for z ∈ V, t ∈ C

where eγ is a holomorphic invertible function on V . This formula defines a group
action of Γ on V × C if and only if the functions eγ satisfy

eγ+δ(z) = eγ(z + δ) eδ(z) (“cocycle condition”).

A family (eγ)γ∈Γ of holomorphic invertible functions on V satisfying this con-
dition is called a system of multipliers. Every line bundle on T is defined by such
a system.

A theta function for the system (eγ)γ∈Γ is a holomorphic function V → C
satisfying

θ(z + γ) = eγ(z) θ(z) for all γ ∈ Γ, z ∈ V .

Proposition 2.2. Let (eγ)γ∈Γ be a system of multipliers, and L the associated
line bundle. The space H0(T, L) is canonically identified with the space of theta
functions for (eγ)γ∈Γ .

Proof : Any global section s of L lifts to a section ŝ = π∗s of π∗L = V ×T L over
V , defined by ŝ(z) = (z, s(πz)); it is Γ-invariant in the sense that ŝ(z+γ) = γ ·ŝ(z).
Conversely, a Γ-invariant section of π∗L comes from a section of L . Now a section
of π∗L ∼= V × C is of the form z 7→ (z, θ(z)), where θ : V → C is holomorphic. It
is Γ-invariant if and only if θ is a theta function for (eγ)γ∈Γ .

Let (eγ)γ∈Γ and (e′γ)γ∈Γ be two systems of multipliers, defining line bundles
L and L′ . The line bundle L ⊗ L′ is the quotient of the trivial line bundle
V × (C⊗C) by the tensor product action γ · (z, t⊗ t′) = (z + γ, eγ(z) t⊗ e′γ(z) t′);
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therefore it is defined by the system of multipliers (eγe′γ)γ∈Γ . In other words,
multiplication defines a group structure on the set of systems of multipliers, and
we have a surjective group homomorphism

{systems of multipliers} −→ Pic(T ) .

A system of multipliers (eγ)γ∈Γ lies in the kernel if and only if the associated
line bundle admits a section which is everywhere 6= 0; in view of Proposition
2.2, this means that there exists a holomorphic function h : V → C∗ such that
eγ(z) = h(z+γ

h(z) . We will call such systems of multipliers trivial.

Remark 2.3. (only for the readers who know group cohomology) Put H∗ :=
H0(V,O∗V ). The system of multipliers are exactly the 1-cocycles of Γ with values in
H∗ , and the trivial systems are the coboundaries. Thus we get a group isomorphism
H1(Γ, H∗) ∼−→ Pic(T ) (see [M1], §2 for a more conceptual explanation of this
isomorphism).

2.3. Interlude: hermitian forms. There are many holomorphic invertible
functions on V , hence many systems of multipliers giving rise to the same line
bundle. Our next goal will be to find a subset of such systems such that each line
bundle corresponds exactly to one system of multipliers in that subset. This will
involve hermitian forms on V , so let us fix our conventions.

A hermitian form H on V will be C-linear in the second variable, C -antilinear
in the first. We put S(x, y) = Re H(x, y) and E(x, y) = ImH(x, y). S and E are
R-bilinear forms on V , S is symmetric, E is skew-symmetric; they satisfy:

S(x, y) = S(ix, iy) , E(x, y) = E(ix, iy) , S(x, y) = E(x, iy)

Using these relations one checks easily that the following data are equivalent:

• The hermitian form H ;
• The symmetric R-bilinear form S with S(x, y) = S(ix, iy);
• The skew-symmetric R-bilinear form E with E(x, y) = E(ix, iy).

Moreover,
H non-degenerate ⇐⇒ E non-degenerate ⇐⇒ S non-degenerate.

2.4. Systems of multipliers associated to hermitian forms. We denote
by P the set of pairs (H,α), where H is a hermitian form on V , α a map from
Γ to S1 , satisfying:

E := Im(H) takes integral values on Γ ; α(γ + δ) = α(γ)α(δ)(−1)E(γ,δ) .

(We will say that α is a semi-character of Γ with respect to E ).
The law (H,α) · (H ′, α′) = (H +H ′, α α′) defines a group structure on P . For

(H,α) ∈ P , we put

eγ(z) = α(γ) eπ[H(γ,z)+ 1
2H(γ,γ)] .



CLASSICAL THETA FUNCTIONS AND THEIR GENERALIZATION 7

We leave as an (easy) exercise to check that this defines a system of multipliers. The
corresponding line bundle will be denoted L(H,α). The map (H,α) 7→ L(H,α)
from P onto Pic(T ) is a group homomorphism; we want to prove that it is an
isomorphism.

Theorem 2.4. The map (H,α) 7→ L(H,α) defines a group isomorphism P ∼−→ Pic(T ) .

Sketch of proof : One proves first that the first Chern class c1(L(H,α)) is equal to
E ∈ Alt2(Γ,Z) ∼= H2(T,Z). This can be done by using the differential-geometric
definition of the Chern classes ([G-H], p. 141), or in terms of group cohomology
([M1], §2).

Let Q be the group of hermitian forms H on V such that Im(H) is integral on
Γ. The projection p : P → Q is surjective, because a semi-character is determined
by its values on the elements of a basis of Γ, and these values can be chosen
arbitrarily. The kernel of p is the group of characters Hom(Γ,S1). Consider the
diagram

0 // Hom(Γ,S1) //

Lo

��

P
p //

L

��

Q //

ι

��

0

0 // Pico(T ) // Pic(T )
c1 // H2(T,Z)

where Lo(α) := L(0, α), and ι(H) = Im(H) ∈ Alt2(Γ,Z) ∼= H2(T,Z). The equality
c1(L(H,α)) = E = ι(H) implies that the diagram is commutative.

Now we claim that ι is bijective onto Im(c1): indeed we have seen in section
2.1 that a form E ∈ Alt2(Γ,Z) ∼= H2(T,Z) belongs to Im(c1) if and only if it
belongs to H1,1 , that is satisfies E(ix, iy) = E(x, y) (Proposition 1.3). By section
2.3 this is equivalent to E = Im(H) for a hermitian form H ∈ Q ; moreover H is
uniquely determined by E , hence our assertion.

Finally one proves using Hodge theory that any line bundle M in Pico(T )
admits a unique flat unitary structure, that is, M ∼= L(0, α) for a unique character
α of Γ. In other words Lo is bijective, hence L is bijective.

2.5. The theorem of the square. This section is devoted to an important
result, Theorem 2.6 below, which is actually an easy consequence of our description
of line bundles on T (we encourage the reader to have a look at the much more
elaborate proof in [M1], §6, valid over any algebraically closed field).

Lemma 2.5. Let a ∈ V . We have t∗π(a)L(H,α) = L(H,α′) with α′(γ) =
α(γ) e(E(γ, a) .

Proof : In general, let L be a line bundle on T defined by a system of multipliers
(eγ)γ∈Γ . Then (eγ(z + a))γ∈Γ is a system of multipliers, defining a line bundle
L′ ; the self-map (z, t) 7→ (z + a, t) of V × C is equivariant w.r.t. the actions of Γ
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defined by (eγ(z + a)) on the source and (eγ(z)) on the target, so it induces an
isomorphism L′ ∼−→ t∗π(a)L .

We apply this to the multiplier eγ(z) = a(γ)eπ[H(γ,z)+ 1
2H(γ,γ)] ; we find

eγ(z+ a) = eγ(z) eπH(γ,a) . Recall that we are free to multiply eγ(z) by h(z+γ)
h(z) for

some holomorphic invertible function h ; taking h(z) = e−πH(a,z) , our multiplier
becomes eγ eπ[H(γ,a)−H(a,γ)] = eγ e

2πiE(γ,a) .

Theorem 2.6. Let L be a line bundle on T .
1) (Theorem of the square) The map

λL : T → Pico(T ) , λL(a) = t∗aL⊗ L−1

is a group homomorphism.

2) Let E ∈ Alt2(Γ,Z) be the first Chern class of L . We have

KerλL = Γ⊥/Γ , with Γ⊥ := {z ∈ V | E(z, γ) ∈ Z for all γ ∈ Γ} .

3) If E is non-degenerate, λL is surjective and has finite kernel.

4) If E is unimodular, λL is a group isomorphism.

Proof : By the Lemma, λL is the composition

T
ε−→ Hom(Γ,S1) Lo

−→ Pico(T ) ,

where ε(a), for a = π(ã) ∈ T , is the map γ 7→ e(E(γ, ã), and Lo is the isomor-
phism α 7→ L(0, α) (Theorem 2.4). Therefore we can replace λL by ε in the proof.
Then 1) and 2) become obvious.

Assume that E is non-degenerate. Let χ ∈ Hom(Γ,S1). Since Γ is a free
Z-module, we can find a homomorphism u : Γ → R such that χ(γ) = e(u(γ)) for
each γ ∈ Γ. Extend u to a R-linear form V → R ; since E is non-degenerate, there
exists a ∈ V such that u(z) = E(z, a), hence ε(π(a)) = χ . Thus ε is surjective.

Let us denote by e : V → HomR(V,R) the R -linear isomorphism associated
to E . The dual Γ∗ := HomZ(Γ,Z) embeds naturally in HomR(V,R), and Γ⊥ is
by definition e−1(Γ∗); then e identifies Γ⊥ with Γ∗ , so that the inclusion Γ ⊂ Γ⊥

corresponds to the map Γ → Γ∗ associated to E|Γ . This map has finite cokernel,
and it is bijective if E is unimodular; this achieves the proof.

Remark 2.7. We have seen in section 2.1 that Pico(T ) has a natural structure
of complex torus; it is not difficult to prove that the map λL is holomorphic. In
particular, when E is unimodular, λL is an isomorphism of complex tori.

Corollary 2.8. Assume that c1(L) is non-degenerate. Any line bundle L′ with
c1(L′) = c1(L) is isomorphic to t∗aL for some a in T .

Proof : L′ ⊗ L−1 belongs to Pico(T ), hence is isomorphic to t∗aL⊗ L−1 for some
a in T by 3).

The following immediate consequence of 1) will be very useful:



CLASSICAL THETA FUNCTIONS AND THEIR GENERALIZATION 9

Corollary 2.9. Let a1, . . . , ar in T with
∑
ai = 0 . Then t∗a1

L⊗ . . .⊗t∗arL ∼= L⊗r .

3. Polarizations

In this section we will consider a line bundle L = L(H,α) on our complex
torus T such that the hermitian form H is positive definite. We will first look for
a concrete expression of the situation using an appropriate basis.

3.1. Frobenius lemma. The following easy result goes back to Frobenius:

Proposition 3.1. Let Γ be a free finitely generated Z-module, and E : Γ×Γ→ Z
a skew-symmetric, non-degenerate form. There exists positive integers d1, . . . , dg
with d1 | d2 | . . . | dg and a basis (γ1, . . . , γg; δ1, . . . , δg) of Γ such that the matrix

of E in this basis is

(
0 d
−d 0

)
, where d is the diagonal matrix with entries

(d1, . . . , dg) .

As a consequence we see that the determinant of E is the square of the integer
d1 . . . dg , called the Pfaffian of E and denoted Pf(E). The most important case
for us will be when d1 = · · · = dg = 1, or equivalently det(E) = 1; in that case one
says that E is unimodular, and that (γ1, . . . , γg; δ1, . . . , δg) is a symplectic basis of
Γ.

Proof : Let d1 be the minimum of the numbers E(α, β) for α, β ∈ Γ, E(α, β) > 0;
choose γ, δ such that E(γ, δ) = d1 . For any ε ∈ Γ, E(γ, ε) is divisible by d1 –
otherwise using Euclidean division we would find ε with 0 < E(γ, ε) < d1 . Likewise
E(δ, ε) is divisible by d1 . Put U = Zγ ⊕ Zδ ; we claim that Γ = U ⊕ U⊥ . Indeed,
for x ∈ Γ, we have

x =
E(x, δ)
d1

γ +
E(γ, x)
d1

δ + (x− E(x, δ)
d1

γ − E(γ, x)
d1

δ) .

Reasoning by induction on the rank of Γ, we find integers d2 | d3 | . . . | dg and a

basis (γ, γ2, . . . , γg; δ, δ2, . . . , δg) of Γ, such that the matrix of E is

(
0 d
−d 0

)
.

It remains to prove that d1 divides d2 ; otherwise, using Euclidean division again,
we can find k ∈ Z such that 0 < E(γ + γ2, kδ + δ2) < d1 , a contradiction.

3.2. Polarizations and the period matrix. Going back to our complex
torus T = V/Γ, we assume given a positive definite hermitian form H on V , such
that E := Im(H) takes integral values on Γ. Such a form is called a polarization
of T ; if E is unimodular, we say that H is a principal polarization. A complex
torus which admits a polarization is classically called a (polarized) abelian variety ;
we will see below that it is actually a projective manifold. It is common to use the
abbreviation p.p.a.v. for “principally polarized abelian variety”.
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In what follows we will treat only the case of principal polarizations, which is
sufficient for our purpose. The general case is completely analogous but requires
some more complicated notations, see e.g. [D], ch. VI.

We choose a symplectic basis (γ1, . . . , γg; δ1, . . . , δg) as in Proposition 3.1.

Lemma 3.2. (γ1, . . . , γg) is a basis of V over C .

Proof : Let W = Rγ1 ⊕ . . .⊕ Rγg . Our statement is equivalent to V = W ⊕ iW .
But if x ∈ W ∩ iW , we have H(x, x) = E(x, ix) = 0 since E|W = 0, hence
x = 0.

Expressing the δj ’s in this basis gives a matrix τ ∈Mg(C) with δj =
∑
i τijγi .

In the corresponding coordinates, we have

Γ = Zg ⊕ τZg ;

in other words, the elements of Γ are the column vectors p + τq with p, q ∈ Zg .
The matrix τ is often called the period matrix.

Proposition 3.3. The matrix τ is symmetric, and Im(τ) is positive definite.

Proof : Put τ = A + iB , with A,B ∈ Mg(R). We will compare the bases
(γ1, . . . , γg; δ1, . . . , δg) and (γ1, . . . , γg; iγ1, . . . , iγg) of V over R . The change of ba-

sis matrix (expressing the vectors of the first basis in the second one) is P =

(
d A

0 B

)
.

Therefore the matrix of E in the second basis is

tP−1

(
0 d
−d 0

)
P−1 =

(
0 B−1

−tB−1 tB−1(A− tA)B−1

)
(exercise!). Now the condition E(ix, iy) = E(x, y), expressed in the basis (γ1, . . . , γg;
iγ1, . . . , iγg), is equivalent to A = tA and B = tB ; we have H(γ′j , γ

′
k) = E(γ′j , iγ

′
k),

so the matrix of H in the basis (γ′1, . . . , γ
′
g) (over C) is B−1 , and the positivity of

H is equivalent to that of B .

3.3. The moduli space of p.p.a.v. We have seen that the choice of a sym-
plectic basis determines the matrix τ , which in turn completely determines T and
H : we have

V = Cg and Γ = Γτ := Zg ⊕ τZg ;

the hermitian form H is given by the matrix Im(τ)−1 , and its imaginary part E
by E(p+ τq, p′ + τq′) = tpq′ − tqp′ .

The space of symmetric matrices τ ∈ Mg(C) with Im(τ) positive definite is
denoted Hg , and called the Siegel upper half space. It is an open subset of the
vector space of complex symmetric matrices. From what we have seen it follows
that Hg parametrizes p.p.a.v. (V/Γ, H) endowed with a symplectic basis of the
lattice Γ.

Now we want to get rid of the choice of the symplectic basis. We have as-
sociated to a symplectic basis an isomorphism V ∼−→ Cg which maps Γ to the
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lattice Γτ . A change of the basis amounts to a linear automorphism M of Cg ,
inducing a symplectic isomorphism Γτ ∼−→ Γτ ′ . Such an isomorphism is given by(
p′

q′

)
= P

(
p

q

)
, where P belongs to the symplectic group Sp(2g,Z), that is,

P ∈M2g(Z) and tPJP = J , with J =

(
0 1
−1 0

)
.

We have M(p+ τq) = p′ + τ ′ q′ , hence

(
1 τ ′

)
= M

(
1 τ

)
P−1 or equivalently

(
1
τ ′

)
= tP−1

(
1
τ

)
tM .

If P =

(
a b

c d

)
, with a, b, c, d ∈ Mg(Z), we have tP−1 = −JPJ =

(
d −c
−b a

)
.

We find

1 = (d− cτ)tM , τ ′ = (−b+ aτ)tM , hence τ ′ = (aτ − b)(−cτ + d)−1 .

Thus the group Sp(2g,Z) acts on Hg by (P, τ) 7→ (aτ − b)(−cτ + d)−1 , and two
matrices τ, τ ′ correspond to the same p.p.a.v. with different symplectic bases iff
they are conjugate under this action. To get a nicer formula, we observe that(

a −b
−c d

)
= tP t , with t =

(
1 0
0 −1

)
;

since tJt = −J , the map P 7→ tP t is an automorphism of Sp(2g,Z). Composing
our action with this automorphism, we obtain:

Proposition 3.4. The group Sp(2g,Z) acts on Hg by

(
a b

c d

)
·τ = (aτ+b)(cτ+d)−1 .

The quotient Ag := Hg/Sp(2g,Z) parametrizes isomorphism classes of g -dimensional
p.p.a.v.

It is not difficult to show that the action of Sp(2g,Z) on Hg is nice (“properly
discontinuous”), so that Ag is an analytic space ([D], VII.1). A much more subtle
result is that Ag is Zariski open in a projective variety, the Satake compactification
Ag .

We have not made precise in which sense Ag parametrizes p.p.a.v. It is actually
what is called a moduli space; we will give a precise definition in the case of vector
bundles (see section 4.2 below), which can be adapted without difficulty to this
case.

3.4. Theta functions. Let H be a polarization on T ; we keep the notation
of the previous sections. Let α : Γ→ S1 be any semi-character of Γ w.r.t. E .

Theorem 3.5. dimH0(T, L(H,α)) = d1 . . . dg = Pf(E) .
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Proof : We first treat the case d1 = . . . = dg = 1. According to Prop. 2.2, we are
looking for theta functions satisfying

θ(z + γ) = α(γ)eπ[H(γ,z)+ 1
2H(γ,γ)]θ(z) .

Recall that we are free to multiply eγ(z) by h(z+γ)
h(z) for some h ∈ H0(V,O∗V ) (this

amounts to multiply θ by h). We will use this to make θ periodic with respect to
the basis elements γ1, . . . , γg of Γ.

As before we put W = Rγ1 ⊕ . . . ⊕ Rγg . Since E|W = 0, the form H|W is a
real symmetric form; since V = W ⊕ iW (lemma 3.2), it extends as a C-bilinear
symmetric form B on V . We put h(z) = e−

π
2B(z,z) : this amounts to replace H in

eγ(z) by H ′ := H −B . We have

Lemma 3.6. H ′(p+ τq, z) = −2i tqz .

Proof : Let w ∈ W . We have H ′(w, y) = 0 for y ∈ W , hence also for any
y ∈ V because H ′ is C-linear in y . On the other hand for z ∈ V we have
H ′(z, w) = (H−B)(z, w) = (H̄−B)(w, z) = (H̄−H)(w, z) = 2iE(z, w). Thus for
z =

∑
ziγi ∈ V we have H ′(γj , z) = 0 and H ′(δj , z) =

∑
k zkH

′(δj , γk) = −2izj ,
hence the lemma.

Put L = L(H,α). By Corollary 2.8, changing α amounts to replace L by
t∗aL for some a ∈ T . Since the pull back map t∗a : H0(T, L) → H0(T, t∗aL) is an
isomorphism, it suffices to prove the theorem for a particular value of α ; we choose
α(p+ τq) = (−1)

tpq . Indeed we have mod. 2, for p, q, p′, q′ ∈ Zg :
t(p+ p′)(q + q′) ≡ tpq + tp′q′ + (tpq′ − tp′q) = tpq + tp′q′ + E(p+ τq, p′ + τq′) .

Thus our theta functions must satisfy the quasi-periodicity condition

θ(z + p+ τq) = θ(z) e(−tqz − 1
2
tqτq) for z ∈ Cg, p, q ∈ Zg .

In particular, they are periodic with respect to the subgroup Zg ⊂ Cg . This implies
that they admit a Fourier expansion of the form θ(z) =

∑
m∈Zg c(m)e(tmz). Now

let us express the quasi-periodicity condition; we have:

θ(z + p+ τq) =
∑
m∈Zg

c(m)e(tmτq)e(tmz)

and
θ(z)e(−tqz−1

2
tqτq) =

∑
m∈Zg

c(m)e(t(m−q)z−1
2
tqτq) =

∑
m∈Zg

c(m+q)e(−1
2
tqτq)e(tmz) .

Comparing we find c(m + q) = c(m)e(t(m + q
2 )τq). Taking m = 0 gives c(q) =

c(0) e( 1
2
tqτq). Thus our theta functions, if they exist, are all proportional to

θ(z) =
∑
m∈Zg

e(tmz +
1
2
tmτm) .

It remains to prove that this function indeed exists, that is that the series converges.
But the coefficients c(m) of the Fourier series satisfy |c(m)| = e−q(m) , where q is a
positive definite quadratic form, and therefore they decrease very fast as m→∞ .
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Now we treat the case d1 = . . . = dg = d . In this case the form 1
dH is

a principal polarization, so we can take L = L⊗d0 , where L0 is the line bundle
considered above. The corresponding theta functions satisfy

θ(z + p+ τq) = θ(z)e(−dtqz − d

2
tqτq)) for z ∈ Cg, p, q ∈ Zg

(“theta functions of order d”). We write again θ(z) =
∑
m∈Zg c(m)e(tmz); the

quasi-periodicity condition gives

c(m+ dq) = c(m)e(t(m+
d

2
)τq) = c(m)e(

−1
d
tmτm)e(

1
2d

t(m+ dq)τ(m+ dq))

This determines up to a constant all coefficients c(m) for m in a given coset ε
of Zg modulo dZg ; the corresponding theta function is

(2) θ[ε](z) =
∑
m∈ε

e(tmz +
1
2d

tmτm) .

By what we have seen the functions θ[ε] , where ε runs through Zg/dZg , form a
basis of the space of theta functions of order d ; in particular, the dimension of this
space is dg .

The proof of the general case is completely analogous but requires more compli-
cated notations. We will not need it in these lectures, so we leave it as an exercise
for the reader.

3.5. Comments. The proof of the theorem gives much more than the dimen-
sion of the space of theta functions, namely an explicit basis (θ[ε])ε∈Zg/dZg of this
space given by formula (2). In particular, when the polarization H is principal, the
line bundles L(H,α) have a unique non-zero section (up to a scalar); the divisor
of this section is called a theta divisor of the p.p.a.v. (T,H). By Cor. 2.8 it is
well-defined up to translation, so one speaks sometimes of “the” theta divisor. The
choice of a symplectic basis gives a particular theta divisor Θτ , defined by the
celebrated Riemann theta function

θ(z) =
∑
m∈Zg

e(tmz +
1
2
tmτm) .

It is quite remarkable that starting from a linear algebra data (a lattice Γ in
V and a polarization), we get a hypersurface Θ ⊂ T = V/Γ. When the p.p.a.v.
comes from a geometric construction (Jacobians, Prym varieties, intermediate Ja-
cobians), this divisor has a rich geometry, which reflects the objects we started
with. In particular it is often possible to recover these objects from the data (T,Θ)
(“Torelli theorem”), or to characterize the p.p.a.v. obtained in this way (“Schottky
problem”).
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3.6. Reminder: line bundles and maps into projective space. Let M
be a projective variety, and L a line bundle on M . The linear system |L| is by
definition P(H0(M,L)). Sending a nonzero section to its divisors identifies |L|
with the set of effective divisors E on M such that OM (E) ∼= L .

The base locus B(L) of L is the intersection of the divisors in |L| . Assume
that L has no base point, that is, B(L) = ∅ . Then the divisors of |L| passing
through a point m ∈M form a hyperplane in |L| , corresponding to a point ϕL(m)
in the dual projective space |L|∗ . This defines a morphism ϕL : M → |L|∗ .
Choosing a basis (s0, . . . , sn) of H0(M,L) identifies |L| and its dual |L|∗ to Pn ;
then ϕL(m) = (s0(m), . . . , sn(m)), where we have fixed an isomorphism Lm

∼−→ C
to evaluate the si at m .

If E ∈ |L| , we also denote the linear system |L| by |E| , and the map ϕL by
ϕE . Thus |E| is the set of effective divisors linearly equivalent to E .

3.7. The Lefschetz theorem.

Theorem 3.7 (Lefschetz). Let L be a line bundle on T .
1) Assume H0(T, L) 6= 0 . For k ≥ 2 , the linear system |L⊗k| has no base

points.
2) Assume that the hermitian form associated to L is positive definite. For

k ≥ 3 , the map ϕL⊗k : T → |L⊗k|∗ is an embedding.

Proof : We will only prove 1) – the proof of 2) uses the same idea but is technically
more involved, see [M1], §17. Let D ∈ |L| . A simple but crucial observation is
that

x ∈ t∗aD ⇐⇒ a ∈ t∗xD .

By Cor. 2.9 we have (k − 1)t∗aD + t∗−(k−1)aD ∈ |L
⊗k| for all a in T . Given

x ∈ T , we choose a such that a and −(k − 1)a do not belong to t∗xD ; then
x /∈ (k − 1)t∗aD + t∗−(k−1)aD , which proves 1).

Remark 3.8. A line bundle L such that ϕL⊗k is an embedding for k large enough
is said to be ample. The celebrated (and difficult) Kodaira embedding theorem
states that this is the case if and only if the class c1(L) can be represented by a
(1, 1)-form which is everywhere positive definite (see [G-H], section I.4, for a precise
statement and a proof). The Lefschetz theorem gives a much more elementary
version for complex tori. It is also more precise, since it says that k ≥ 3 is enough
for L⊗k to give an embedding.

In particular, for a theta divisor Θ on a p.p.a.v., the linear system 3|Θ| already
gives an embedding, while |Θ| is just a point. What about |2Θ|? From formula (2)
above one sees easily that theta functions of order 2 are even. It follows that ϕ2Θ

factors through the quotient of T by the involution iT : z 7→ −z . This quotient
K := T/iT is called the Kummer variety of T ; it has 22g singular points, which
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are the images of the points of order 2 in T . Using again the theorem of the square
one can prove (see [L-N]):

Proposition 3.9. Let Θ be an irreducible symmetric theta divisor on T . The
map ϕ2Θ : T → |2Θ|∗ factors through iT and embeds K = T/iT into |2Θ|∗ .

Remark 3.10. What if Θ is reducible? It is not difficult to show that T must
be a product of lower-dimensional p.p.a.v.; that is, T = T1 × . . . × Tp and Θ =
Θ1×T2× . . .×Tp + . . .+T1× . . .×Tp−1×Θp . In that case the geometry of (T,Θ)
is determined by that of the (Ti,Θi).

Example. Suppose g = 2. Then ϕ2Θ embeds K = T/iT in P3 . It is easy to
see that K has degree 4 (hint: use KT = OT = ϕ∗2ΘOP3(deg(K) − 4)); it has 16
double points corresponding to the 16 points of order 2 in T . This is the celebrated
Kummer quartic surface, found by Kummer in 1864.

4. Curves and their Jacobians

In this section we denote by C a smooth projective curve (= compact Riemann
surface) of genus g .

4.1. Hodge theory for curves. We first recall briefly Hodge theory for
curves, which is much easier than in the general case. We start from the exact
sequence of sheaves

0→ CC −→ OC
d−→ KC → 0 ,

where CC is the sheaf of locally constant complex functions, and KC (also denoted
Ω1
C or ωC ) is the sheaf of holomorphic 1-forms. Taking into account H0(C,OC) = C

and H1(C,KC) ∼= C (Serre duality), we obtain an exact sequence

0→ H0(C,KC) ∂−→ H1(C,C)
p−→ H1(C,OC)→ 0 .

By definition g = dimH0(C,KC); by Serre duality we have also dimH1(C,OC) = g ,
hence dimH1(C,C) = 2g .

We put H1,0 := Im ∂ and H0,1 := H1,0 ; H1,0 is the subspace of classes in
H1(C,C) which can be represented by holomorphic forms, and H0,1 by antiholo-
morphic forms.

Lemma 4.1. Let α 6= 0 in H0(C,KC) ; then i
∫
C
α ∧ ᾱ > 0 .

Proof : Let z = x + iy be a local coordinate in an open subset U of C . We can
write α = f(z)dz in U , so that

i

∫
U

α ∧ ᾱ =
∫
U

|f(z)|2 i dz ∧ dz̄ =
∫
U

|f(z)|2 2 dx ∧ dy > 0 .

Proposition 4.2. H1(C,C) = H1,0 ⊕ H0,1 ; the map p induces an isomorphism
H0,1 → H1(C,OC) .
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Proof : The second assertion follows from the first and from the above exact
sequence. For dimension reasons it suffices to prove that H1,0 ∩ H0,1 = (0). Let
x ∈ H1,0 ∩ H0,1 . There exists α, β ∈ H0(C,KC) such that x = [α] = [β̄] , hence
α − β̄ = df for some C∞ function f on C . Then β ∧ β̄ = df ∧ β = d(fβ), hence∫
C
β∧β̄ = 0 by Stokes theorem. By the Lemma this implies β = 0 hence x = 0.

Proposition 4.3. p(H1(C,Z)) is a lattice in H0,1 ; the hermitian form H on H0,1

defined by H(α, β) := 2i
∫
C
ᾱ ∧ β induces a principal polarization on the complex

torus H0,1/p(H1(C,Z)) .

Proof : The first assertion has already been proved (section 2.1). Lemma 4.1 shows
that the form H is positive definite on H0,1 = H1,0 . Let a, b ∈ H1(C,Z); we have

a = ᾱ+ α , b = β̄ + β with α = p(a) , β = p(b) .

Their cup-product in H2(C,Z) = Z is given by

a · b =
∫
C

(ᾱ+ α) ∧ (β̄ + β) =
1
2i
(
H(α, β)−H(β, α)

)
= Im(H)(α, β) ;

thus Im(H) induces on H1(C,Z) the cup-product, which is unimodular by Poincaré
duality.

The g -dimensional abelian variety JC := H0,1/p(H1(C,Z)) with the principal
polarization H is called the Jacobian of C ; it plays an essential role in the study
of the curve.

4.2. Line bundles on C . To study line bundles on C we use again the exact
sequence (1):

0→ H1(C,Z) i−→ H1(C,OC) −→ Pic(C) c1−→ H2(C,Z) ∼= Z→ 0 .

Here for a line bundle L on C , c1(L) is simply the degree deg(L) (through the
canonical isomorphism H2(C,Z) ∼= Z): deg(L) = deg(D) for any divisor D such
that OC(D) ∼= L .

Note that i is the composition of the maps H1(C,Z)→ H1(C,C)
p−→ H1(C,OC)

deduced from the inclusions of sheaves ZC ⊂ CC ⊂ OC . Hence:

Proposition 4.4. We have an exact sequence 0 → JC −→ Pic(C)
deg−→ Z → 0 .

Thus JC is identified with Pico(C), the group of isomorphism classes of degree
0 line bundles on C – or the group of degree 0 divisors modulo linear equivalence.
More precisely, one can show that JC is a moduli space for degree 0 line bundles
on C . This means the following. Let S be a complex manifold (or analytic space),
and let L be a line bundle on C × S . For s ∈ S , put Ls := LC×{s} . We say that
(Ls)s∈S is a holomorphic family of line bundles on C parametrized by S . If the
line bundles Ls have degree 0, we get a map S → JC ; we want this map to be
holomorphic.
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4.3. The Theta divisor. Jacobians give the first (and fundamental) exam-
ples of the situation we discussed in 3.5: while the the principal polarization is
defined in a linear algebra way, the theta divisor admits a very simple geometric
description. Let us define indeed, for any line bundle L on C of degree g − 1:

ΘL := {M ∈ JC | H0(M ⊗ L) 6= 0 .}

Theorem 4.5 (Riemann). ΘL is a theta divisor of JC .

We have to refer to [ACGH], p. 23 for the proof. Let us only observe
that the fact that ΘL is a divisor is easy: it is the image of Cg−1 by the map
(p1, . . . , pg−1) 7→ L−1(p1 + . . . + pg−1); this map is generically finite because for
p1, . . . , pg−1 general enough the linear system |p1 + . . . + pg−1| consists of one
point.

Remark 4.6. 1) Replacing L by another line bundle L′ (of the same degree)
amounts to translate ΘL by the element L′ ⊗ L−1 of JC . Thus the ambiguity in
the choice of L corresponds to the fact that a theta divisor is defined only up to
translation.

Still there is a way to define a canonical theta divisor, which lives on a variety
isomorphic to JC . For any d ∈ Z , let Jd denote the set of isomorphism classes
of line bundles of degree d on C . Choosing a line bundle L of degree d defines a
bijection tL : JC → Jd (by M 7→M ⊗ L). This provides a structure of projective
variety on Jd which does not depend on the choice of L . By construction Jd is
isomorphic to JC , but there is no canonical isomorphism.

Now we have a canonical divisor Θ ⊂ Jg−1 , the locus of line bundles L with
H0(L) 6= 0; for each L ∈ Jg−1 we have ΘL = t∗LΘ.

2) A consequence of the Riemann theorem is that the theta divisor is irreducible,
so a Jacobian cannot be a product of non-trivial p.p.a.v. (Remark 3.10).

5. Vector bundles on curves

As explained in the introduction, generalized theta functions appear when we
replace JC , the moduli space of degree 0 line bundles on C , by the analogous
moduli spaces for higher rank vector bundles. We will now explain what this
means.

5.1. Elementary properties. Let E be a vector bundle on C , of rank r .
The maximum wedge power ∧rE is a line bundle on C , denoted det(E). Its degree
is denoted by deg(E). It has the following properties:

• In an exact sequence 0→ F → E → G→ 0 we have det(E) ∼= det(F )⊗det(G);
• For any line bundle L on C , we have det(E ⊗ L) = det(E)⊗ L⊗r .
• (Riemann-Roch) h0(E)− h1(E) = deg(E) + r(1− g).
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It will be convenient to introduce the slope µ(E) := deg(E)
r ∈ Q . Thus

Riemann-Roch can be written h0(E)− h1(E) = r(µ(E) + 1− g).

5.2. Moduli spaces. We have seen that the Jacobian of C parametrizes line
bundles of degree 0, in the sense that for any holomorphic family (Ls)s∈S the
corresponding map S → JC is holomorphic. Unfortunately such a nice moduli
space does not exist in higher rank. Indeed, let L be a non-trivial line bundle on C

with no base point (section 3.6). One can construct a holomorphic family of vector
bundles (Et)t∈C on C such that:

Et ∼= OC ⊕OC for t 6= 0 E0 ∼= L⊕ L−1

(The construction is quite elementary, see [B5], lemma 5.1). This implies that
there is no reasonable moduli space M containing both O⊕2

C and L ⊕ L−1 : the
above family would give rise to a holomorphic map C →M mapping C r {0} to
a point, and 0 to a different point. There are two ways to deal with this problem.
The sophisticated one, which we will not discuss here, replaces moduli spaces by a
more elaborate notion called moduli stacks. The reader interested by this point of
view may look at [G].

Instead we will follow the classical (by now) approach, which eliminates certain
vector bundles, for instance those of the form L⊕L−1 which appear in the Lemma;
this is done as follows:

Definition 5.1. A vector bundle E on C is stable if µ(F ) < µ(E) for every sub-
bundle 0 ( F  E . It is polystable if it is a direct sum of stable sub-bundles of
slope µ(E).

Theorem 5.2. There exists a moduli space Ms(r, d) for stable vector bundles of
rank r and degree d . It is a smooth connected quasi-projective manifold; it admits a
projective compactification M(r, d) whose points correspond to isomorphism classes
of polystable bundles.

We refer to [LP] for a precise statement as well as the proof.

5.3. The moduli space M(r) . As for line bundles, degree 0 vector bundles
(those which are topologically trivial) are particularly important. We will actually
focus on the subspace M(r) of M(r, 0) parametrizing vector bundles with trivial
determinant; it is simpler than M(r, 0), but we will see that it carries enough
information to recover the latter moduli space. Let Jr be the subgroup of line
bundles α ∈ JC with α⊗r ∼= OC . It is isomorphic to (Z/rZ)2g (as a group, JC is
isomorphic to (S1)2g ).

Proposition 5.3. The map M(r) × JC → M(r, 0) given by (E, λ) 7→ E ⊗ λ

identifies M(r, 0) with the quotient of M(r) × JC by Jr acting by α · (E, λ) =
(E ⊗ α, λ⊗ α−1) .



CLASSICAL THETA FUNCTIONS AND THEIR GENERALIZATION 19

Proof : Let E in M(r, 0). The pairs (F, λ) with F ∈ M(r), λ ∈ JC and
E ∼= F ⊗ λ are obtained by taking λ ∈ JC with λ⊗r = det(E) ⊗ L−1 and
F = E ⊗ λ−1 . We can always find such a λ , hence a pair (F, λ), and two such
pairs differ by the action of Jr .

Thus, up to an étale covering (more precisely, the quotient by a finite abelian
group acting freely), M(r, 0) is the product of M(r) and JC . We will therefore
focus on M(r). This is also the moduli space of principal SL(r)-bundles, so its
study fits into the more general theory of principal G-bundles for a semisimple
group G .

Let us summarize in the next Proposition some elementary properties of M(r),
which follow from its construction (see [LP]). From now on we will assume that
the genus g of C is ≥ 2 (for g ≤ 1 there are no stable bundles of degree 0 and
rank > 1).

Proposition 5.4. M(r) is a projective normal irreducible variety, of dimension
(r2 − 1)(g − 1) , with mild singularities (so-called rational singularities). Except
when r = g = 2 , its singular locus is the locus of non-stable bundles.

As an algebraic variety, M(r) is very different from a complex torus:

Proposition 5.5. The moduli space M(r) is unirational; that is, there exists a
rational dominant map2 PN 99KM(r, L) .

I refer to [B5], Prop. 5.6 for a proof.

Corollary 5.6. Any rational map from M(r) to a complex torus is constant.

Proof : Let T = V/Γ be a complex torus. In view of the Proposition, it suffices
to show that any rational map ϕ : PN 99K T is constant. Let p, q be two general
points of PN . The restriction of ϕ to the line 〈p, q〉 defines a map P1 → T ,
which factors through V since P1 is simply connected, hence is constant. Thus
ϕ(p) = ϕ(q).

Corollary 5.7. M(r) is simply connected.

Indeed a unirational variety is simply connected [S].

5.4. Rationality. The Lüroth problem asks whether a unirational variety X

is necessarily rational. The answer is positive when X is a curve (Lüroth, 1876) or
a surface (Castelnuovo, 1895), but not in higher dimension (see for instance [De]).
The rationality of M(r) is an open problem, already for r = 2 and g = 3.

2In the rest of this section we assume some familiarity with the notion of rational maps – see

e.g. [G-H], p. 490.
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6. Generalized theta functions

6.1. The theta divisor. Since M(r) is simply connected, there is no hope
to describe its line bundles by systems of multipliers as for complex tori. However
we may try to mimic the definition of the theta divisor: for L ∈ Jg−1 , we put

∆L := {E ∈M(r) | H0(E ⊗ L) 6= 0}.

Theorem 6.1 ([D-N]). 1) ∆L is a Cartier divisor on M(r) .
2) The line bundle L = O(∆L) is independent of L , and Pic(M(r)) = Z[L] .

Recall that an effective Cartier divisor is a subvariety locally defined by an
equation – or, globally, as the zero locus of a section of a line bundle. On a singular
variety (as is M(r)) this is stronger than having codimension 1.

Proof : We will only show why ∆L is a divisor on the stable locus Ms(r), referring
to [D-N] for the rest of the proof. It is a consequence of the following lemma:

Lemma 6.2. Let S be a complex variety, (Es)s∈S a family of vector bundles on
C , with µ(Es) = g − 1 for all s ∈ S . Then the locus

{s ∈ S | H0(C, Es) 6= 0}

is defined locally by one equation (possibly trivial).

Proof : We need to know how the cohomology of Es varies when s runs over S .
This is described by the following (quite non-trivial) result (see [M1], §5) : locally
on S there exist vector bundles F,G and a homomorphism u : F → G such that
we have for each s in S an exact sequence

0→ H0(C, Es) −→ F (s)
u(s)−→ G(s) −→ H1(C, Es)→ 0 .

By Riemann-Roch we have h0(Es) = h1(Es), hence F and G have the same rank.
We see that H0(C, Es) 6= 0 if and only if det(u(s)) = 0, that is, the section det(u)
of det(G)⊗ det(F )−1 vanishes at s , hence the lemma.

Coming back to M(r), the construction of the moduli space implies that locally
for the complex topology, there is a “Poincaré bundle”, that is a rank r vector
bundle E on C × V such that E|C×{E} ∼= E for E in V . Applying the lemma
to E ⊗ L shows that ∆L is a divisor on Ms(r), unless ∆L = M(r). But this
cannot hold: if α is a general element of JC , we have H0(L ⊗ α) = 0, hence
α⊕r /∈ ∆L .

6.2. Generalized theta functions. By analogy with the case of Jacobians,
the sections of H0(M(r),L⊗k) are called generalized (or non-abelian) theta func-
tions of order k . They are associated to the group SL(r) (there are more general
theta functions associated to each complex reductive group, but we will not discuss
them in these notes).
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Like for complex tori, the first question we can ask about these generalized
theta functions is the dimension of the space H0(M(r),L⊗k). The answer, much
more intricate than Theorem 3.5 for complex tori, is known as the Verlinde for-
mula; it has been first found by E. Verlinde using physics arguments, then proved
mathematically in many different ways – see e.g. [So]. The formula is as follows:

(3) dimH0(M(r),L⊗k) =
( r

r + k

)g ∑
SqT=[1,r+k]
|S|=r

∏
s∈S
t∈T

∣∣2 sinπ
s− t
r + k

∣∣g−1

For r = 2 it reduces (after some trigonometric manipulations) to:

dimH0(M(2),L⊗k) = (
k

2
+ 1)g−1

k+1∑
i=1

1
(sin iπ

k+2 )2g−2
·

Even in rank 2, it is not at all obvious that the right hand side is an integer!

6.3. Linear systems and rational maps in Pn . This section is the logical
continuation of section 3.6; we again assume some familiarity with the notion of
rational map ([G-H], p. 490). We keep our projective variety M and a line bundle
L on M ; we do not assume B(L) = ∅ . We still have a map M r B(L) → |L|∗ ,
which we see as a rational map ϕL : M 99K |L|∗ .

Conversely, suppose given a rational map ϕ of M to a projective space P(V ).
We assume that M is normal ; then the indeterminacy locus B of ϕ has codi-
mension ≥ 2. We assume moreover that the line bundle ϕ∗OPn(1) on M r B

extends to a line bundle L on M . By Hartogs theorem the restriction map
H0(M,L) → H0(M r B,L) is bijective, so we get a pull back homomorphism
ϕ∗ : V ∗ → H0(M,L). We have a commutative diagram

|L|∗

P(tϕ∗)

���
�
�
�
�
�
�

M

ϕL
<<z

z
z

z

ϕ ""D
D

D
D

P(V )

Indeed for m general in M , ϕL(m) is the hyperplane of |L| formed by the divisors
passing through m ; its image under P(tϕ∗) is the hyperplane of P(V )∗ formed by
the hyperplanes of P(V ) passing through ϕ(m), and this corresponds by duality
to the point ϕ(m) ∈ P(V ).

6.4. The theta map. The next step is to ask for the map defined by the
linear systems |L⊗k| . In fact we will concentrate on the simplest one, namely ϕL .
Our next task will be to give a geometric description of this map. In order to do
this we associate to each vector bundle E ∈M(r) the locus

θ(E) := {L ∈ Jg−1 | H0(E ⊗ L) 6= 0}
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Proposition 6.3. θ(E) is either equal to Jg−1 , or is a divisor in Jg−1 , belonging
to the linear system |rΘ| .

Proof : The fact that θ(E) is a divisor in Jg−1 or Jg−1 itself follows from
Lemma 6.2, applied to the family of vector bundles (E ⊗ L)L∈Jg−1 . To prove
that θ(E) belongs to |rΘ| when it is a divisor, we first observe that this holds
when E = L1 ⊕ . . .⊕ Lr , with L1, . . . , Lr distinct in JC ; indeed we have

θ(L1 ⊕ . . .⊕ Lr) = t∗L1
Θ + . . .+ t∗LrΘ

where tL denotes the translation M 7→ M ⊗ L of Jg−1 ; and this divisor belongs
to |rΘ| by Cor. 2.9.

Let M(r)o be the subset of E ∈ M(r) with θ(E) 6= Jg−1 ; it is easy to prove
that it is a Zariski open subset of M(r). When E runs through M(r)o , the Chern
class c1(θ(E)) ∈ H2(Jg−1,Z) is constant. So if we fix E0 ∈ M(r)o , we have a
rational map M(r) 99K Pico(Jg−1) mapping E ∈ M(r)o to OJ(θ(E) − θ(E0)).
By Corollary 5.6 this map is constant, hence OJ(θ(E)) is independent of E .

Thus we have a rational map θ :M(r) 99K |rΘ| .

Theorem 6.4 ([BNR]). There is a natural isomorphism

H0(M(r),L) ∼−→ H0(Jg−1,O(rΘ))∗

making the following diagram commutative:

|L|∗

o

��

M(r)

ϕL
<<x

x
x

x

θ ""F
F

F
F

|rΘ|

Sketch of proof : For L ∈ Jg−1 , let HL be the hyperplane in |rΘ| consisting of
the divisors passing through L . By definition the pull back of HL under θ is the
divisor ∆L . Thus, as explained in section 6.3, we get a commutative diagram

|L|∗

λ

���
�
�
�
�
�
�

M(r)

ϕL
<<x

x
x

x

θ ""F
F

F
F

|rΘ|

with λ := P(tθ∗). It remains to prove that λ is bijective. Surjectivity is not difficult:
if λ is not surjective, the image of θ is contained in a hyperplane of |rΘ| . But this
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image contains all the divisors t∗L1
Θ + . . . + t∗LrΘ, and it is not difficult to prove

that these divisors span the linear system |rΘ| .

We have dim |rΘ| = rg−1 by Theorem 3.5, so the crucial point is to prove the
same equality for dim |L| . Of course this follows (in a non-trivial way) from the
Verlinde formula (3); in [BNR], since the Verlinde formula was not yet available, we
constructed a rational dominant map from a certain abelian variety to the moduli
space, and applied Theorem 3.5 to get the result.

Corollary 6.5. The base locus of the linear system |L| on M(r) is the set of
vector bundles E ∈M(r) such that θ(E) = Jg−1 .

Thus the rather mysterious map ϕL is identified with the more concrete map
θ ; one usually refers to θ , or ϕL , as the theta map. We will now see that this
explicit description allows a good understanding of the theta map in the rank 2
case.

6.5. Rank 2 . In rank 2 the theta map is by now fairly well understood. We
summarize what is known in one theorem:

Theorem 6.6. 1) The theta map θ :M(2)→ |2Θ| is a morphism.
2) If C is not hyperelliptic or g = 2 , θ is an embedding.
3) If C is hyperelliptic of genus ≥ 3 , θ is 2-to-1 onto its image in |2Θ| , and

this image admits an explicit description.

This is the conjunction of various results. Part 1) is due to Raynaud [R], part
3) to Bhosle-Ramanan [D-R]. In case 2), the fact that θ is generically injective
was proved in [B1]; from this Brivio and Verra deduced that θ embeds Ms(2),
and this was extended to M(2) in [vG-I].

Recall that M(2) has dimension 3g − 3. In particular:

Corollary 6.7 ([N-R1]). For g = 2 , θ : M(2) → |2Θ| ∼= P3 is an isomorphism.

For g ≥ 3 the singular locus of M(2) is the locus of vector bundles of the form
L⊕L−1 (Proposition 5.4): this is the quotient of JC by the involution L 7→ L−1 ,
that is, the Kummer variety K of JC . The embedding θ : K ↪→ |2Θ| turns out
to be isomorphic to the embedding K ↪→ |2Θ|∗ deduced from ϕ2Θ (Proposition
3.9), via a natural isomorphism |2Θ| ∼−→ |2Θ|∗ (“Wirtinger duality”, see [M2],
p. 335).) Thus when C is not hyperelliptic, we can identify M(2) with a variety
in |2Θ| which is singular along the Kummer variety.

For g = 3 and C not hyperelliptic, a very nice application appears in [N-R2].
In that case dimM(2) = 6, so θ embeds M(2) as a hypersurface in |2Θ| ∼= P7 . It
is not difficult to prove that it has degree 4 (for instance by computing its canonical
bundle). Now Coble had found long ago that there is a unique quartic hypersurface
in |2Θ| which is singular along the Kummer, for which he had written down an
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explicit equation (see [B2] for a modern account). Therefore this hypersurface is
M(2)!

6.6. Higher rank. In contrast with the rank 2 case, not much is known
in higher rank. It is known since [R] that there exist stable bundles E with
θ(E) = Jg−1 – that is, base points for the linear system |L| ; in fact, they ex-
ist as soon as r ≥ g + 2, and even r ≥ 4 if C is hyperelliptic [P1]. On the other
hand, in rank 3 there are no base points for g = 2 [R], g = 3 [B3], or if C is
general enough [R].

The situation is somewhat particular when g = 2, since dimM(r) = dim |rΘ| =
r2 − 1.

Proposition 6.8. Let g = 2 .
1) θ :M(r) 99K |rΘ| is generically finite.
2) Its degree is 1 for r = 2 , 2 for r = 3 , 30 for r = 4 .

Part 1) is proved in [B3]. The rank 2 case has been discussed in Cor. 6.7. In
rank three θ : M(3) → |3Θ| ∼= P8 is a double covering, branched along a sextic
hypersurface which can be explicitly described [O]. The case r = 4 is due to Pauly
[P2].

Let us conclude with a
Conjecture. For g ≥ 3 , the theta map θ : M(r) 99K |rΘ| is generically 2-to-1
onto its image if C is hyperelliptic, and generically injective otherwise.

This is unknown even for r = g = 3.
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237 (1996), 87–114.
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