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Introduction

This paper deals with the Chow ring CH(X) (with rational coe�cients) of
a smooth projective variety X – that is, the Q-algebra of algebraic cycles
on X, modulo rational equivalence. This is a basic invariant of the variety
X, which may be thought of as an algebraic counterpart of the cohomology
ring of a compact manifold; in fact there is a Q-algebra homomorphism
c
X

: CH(X) ! H(X, Q), the cycle class map. But unlike the cohomology
ring, the Chow ring, and in particular the kernel of c

X
, is poorly understood.

Still some insight into the structure of this ring is provided by the deep
conjectures of Bloch and Beilinson. They predict the existence of a functo-
rial ring filtration (F j)j�0 of CH(X), with CH

p(X) = F 0
CH

p(X) � . . . �
F p+1(X) = 0 and F 1

CH(X) = Ker c
X

. We refer to [J] for a discussion of the
various candidates for such a filtration and the consequences of its existence.

The existence of that filtration is not even known for an abelian variety
A. In that case, however, there is a canonical ring graduation given by
CH

p(A) =�
s

CH
p

s(A), where CH
p

s(A) is the subspace of elements ↵ 2 CH
p(A)

with k⇤
A
↵ = k2p�s↵ for all k 2 Z (kA denotes the endomorphism a 7! ka of

A) [B2]. Unfortunately this does not define the required filtration because
the vanishing of the terms CH

p

s(A) for s < 0 is not known in general – in
fact, this vanishing is essentially equivalent to the existence of the Bloch-
Beilinson filtration (the precise relationship is thoroughly analyzed in [Mu]).
So if the Bloch-Beilinson filtration indeed exists, it splits in the sense that
it is the filtration associated to a graduation of CH(A).

In [B-V] we observed that this also happens for a K3 surface S. Here
the filtration is essentially trivial; the fact that it splits means that the
image of the intersection product CH

1(S) ⌦ CH
1(S) ! CH

2(S) is always
one-dimensional – an easy but somewhat surprising property.

346
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The motivation for this paper was to understand whether the splitting of
the Bloch-Beilinson filtration for abelian varieties and K3 surfaces is acci-
dental or part of a more general framework. Now asking for a conjectural
splitting of a conjectural filtration may look like a rather idle occupation.
The point we want to make is that the mere existence of such a splitting has
quite concrete consequences, which at least in some cases can be tested. We
will restrict for simplicity to the case of regular varieties, that is, varieties
X for which F 1

CH
1(X) = 0. Then if the filtration comes from a gradu-

ation, any product of divisors must have degree 0; therefore, if we denote
by DCH(X) the sub-algebra of CH(X) spanned by divisor classes, the cycle
class map

cX : DCH(X) �! H(X)

is injective. In other words, any polynomial relation P (D1, . . . , Ds) = 0 be-
tween divisor classes which hold in cohomology must hold in CH(X). We will
call this property the weak splitting property. Despite its name it is rather
restrictive: it implies for instance the existence of a class ⇠X 2 CH

n(X),
with n = dim X, such that

D1 · . . . · Dn = deg(D1 · . . . · Dn) · ⇠X in CH
n(X)

for any divisor classes D1, . . . , Dn in CH
1(X).

What kind of varieties can we expect to have the weak splitting property?
A natural class containing abelian varieties and K3 surfaces is that of Calabi-
Yau varieties, but that turns out to be too optimistic – it is quite easy to
give counter-examples (Example 9.1.5. b)). A more restricted class is that
of holomorphic symplectic manifolds – projective manifolds admitting an
everywhere non-degenerate holomorphic 2-form. We want to propose the
following conjecture:
Conjecture. — A symplectic (projective) manifold satisfies the weak splitting
property.

We have to admit that the evidence we are able to provide is not over-
whelming. We will prove that the weak splitting property is invariant un-
der some simple birational transformations called Mukai flops (Proposition
9.2.4). We will also prove that the conjecture holds for the simplest exam-
ples of symplectic manifolds, the Hilbert schemes S[2] and S[3] associated to
a K3 surface S (Proposition 9.3.1). Already for S[3] the proof is intricate,
and makes use of some nontrivial relations in the Chow rings of S2 and S3

established in [B-V]. We hope that this might indicate a deep connection
between the symplectic structure and the Bloch-Beilinson filtration, but we
have not even a conjectural formulation of what this connection could be.
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9.1 Intersection of divisors

Let X be a projective (complex) manifold. We denote by CH(X) and H(X)
the Chow and cohomology rings with rational coe�cients, and by CH(X, C)
and H(X, C) the corresponding rings with complex coe�cients. We de-
note by DCH(X) the sub-algebra of CH(X) spanned by divisor classes.
We will say that X has the weak splitting property if the cycle class map
c
X

: DCH(X) ! H(X) is injective.

Remark 9.1.1. The property as stated implies that CH
1(X) is finite-dimensional,

that is, X is regular in the sense that H1(X,OX) = 0. For irregular vari-
eties the definition should be adapted, either by considering cycles modulo
algebraic equivalence, or by picking up an appropriate subspace of CH

1(X).
We will restrict ourselves to regular varieties in what follows.

Examples 9.1.2. a) A regular surface S satisfies the weak splitting
property if and only if the image of the intersection map CH

1(S) ⌦
CH

1(S) ! CH
2(S) has rank 1; in other words, there exists a class

⇠S 2 CH
2(S), of degree 1, such that C ·D = deg(C.D) ⇠S for all curves

C,D on S. This is the case when S is a K3 surface, or also an elliptic
surface over P

1 with a section [B-V].
b) Let S be a K3 surface, p a point of S with[p] 6= ⇠S in CH

2(S). Let " :
bS ! S be the blowing-up of S at p. The space DCH

2(bS) is spanned by
"⇤⇠S and [q], where q is any point of bS above p. Since the pushforward
map "⇤ : CH

2(bS) ! CH
2(S) is an isomorphism, theses classes are

linearly independent in CH
2(bS), so the map c2

bS
: DCH

2(bS) ! CH
2(bS)

is not injective.
Observe that we get a family of surfaces parameterized by p 2 S,

for which the weak splitting property fails generically, but holds when
p lies in the union of countably many subvarieties of the parameter
space.

c) We will give later (9.1.5) examples of Fano and Calabi-Yau threefolds
which do not satisfy the weak splitting property.

Proposition 9.1.3. Let X, Y be two smooth projective regular varieties.

a) We have DCH
p(X ⇥ Y ) = �

r+s=p

pr⇤1 DCH
r(X) ⌦ pr⇤2 DCH

s(Y ). In

particular, X ⇥Y satisfies the weak splitting property if and only if X
and Y do.

b) Let f : X ! Y be a surjective map. If cp

X
: DCH

p(X) ! H
2p(X) is

injective, then so is cp

Y
: DCH

p(Y ) ! H
2p(Y ).
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Proof a) We have CH
1(X ⇥ Y ) = pr⇤1 CH

1(X)� pr⇤2 CH
1(Y ) since X and Y

are regular; the assertion a) follows at once.
b) Follows from the commutative diagram

DCH
p(X)

c
p

X����! H
2p(X)

f
⇤

x??? f
⇤

x???
DCH

p(Y )
c
p

Y����! H
2p(Y )

and the injectivity of f⇤ : CH
p(Y ) ! CH

p(X) (if h is an ample class in
CH

1(X) and d = dim X � dim Y , we have f⇤(hd) = r · 1Y , with r 2 Q
⇤, and

f⇤(hd · f⇤⇠) = r ⇠ for ⇠ in CH(Y )).

We now consider the behaviour of the weak splitting property when the
variety X is blown up along a smooth subvariety B. We will use the notation
summarized in the following diagram:

E ,
i����! bX

⌘

???y

???y "

B ,
j����! X .

(9.1)

We denote by c the codimension of B in X and by N its normal bundle.

Lemma 9.1.4. Let p be an integer. Assume

i) The cycle class map cq

B
: DCH

q(B) ! H
2q(B) is injective for p� c <

q < p ;
ii) The Chern classes ci(N) belong to DCH(B) ;
iii) The map cp

X
: CH

p(X) ! H
2p(X) restricted to DCH

p(X)+j⇤DCH
p�c(B)

is injective.

Then the cycle class map cp

bX
: DCH

p( bX) ! H
2p( bX) is injective.

Proof The projection p : E ! B identifies E to PB(N_). Let h 2 CH
1(E)

be the class of the tautological bundle OE(1); we have i⇤[E] = �h, and
therefore, for ⇠ 2 CH(X), [E]p · "⇤⇠ = i⇤(i⇤[E]p�1 · i⇤"⇤⇠) = (�1)p�1i⇤(hp�1 ·
⌘⇤j⇤⇠).

Since CH
1( bX) = "⇤CH

1(X)�Q[E], we get

DCH
p( bX) = "⇤DCH

p(X) + [E] · "⇤DCH
p�1(X) + . . . + Q[E]p

⇢ "⇤DCH
p(X) + i⇤⌘⇤DCH

p�1(B) + i⇤(h · ⌘⇤DCH
p�2(B)) + . . . + Qi⇤hp�1 .

For q � c we have a relation hq = hc�1 · ⌘⇤cq,c�1 + . . . + ⌘⇤cq,0, where the
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ci,j are polynomial in the Chern classes of N ; by our hypothesis (ii) these
classes lie in DCH(B). Moreover the “key formula” [F, 6.7]

i⇤(� · ⌘⇤⇠) = "⇤j⇤⇠ for ⇠ 2 CH(B) ,

with � = hc�1 + hc�2 · ⌘⇤c1(N) + . . . + ⌘⇤cc�1(N), implies

i⇤(hc�1 · ⌘⇤DCH
p�c(B)) ⇢ "⇤j⇤DCH

p�c(B) +
c�2X

k=0

i⇤(hk · ⌘⇤DCH
p�k�1(B)) ,

so that we finally get

DCH
p( bX) ⇢ "⇤

�
DCH

p(X) + j⇤DCH
p�c(B)

�
+

c�2X

k=0

i⇤(hk · ⌘⇤DCH
p�k�1(B))

Since the map

H
2p(X)�

c�2X

k=0

H
2(p�k�1)(B) �! H

2p( bX)

(↵ ; �0, . . . ,�c�2) 7�! "⇤↵ +
X

k

i⇤(hk · ⌘⇤�k)

is an isomorphism (see for instance [Jo]), our hypotheses (i) and (iii) ensure
that cp

bX
is injective.

Examples 9.1.5. a) Take X = P
3, and let B be a smooth curve, of

degree d and genus g. Let ` be the class of a hyperplane in P
3, `B its

pull back to B. The space DCH
2( bX) is generated by

"⇤`2 , "⇤` · [E] = i⇤p
⇤`B , [E]2 = �i⇤h = i⇤⌘

⇤c1(N)� "⇤[B]

We have c1(N) = 4`B +KB, so DCH
2( bX) contains the elements i⇤⌘⇤`B

and i⇤⌘⇤KB.
The map i⇤⌘⇤ : CH

1(B) ! CH
2(X) induces an isomorphism of

the subspace of degree 0 divisor classes on B onto the subspace of
homologically trivial classes in CH

2(X). If we choose `B non pro-
portional to KB in CH

1(B), the class i⇤⌘⇤(d KB � (2g � 2)`B) in
DCH

2( bX) is homologically trivial, but non-trivial. Thus the map
c2

bX
: DCH

2( bX) ! H
4( bX) is not injective.

If B is a scheme-theoretical intersection of cubics, bX is a Fano va-
riety [M-M] – we can take for instance B of genus 2 and `B a general
divisor class of degree 5 (or B of genus 3 and `B general of degree 6,
or B of genus 5 and `B ⌘ KB � p for p a general point of B). Note
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that by making the linear system vary we get again families where the
general member does not satisfy the weak splitting property, while
countably many special members of the family do satisfy it.

b) Going on with the Fano case, let D be a smooth divisor in |�2KX |,
and let V ! X be the double covering of X ramified along D. Then
by the above example and Proposition 9.1.3. b), V is a Calabi-Yau
threefold which does not satisfy the weak splitting property.

9.2 The weak splitting property for symplectic manifolds

By a symplectic manifold we mean here a simply-connected projective man-
ifold which admits a holomorphic, everywhere non-degenerate 2-form. The
manifold is said to be irreducible if the 2-form is unique up to a scalar; any
symplectic manifold admits a canonical decomposition as a product of irre-
ducible ones. In view of Proposition 9.1.3. a), we may restrict ourselves to
irreducible symplectic manifolds.

Let X be an irreducible symplectic manifold, of dimension 2r. Recall that
the space H2(X) admits a canonical quadratic form q ([B1], [H]) with the
following properties:

• every class x 2 H2(X, C) with q(x) = 0 satisfies xr+1 = 0;
• there exists � 2 Q such that

R
X

x2r = � q(x)r for all x 2 H2(X, C), whereR
X

is the canonical isomorphism H2r(X, C) ⇠�! C.

In fact the following more precise statement has been proved by Bogomolov:

Proposition 9.2.1. Let V be a subspace of H
2(X, C) such that the restric-

tion of q to V is non-degenerate (for instance V = H
2(X, C) or V =

CH
1(X, C)). The kernel of the map Sym V ! H(X, C) is the ideal of Sym V

spanned by the elements xr+1 for x 2 V, q(x) = 0.

Proof The case V = H
2(X, C) is the main result of [Bo], but the proof

given there implies the slightly more general statement 9.2.1. Namely, define
A(V ) as the quotient of Sym V by the ideal spanned by the elements xr+1

for x 2 V, q(x) = 0. Then Lemma 2.5 in [Bo] says that A(V ) is a finite-
dimensional graded Gorenstein C- algebra, with socle in degree 2r – in other
words, A2r(V ) is one-dimensional, and the multiplication pairing Ad(V ) ⇥
A2r�d(V ) ! A2r(V ) ⇠= C is a perfect duality.

Since any element x of H
2(X, C) with q(x) = 0 satisfies xr+1 = 0, we get a

C- algebra homomorphism u : A(V ) ! H(X, C). The kernel of u is an ideal
of A(V ); if it is non-zero, it contains the minimal ideal A2r(V ) of A(V ). But
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this is impossible because V contains an element h with q(h) 6= 0, hence
with h2r 6= 0.

Corollary 9.2.2. The following conditions are equivalent:

i) The cycle class map c
X

: DCH(X) ! H(X) is injective (that is, X
satisfies the weak splitting property);

ii) The map cr+1
X

: DCH
r+1(X) ! H2r+2(X) is injective;

iii) Every element x of CH
1(X, C) with q(x) = 0 satisfies xr+1 = 0 (in

CH
r+1(X, C)).

Proof Consider the diagram

Sym CH
1(X, C)

u

✏✏

v

((

P

P

P

P

P

P

P

P

P

P

P

P

DCH(X, C)
c
X

// H(X, C) .

The injectivity of c is equivalent to Ker v ⇢ Ker u. In view of the Proposition,
this is exactly condition (iii), and it is equivalent to Ker vr+1 ⇢ Ker ur+1.

Remark 9.2.3. Assume that there is an element ↵ 2 CH
1(X) with q(↵) = 0

– this is the case for instance if dimQ CH
1(X) � 5. Then the set of such

elements is Zariski dense in the quadric q = 0 of CH
1(X, C). Thus the

conditions of the Corollary are also equivalent to:
(iii0) Every element x of CH

1(X) with q(x) = 0 satisfies xr+1 = 0.
A possible proof of (iii0) could be as follows. It seems plausible that the

subset of nef classes x 2 CH
1(X) with q(x) = 0 is Zariski dense in the

quadric q = 0 (this holds at least when X is a K3 surface). If this is the
case, it would be enough to prove (iii0) for nef classes. Now it is a standard
conjecture (see [S]) that a nef class x 2 CH

1(X) with q(x) = 0 should be
the pull back of the class of a hyperplane in P

r under a Lagrangian fibration
f : X ! P

r, so that xr+1 = f⇤(hr+1) = 0.

We will now consider the behaviour of the weak splitting property under
a Mukai flop. Let X be an irreducible symplectic manifold, of dimension
2r; assume that X contains a subvariety P isomorphic to P

r. Then P is a
Lagrangian subvariety, and its normal bundle in X is isomorphic to ⌦1

P
. We



On the Splitting of the Bloch-Beilinson Filtration 353

blow up P in X, getting our standard diagram

E ,
i����! bX

⌘

???y

???y "

P ,
j����! X .

The exceptional divisor E is the cotangent bundle P(TP ), which can be
identified with the incidence divisor in P ⇥ P _, where P _ is the projective
space dual to P . The projection ⌘_ : E ! P _ identifies E to P(TP_), and
E can be blown down to P _ by a map ' : bX ! X 0, where X 0 is a smooth
algebraic space. To remain in our previous framework we will assume that
X 0 is projective, so that X 0 is again an irreducible symplectic manifold. The
diagram

bX
"

���

�

�

�

�

�

�

�

'

  

@

@

@

@

@

@

@

@

X X 0

is called a Mukai flop. There are many concrete examples of such flops, see
[M].

Proposition 9.2.4. If X satisfies the weak splitting property, so does X 0.

Proof Consider the Q- linear map '⇤"⇤ : CH
1(X) ! CH

1(X 0). It is bijective
and preserves the canonical quadratic forms (see e.g. [H, Lemma 2.6]. In
view of Corollary 9.2.2, the Proposition will follow from

Lemma 9.2.5. Let ↵ 2 CH
1(X), and ↵0 := '⇤"⇤↵. Then ↵0r+1 = '⇤"⇤(↵r+1).

Proof We have '⇤↵0 = "⇤↵ + m[E] for some m 2 Q. Let ` 2 CH
2r�1( bX) be

the class of a line contained in a fibre of ⌘_; we have deg([E] · `) = �1, and
"⇤` is the class of a line in P . Intersecting the above equality with ` gives
m = deg(↵|P ), or equivalently ↵|P = mk in CH

1(P ), where k is the class of
a hyperplane in P . Then

'⇤↵0r+1 = ("⇤↵ + m[E])r+1 =
r+1X

p=0

✓
r + 1

p

◆
mr+1�p "⇤↵p · [E]r+1�p .

As in (9.1.4), let h 2 CH
1(E) be the class of OE(1). For p  r we have

"⇤↵p · [E]r+1�p = (�1)r�pi⇤(hr�p · i⇤"⇤↵p) = (�1)r�pi⇤(hr�p · ⌘⇤↵p

|P ) ,
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Thus '⇤↵0r+1 = "⇤↵r+1 + mr+1i⇤
⇣ rX

p=0

✓
r + 1

p

◆
(�1)r�phr�p ⌘⇤kp

⌘
.

Now since the total Chern class of TP is (1 + k)r+1 we have in CH
r(E)

rX

p=0

✓
r + 1

p

◆
(�1)phr�p ⌘⇤kp =

rX

p=0

(�1)phr�p ⌘⇤cp(TP ) = 0 ,

hence '⇤↵0r+1 = "⇤↵r+1. Applying '⇤ gives the lemma, hence the Proposi-
tion.

Corollary 9.2.6. Let X, X 0 be birationally equivalent projective symplectic
fourfolds. Then X satisfies the weak splitting property if and only if X 0 does.

Indeed any birational map between projective symplectic fourfolds is a
composition of Mukai flops [W].

9.3 The weak splitting property for S[2] and S[3].
The simplest symplectic manifolds are K3 surfaces, for which we have al-
ready seen that the weak splitting property holds (Example 9.1.2). More
precisely [B-V], let S be a K3 surface and o a point of S lying on a (singular)
rational curve R. The class of o in CH

2(S) is independent of the choice of
R, and we have, for every ↵, � 2 CH

1(S),

↵ · � = deg(↵ · �) [o] in CH
2(S) .

Let � : S ,�! S ⇥ S be the diagonal embedding. For ↵ 2 CH
1(S), we have

in CH
3(S ⇥ S) ([B-V, Prop. 1.6],)

�⇤↵ = pr⇤1 ↵ · pr⇤2[o] + pr⇤1[o] · pr⇤2 ↵ . (9.2)

K3 surfaces are the first instance of a famous series of symplectic manifolds,
the Hilbert schemes S[r] parameterizing finite subschemes of length r on the
K3 surface S.

Proposition 9.3.1. Let S be a K3 surface. The symplectic varieties S[2]

and S[3] satisfy the weak splitting property.

Proof
— Let us warm up with the easy case of S[2]. Let S{2} be the variety

obtained by blowing up the diagonal of S ⇥ S. The Hilbert scheme S[2]

is the quotient of S{2} by the involution which exchanges the factors. In
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view of Corollary 9.2.1 and Proposition 9.1.3. b) it su�ces to prove that
the cycle class map c3

S{2} : DCH
3(S{2}) ! H

6(S{2}) is injective. We will
check that the hypotheses of Lemma 9.1.4 are satisfied. Condition (i) is
the weak splitting property for S. The normal bundle to the diagonal in
S ⇥ S is TS , so (ii) means that the class c2(TS) belongs to DCH

2(S); this is
proved in ([B-V, thm. 1 c]). Formula (9.2) implies �⇤CH

1(S) ⇢ DCH
3(S ⇥

S), so condition (iii) reduces to the injectivity of c3
S⇥S

, which follows from
Proposition 9.1.3. a) and the corresponding result for S.

— Let us pass to the more di�cult case of S[3]. The Hilbert scheme S[3]

is dominated by the nested Hilbert scheme S[2,3] which parameterizes pairs
(Z,Z 0) 2 S[2] ⇥ S[3] with Z ⇢ Z 0; it is isomorphic to the blow-up of S ⇥ S[2]

along the incidence subvariety I = {(x, Z) | x 2 Z}. Let ⇡ : S{2} ! S[2]

be the quotient map, and p : S{2} ! S the first projection. Then the map
j = (p, ⇡) : S{2} ,�! S⇥S[2] induces an isomorphism of S{2} onto I (see for
instance [L, 1.2]).

To prove the theorem, it su�ces, by Corollary 9.2.2 and Proposition
9.1.3. b), to prove that the cycle class map DCH

4(S[2,3]) ! H
8(S[2,3]) is injec-

tive. We will again check that the hypotheses of Lemma 9.1.4 are satisfied.
Condition (i) is the injectivity of the cycle class map c3

S{2} : DCH
3(S{2}) !

H
6(S{2}), which has just been proved. Let N be the normal bundle to the

embedding j : S{2} ,�! S ⇥ S[2], and E ⇢ S{2} the exceptional divisor,
which is the ramification locus of ⇡. From the exact sequences

0 ! N_ �! p⇤⌦1
S
� ⇡⇤⌦1

S[2]
�! ⌦1

S{2} ! 0
0 ! ⇡⇤⌦1

S[2]
�! ⌦1

S{2} �! OE(�E) ! 0
0 ! O

S{2} (�2E) �! O
S{2} (�E) �! OE(�E) ! 0

we obtain the equality in K-theory [N_] = [p⇤⌦1
S
]+[O

S{2} (�2E)]�[O
S{2} (�E)].

We conclude that c2(N) = c2(N_) belongs to DCH
2(S{2}), so that condition

(ii) holds.
— The rest of the proof will be devoted to check condition (iii), namely

the injectivity of

DCH
4(S ⇥ S[2]) + j⇤DCH

2(S{2}) �! H
8(S ⇥ S[2]) .

Let us fix some notation. We will use our standard diagram (9.1)

E ,
i����! S{2}

⌘

???y

???y "

S ,
�����! S2 .
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We denote by p and q the two projections of S{2} onto S. We define an
injective Q-linear map ◆ : CH(S) ! CH(S[2]) by ◆(⇠) := ⇡⇤p⇤⇠; we will use
the same notation for cohomology classes. We have ⇡⇤◆(⇠) = p⇤⇠ + q⇤⇠
for ⇠ in CH(S) or H(S). Finally if ↵ 2 CH(S) and ⇠ 2 CH(S[2]) we put
↵ ⇥ ⇠ := pr⇤1 ↵⌦ pr⇤2 ⇠.

We have CH
1(S{2}) = p⇤CH

1(S)�q⇤CH
1(S)�Q[E]. In CH

2(S{2}) we have
[E] · "⇤↵ = i⇤⌘⇤�⇤↵ for ↵ 2 CH

1(S2), and [E]2 = �"⇤[�(S)]. Therefore:

DCH
2(S{2}) = Q p⇤[o]+Q q⇤[o] + p⇤CH

1(S)⌦q⇤CH
1(S) + i⇤⌘

⇤
CH

1(S)+Q "⇤[�(S)] .

We want to describe the space j⇤DCH
2(S) + DCH

4(S ⇥ S{2}).

Lemma 9.3.2. Let ↵, � 2 CH
1(S). The classes j⇤p⇤[o], j⇤( p⇤↵ · q⇤�), and

j⇤i⇤⌘⇤↵ belong to DCH
4(S ⇥ S{2}) + Q ([o] ⇥ ◆([o])).

Proof Let j0 : S{2} ,�! S⇥S{2} be the embedding given by j0(z) = (p(z), z),
so that j = (1,⇡)�j0. From the cartesian diagram

(9.3.2)

S{2} ,
j
0

����! S ⇥ S{2}

p

???y

???y (1,p)

S ,
�����! S ⇥ S

we obtain j0⇤p
⇤[o] = (1, p)⇤�⇤[o] = [o] ⇥ p⇤[o], hence j⇤p⇤[o] = [o] ⇥ ◆([o]). In

the same way we have j0⇤p
⇤↵ = (1, p)⇤�⇤↵, hence, using (9.2) ,

j0⇤p
⇤↵ = ↵ ⇥ p⇤[o] + [o] ⇥ p⇤↵ .

Multiplying by pr⇤2 q⇤� and using pr2 �j0 = Id we obtain

j0⇤(p
⇤↵ · q⇤�) = ↵ ⇥ (p⇤[o] · q⇤�) + [o] ⇥ (p⇤↵ · q⇤�) ,

hence j⇤(p⇤↵ · q⇤�) = ↵ ⇥ ⇡⇤(p⇤[o] · q⇤�) + [o] ⇥ ⇡⇤(p⇤↵ · q⇤�) .

For ↵, � 2 CH
1(S), put h↵, �i := deg(↵ · �). Then

⇡⇤⇡⇤(p⇤↵ · q⇤�) = p⇤↵ · q⇤� + p⇤� · q⇤↵
= (p⇤↵ + q⇤↵)(p⇤� + q⇤�)� h↵, �i(p⇤[o] + q⇤[o])
= ⇡⇤

�
◆(↵)◆(�)� h↵, �i◆([o])

�
;

we find similarly ⇡⇤⇡⇤(p⇤[o] · q⇤�) = ⇡⇤◆([o])◆(�), and finally

j⇤(p⇤↵ · q⇤�) = ↵ ⇥ ◆([o])◆([�]) + [o] ⇥
�
◆(↵)◆(�)� h↵, �i ◆([o])

�
.

Let � 2 CH
1(S). We have ◆(�)2 · ◆(�) = h�2i ◆([o])◆(�) + 2h� · �i ◆([o])◆(�)

(this is easily checked by applying ⇡⇤ as above). If h�2i 6= 0 we conclude
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by taking � = � that ◆([o])◆(�) is proportional to ◆(�)3. If h�2i = 0 we can
choose � so that (� · �) 6= 0; then ◆([o])◆(�) is proportional to ◆(�)2◆(�). In
each case we see that ◆([o])◆(�) belongs to DCH

3(S[2]), hence the assertion
of the lemma about j⇤( p⇤↵ · q⇤�).

Consider finally the cartesian diagram

E ,
k����! S ⇥ E

⌘

???y

???y (1,⌘)

S ,
�����! S ⇥ S

with k(e) = (⌘(e), e). Using again (9.2) we get

k⇤⌘
⇤↵ = (1, ⌘)⇤�⇤↵ = ↵ ⇥ ⌘⇤[o] + [o] ⇥ ⌘⇤↵ .

Pushing forward in S ⇥ S[2] we obtain j⇤i⇤⌘⇤↵ = ↵ ⇥ i0⇤⌘
⇤[o] + [o] ⇥ i0⇤⌘

⇤↵,
where i0 = ⇡ �i is the embedding of E in S[2].

To avoid confusion let us denote by Ē the image of E in S[2], so that
⇡⇤[Ē] = 2[E]. We have i0⇤⌘

⇤↵ = ⇡⇤([E] · p⇤↵) = 1
2 [Ē] · ◆(↵) 2 DCH

2(S[2]).
Likewise [E]3 = i⇤h2 = �24i⇤⌘⇤[o], hence i0⇤⌘

⇤[o] = � 1
96 [Ē]3 2 DCH

2(S[2]).
This finishes the proof of the lemma.

The lemma and the formula for DCH
2(S{2}) show that j⇤DCH

2(S{2}) is
spanned modulo DCH

4(S ⇥ S[2]) by the classes

[o] ⇥ ◆([o]) , j⇤q
⇤[o] , j⇤"

⇤[�(S)] .

In fact there is one more relation, much more subtle, between these classes
modulo DCH

4(S ⇥ S[2]).

Lemma 9.3.3. We have

2[o] ⇥ ◆([o])� 2j⇤q
⇤[o] + j⇤"

⇤[�(S)] 2 DCH
4(S ⇥ S[2]) .

Proof We start from a relation in CH
4(S3), proved in [B-V, Prop. 3.2]. For

1  i < j  3, let us denote by pij : S3 ! S2 the projection onto the i- th
and j- th factors, and by pi : S3 ! S the projection onto the i- th factor.
We will write simply � for the diagonal �(S) ⇢ S2, and � ⇢ S3 for the
small diagonal, that is, the subvariety of triples (x, x, x) for x 2 S. Then:

[�]�
X

i<j,k 6=i,j

p⇤ij [�] · p⇤
k
[o] +

X

i<j

p⇤i [o] · p⇤j [o] = 0 .
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Pull back this relation by the map "
S

= (1S , ") : S ⇥ S{2} ! S ⇥ S2. Since

p1 �"S
= pr1 , p2 �"S

= p� pr2 , p3 �"S
= q � pr2 , p23 �"S

= " ,
we obtain "⇤

S
[�] = j0⇤"

⇤[�] , "⇤
S
(p⇤1[o] · p⇤23[�]) = [o] ⇥ "⇤[�] ,

"⇤
S
(p⇤2[o] · p⇤3[o]) = 1 ⇥ p⇤[o] · q⇤[o] , "⇤

S
(p⇤1[o] · p⇤2[o]) = [o] ⇥ p⇤[o] ,

"⇤
S
(p⇤1[o] · p⇤3[o]) = [o] ⇥ q⇤[o] .

We have p12 �"S = (1, p), hence "⇤
S
p⇤12[�] = j0⇤1 (see diagram 9.3.2) and

"⇤
S
(p⇤3[o] · p⇤12[�]) = j0⇤q

⇤[o]. Let j00 = (q, 1) : S{2} ! S ⇥ S{2} ; the same
argument gives "⇤

S
p⇤13[�] = j00⇤1 and "⇤

S
(p⇤2[o] · p⇤13[�]) = j00⇤p

⇤[o] . Finally
we have kj0⇤q

⇤[o] + j00⇤p
⇤[o] = ⇡⇤

S
j⇤q⇤[o]. Pushing forward by ⇡S we obtain in

CH
4(S ⇥ S[2]):

j⇤"
⇤[�]� 2j⇤q

⇤[o]� [o] ⇥ ⇡⇤"
⇤[�] + 2[o] ⇥ ◆([o]) + 1 ⇥ ◆([o])2 = 0

It remains to observe that [o] ⇥ ⇡⇤"⇤[�] and 1 ⇥ ◆([o])2 belong to DCH
4(S⇥

S[2]). Indeed from [E]2 = �"⇤[�] we deduce ⇡⇤"⇤[�] = �1
2 [Ē]2 2 DCH

2(S[2]).
And if h is any element of CH

1(S) with h2 = d 6= 0, we have

⇡⇤◆(h)4 = 6d2p⇤[o] · q⇤[o] = 3d2⇡⇤◆([o])2 , hence ◆([o])2 2 DCH
4(S[2]) .

For a smooth projective variety X, let us denote by DH(X) the (graded)
subspace of H(X) spanned by intersection of divisor classes – that is, the
image of DCH(X) by the cycle class map. It remains to prove that the cycle
class map c4

S⇥S[2]
is injective on DCH

4(S⇥S[2])+Q ([o] ⇥ ◆([o]))+Q j⇤q⇤[o].

Since we know by (9.3) and (9.1.3. a)) that it is injective on DCH
4(S⇥S[2]),

this amounts to :

Lemma 9.3.4. There is no non-trivial relation

a [o] ⇥ ◆([o]) + b j⇤q
⇤[o] 2 DH

8(S ⇥ S[2]) ,

with a, b 2 Q.

To prove this, suppose that such a relation holds. Let ! be a non-zero
class in H2,0(S); for any class ⇠ in H

8(S⇥S[2], C) put h(⇠) := (pr2)⇤(pr⇤1 !·⇠).
Since the product of ! with any algebraic class in H2(S) is zero, h is zero on
DH

8(S⇥S[2]). Clearly h([o] ⇥ ◆([o])) = 0, while h(j⇤q⇤[o]) = ⇡⇤(p⇤! ·q⇤[o]) =
◆(!)◆([o]). This class is nonzero, for instance because h◆(!)◆([o]), ◆(!̄)i =
h!, !̄i > 0.

Thus b = 0, and our relation reduces to [o] ⇥ ◆([o]) 2 DH
8(S⇥S[2]). Since

DH
8(S ⇥ S[2]) = �

i+j=8
DH

i(S) ⇥ DH
j(S[2]) (see Proposition 9.1.3. a)), this is

equivalent to ◆([o]) 2 DH
4(S[2]). Thus the proof reduces to the following

assertion:



On the Splitting of the Bloch-Beilinson Filtration 359

Lemma 9.3.5. The class ◆([o]) does not belong to DH
4(S[2]).

Proof We have

H
4(S{2}) = "⇤H4(S2)� i⇤⌘

⇤
H

2(S)
= Q p⇤[o]�Q q⇤[o]� (p⇤H2(S)⌦ q⇤H2(S))� i⇤⌘

⇤
H

2(S) .

Taking the invariants under the involution of S{2} which exchanges the
factors, we find

H
4(S[2]) = Q ◆([o])� Sym2

H
2(S)� i0⇤⌘

⇤
H

2(S) ,

where Sym2
H

2(S) is identified with a subspace of H
4(S[2]) by ↵·� 7! ⇡⇤(p⇤↵·

q⇤�), and i0 := ⇡ �i is the natural embedding of E in S[2]. Since CH
1(S[2]) =

◆(CH
1(S))�Q · [E], the subspace DH

4(S[2]) is spanned by the classes

◆(↵)◆(�) , ◆(↵) · [E] = 2i0⇤⌘
⇤↵ , [E]2 = �2⇡⇤"

⇤[�] for ↵, � 2 CH
1(S) .

Suppose that we have a relation

◆([o]) =
X

i<j

mij ◆(↵i)◆(↵j) + i0⇤⌘
⇤� + m ⇡⇤"

⇤[�] in H
4(S[2]) ,

where (↵i) is a basis of CH
1(S). This gives in H

4(S{2}):

p⇤[o] + q⇤[o] =
X

i<j

mij (p⇤↵i + q⇤↵i)(p⇤↵j + q⇤↵j) + 2i⇤⌘
⇤� + 2m "⇤[�] .

Projecting onto the direct summand i⇤⌘⇤H2(S) of H
4(S{2}) we find i⇤⌘⇤� =

0. Multiplying by p⇤! and pushing forward by q we find as in the proof of
(9.3.4) that all terms but "⇤[�] give 0, so m = 0. Finally the equality

p⇤[o] + q⇤[o] =
X

i<j

mij (p⇤↵i + q⇤↵i)(p⇤↵j + q⇤↵j)

projected onto Sym2
H

2(S) gives mij = 0 for all i, j. This achieves the proof
of the lemma and therefore of the Proposition.

Comments. A variation of this method can be used to prove that the gen-
eralized Kummer variety K2 associated to an abelian surface A [B1] has
the weak splitting property; one must replace CH

1(A) by the subspace of
symmetric divisor classes. We leave the details to the reader.

We should point out, however, that even among symplectic fourfolds these
examples are quite particular. Indeed for each integer g � 2, the projective
K3 surfaces of genus g (that is, embedded in P

g with degree 2g � 2) form
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an irreducible 19-dimensional family; the corresponding family of Hilbert
schemes S[2] is contained in a 20-dimensional irreducible family of projective
symplectic manifolds (see [B1]). Since the weak splitting property is not
invariant under deformation, we do not know whether it holds for the general
member of such a family. It would be interesting, in particular, to check
whether the property holds for the variety of lines contained in a smooth
cubic hypersurface in P

5.

References
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