Holomorphic symplectic manifolds

Arnaud Beauville

Université de Nice

Gargnano, March 2008

I. Manifolds with $c_1 = 0$

Arnaud Beauville

Université de Nice

Gargnano, March 2008

- Conjecturally, and **very roughly**, the "building bricks" of algebraic geometry are:
- The Fano manifolds (K^{-1} ample);
- The manifolds with K trivial;
- The manifolds with K ample.

We will consider the case K trivial.

Proposition

Let X compact Kähler with $c_1(X) = 0$ in $H^2(X, \mathbb{C})$.

There exists $T \times Y \rightarrow X$ finite étale with

 $T = complex torus, Y simply-connected with K_Y = O_Y$.

Corollary

 $\pi_1(X)$ almost abelian; K_X torsion.

Theorem (Decomposition theorem)

X compact Kähler simply-connected with $K_X = \mathcal{O}_X$. Then

$$X = \prod_i Y_i \times \prod_j Z_j$$

- Y_i = Y simply-connected projective, dim Y ≥ 3, H⁰(Y, Ω^{*}_Y) = C ⊕ Cω, where ω is a generator of K_Y. (these are Calabi-Yau manifolds)
- $Z_j = Z$ simply-connected, $H^0(Z, \Omega_Z^*) = \mathbb{C}[\sigma]$, where $\sigma \in H^0(Z, \Omega_Z^2)$ is everywhere non-degenerate.

(these are the irreducible symplectic manifolds)

Remarks :

- Many examples of Calabi-Yau: hypersurfaces of degree n + 1 in ℙⁿ, etc.
- In contrast, very few examples of symplectic manifolds.

Idea of the proof

The proof uses differential geometry, in particular the concept of holonomy.

• (M,g) Riemannian manifold \rightsquigarrow parallel transport:

with $\varphi_{\gamma} \circ \varphi_{\delta} = \varphi_{\delta\gamma}$.

• In particular, $\varphi : \{ \text{loops at } p \} \longrightarrow O(T_p(M))$

Image = H_p = holonomy (sub-)group at p

• independent of *p* up to conjugacy.

- For simplicity, we will assume *M* simply-connected and compact.
- \Rightarrow H_p closed, connected Lie subgroup of $SO(T_p(M))$.

Theorem (de Rham)

 $T_p(M) = \bigoplus_i V_i$ stable under $H_p \Rightarrow M \cong \prod_i M_i$ and $H_p \cong \prod_i H_{p_i}$.

٩

- So we are reduced to irreducible manifolds, i.e. those for which the holonomy representation is irreducible.
- There is one well-known class of Riemannian manifolds that we want to exclude, the symmetric spaces: *G/H*, where *G* compact Lie group, *H* = Fix(σ)^o, σ involution of *G*. Completely understood: *H_p* = *H*.

Theorem (Berger)

M irreducible $(\pi_1(M) = 0)$, not symmetric. Then H =

Н	$\dim(M)$	metric
SO(n)	n	generic
U(m)	2m	Kähler
SU(m) (m \geq 3)	2m	Calabi-Yau
$\operatorname{Sp}(r)$	4r	hyperkähler
Sp(r)Sp(1) $(r \ge 2)$	4r	quaternion-Kähler
G_2	7	
Spin(7)	8	

What does the holonomy mean?

A vector field (more generally, a tensor field) au is parallel if

for each path γ .

Holonomy principle.

Evaluation at *p* establishes a one-to-one correspondence between:

- parallel tensor fields;
- tensors on $T_p(M)$ invariant under H_p .

Examples

- $H = SO(n) \iff$ no parallel tensor fields (except g and dv_g)
- $H \subset U(\frac{n}{2}) \iff$ parallel complex structure J $\iff M$ Kähler
- $H \subset SU(\frac{n}{2}) \iff$ same + parallel holomorphic *m*-form $\iff M$ Kähler, $\operatorname{Ric}_g = 0$ ($\operatorname{Ric}_g = \operatorname{curvature} \operatorname{of} K_M$)

Yau's theorem: M admits a Kähler metric with $\operatorname{Ric}_g = 0 \iff M$ Kähler with trivial canonical bundle.

Proof of the decomposition theorem

- **1** Yau: X admits a metric with holonomy $\subset SU(m)$.
- de Rham: X ≅ $\prod_i X_i$, X_i irreducible with holonomy
 $H_i ⊂ SU(m_i)$.
- **3** Berger's list **••**: either $H_i = SU(m)$, or $H_i = Sp(r)$, r = m/2.

•
$$H_i = SU(m) \implies H^0(X_i, \Omega^p) = 0$$
 for $0 ;if $m \ge 3$, $H^0(X_i, \Omega^2) = 0 \implies X_i$ projective$

(use Bochner's principle : $\operatorname{Ric}_g = 0 \implies$ any holomorphic tensor field is parallel)

•
$$H_i = Sp(r)$$
: X_i hyperkähler.

End of the proof: hyperkähler manifolds

Hyperkähler manifolds: X compact, Kähler, with holonomy Sp(r).

 $Sp(r) := U(r, \mathbb{H}) =$ subgroup of $GL(r, \mathbb{H})$ preserving the hermitian form $\psi(x, y) = \sum x_i \overline{y}_i$. 2 interpretations:

• $\mathbb{H}^r = \mathbb{R}^{4r}$; $Sp(r) = \{\text{elements of } SO(4r) \text{ linear w.r.t. } I, J, K\}$

 \rightsquigarrow parallel complex structures I, J, K with IJ = -JI = K

 \rightsquigarrow a sphere \mathbb{S}^2 of parallel complex structures:

$$\mathbb{S}^2 = \{ aI + bJ + cK, \ a^2 + b^2 + c^2 = 1 \}$$
.

then h hermitian and φ \mathbb{C} -linear alternating. Thus $Sp(r) = U(2r, \mathbb{C}) \cap Sp(2r, \mathbb{C})$.

 $\rightsquigarrow X$ Kähler + parallel non-degenerate holomorphic 2-form

End of the proof: hyperkähler manifolds

Conversely, any $\sigma \in H^0(X, \Omega_X^2)$ is parallel for the Ricci-flat metric (Bochner principle).

• **Conclusion**: $H = Sp(r) \iff X$ holomorphic symplectic :

X Kähler (compact, simply-connected)

 $H^0(X, \Omega^2_X) = \mathbb{C}\sigma$, σ everywhere non-degenerate

(and automatically closed).

• Consequences:

$$-\dim(X) = 2r; \sigma^r$$
 generator of K_X .

 $- H^0(X, \Omega^*_X) = \mathbb{C}[\sigma].$