III. The period map

Arnaud Beauville

Université de Nice

March 27, 2008

The local period map

X hyperkähler with symplectic form σ ;

 $\mathcal{X} \to (B, \mathrm{o})$ universal deformation of $X: \mathcal{X}_{\mathrm{o}} \xrightarrow{\sim} X$.

Hodge decomposition $H^2(X, \mathbb{C}) = \mathbb{C}[\sigma] \oplus H^{1,1} \oplus \mathbb{C}[\bar{\sigma}]$, like for K3.

Topologically, locally on B, exists diffeomorphism u

Choose σ_b symplectic form on \mathcal{X}_b for each *b*; period map

$$\wp: B \to \mathbb{P}(H^2(X, \mathbb{C})) ; \ \wp(b) := u_b^*[\sigma_b] .$$

Proposition

 \wp local isomorphism of B into a quadric in $\mathbb{P}(H^2(X,\mathbb{C}))$.

Proof, I

• Let
$$\alpha = u_b^* \sigma_b$$
. Then $\sigma_b^{r+1} = 0 \Rightarrow \alpha^{r+1} = 0$.

• Write $\alpha = a\sigma + \omega + b\bar{\sigma}$, with $\omega \in H^{1,1}(X)$. Then

$$0 = (a\sigma + \omega + b\bar{\sigma})^{r+1} = (r+1)a^r b\sigma^r \bar{\sigma} + \binom{r+1}{2}a^{r-1}\sigma^{r-1}\omega^2$$
$$(\in H^{2r,2}) + \text{terms in } H^{p,q}, \ q \ge 3.$$

• Multiply by $ar{\sigma}^{r-1}$, and integrate $\rightsquigarrow 0 = (r+1)a^{r-1}q(lpha)$, with

$$q(\alpha) := ab \int_X (\sigma\bar{\sigma})^r + \frac{r}{2} \int_X \omega^2 (\sigma\bar{\sigma})^{r-1}$$

Thus $\wp(B) \subset Q \subset \mathbb{P}(H^2(X,\mathbb{C}))$, with Q defined by q = 0.

•
$$q(\sigma, \bar{\sigma}) = \frac{1}{2} \int_X (\sigma \bar{\sigma})^r > 0 \Rightarrow Q$$
 smooth at $[\sigma]$.

• Differential of the period map $\wp: B \to \mathbb{P}(H^2(X, \mathbb{C}))$:

$$T_{\mathrm{o}}(\wp): H^{1}(X, T_{X}) \longrightarrow \mathrm{Hom}(H^{2,0}, H^{2,0} \oplus H^{1,1})$$

deduced from cup-product

$$\cup: H^1(X, T_X) \otimes H^0(X, \Omega^2_X) \longrightarrow H^1(X, \Omega^1_X) \ .$$

Here H^{2,0} = Cσ, ∪ isomorphism ⇒ T_o(℘) isomorphism onto hyperplane of T_{℘(o)}(ℙ), necessarily = T_{℘(o)}(Q).

The quadratic form

Theorem

 Q is defined by an integral quadratic form q : H²(X, Z) → Z, non-degenerate, of signature (3, b₂ - 3).

Corollary

For
$$\alpha \in H^2(X, \mathbb{C})$$
, $q(\alpha) = 0 \Leftrightarrow \alpha^{r+1} = 0 \Leftrightarrow \alpha^{2r} = 0$.

Proof of the corollary.

 $\alpha^{r+1} = 0$ for α in an open subset of q = 0, and therefore for all α with $q(\alpha) = 0$.

Explicit formulas for $q(\alpha)$:

• for any $\omega \in H^2(X,\mathbb{C})$ with $\int_X \omega^{2r} = 1$:

$$q(\alpha) = c \left[(2r-1) \int_X \omega^{2r-2} \alpha^2 - (2r-2) \left(\int_X \omega^{2r-1} \alpha \right)^2 \right] \,.$$

• For any polynomial $F(c_1, c_2, \ldots)$ in $H^*(X, \mathbb{Z})$,

$$c'q(\alpha) = \int_X F(c_1, c_2, ...) \alpha^2$$
 (Looijenga-Lunts)

• $c' \neq 0$ for $F = \sqrt{\text{Todd}(X)}$ (Hitchin-Sawon).

A typical application

Corollary

For b in a dense subset of B, X_b is projective.

Proof.

•
$$H^{2,0}\oplus H^{0,2}=L_{\mathbb{C}}$$
, $L\subset H^2(X,\mathbb{R})$ positive 2-plane.

(L spanned by $\sigma + \bar{\sigma}$ and $i(\sigma - \bar{\sigma})$)

- **2** The line $\mathbb{P}(L_{\mathbb{C}}) \subset \mathbb{P}(H^2(X,\mathbb{C}))$ meet Q at $\sigma, \bar{\sigma}$.
- Solution Choose L' close to L defined over \mathbb{Q} . Then $\mathbb{P}(L_{\mathbb{C}}')$ meet Q at $\sigma', \bar{\sigma}'$, with σ' close to σ .
- σ' = ℘(b); in H²(X_b, ℂ), H^{2,0} ⊕ H^{0,2} is defined over ℚ, hence also its orthogonal H^{1,1}.
- S Any rational class in the Kähler cone is ample (Kodaira).

Fix a lattice *L*.

Marked hyperkähler manifold: (X, τ) where $\tau : H^2(X, \mathbb{Z}) \xrightarrow{\sim} L$

 \mathcal{M}_L :={iso. classes of (X, τ) , dim X = 2r} - complex manifold (non-Hausdorff, see next lecture)

Period domain $\Omega_L = \{ [v] \in \mathbb{P}(L_{\mathbb{C}}) \mid v^2 = 0, \ v.\bar{v} > 0 \}$

Period map $\wp : \mathcal{M}_L \to \Omega_L : \ \wp(X, \tau) = \tau_{\mathbb{C}}(H^{2,0}) \subset L_{\mathbb{C}}.$

Theorem (Huybrechts)

℘ is surjective.

For K3, Torelli theorem: $\wp(X,\tau) = \wp(X',\tau') \Rightarrow X \cong X'$.

Does not extend to hyperkähler:

EXAMPLE (Namikawa): A abelian surface, $A \ncong \hat{A}$. Then $K_2(A)$ and $K_2(\hat{A})$ have the same period (for suitable markings)

but they are are not birational.