ON THE BRAUER GROUP OF ENRIQUES SURFACES

ARNAUD BEAUVILLE

ABSTRACT. Let S be a complex Enriques surface (quotient of a K3 surface X by a fixed-point-free involution). The Brauer group $\operatorname{Br}(S)$ has a unique nonzero element. We describe its pull-back in $\operatorname{Br}(X)$, and show that the surfaces S for which it is trivial form a countable union of hypersurfaces in the moduli space of Enriques surfaces.

1. Introduction

Let S be a complex Enriques surface, and $\pi: X \to S$ its 2-to-1 cover by a K3 surface. Poincaré duality provides an isomorphism $H^3(S,\mathbb{Z}) \cong H_1(S,\mathbb{Z}) = \mathbb{Z}/2$, so that there is a unique nontrivial element b_S in the Brauer group Br(S). What is the pull-back of this element in Br(X)? Is it nonzero?

The answer to the first question is easy in terms of the canonical isomorphism $\operatorname{Br}(X) \xrightarrow{\sim} \operatorname{Hom}(T_X, \mathbb{Q}/\mathbb{Z})$ (see §2): π^*b_S corresponds to the linear form $\tau \mapsto (\beta \cdot \pi_* \tau)$, where β is any element of $\operatorname{H}^2(S, \mathbb{Z}/2)$ which does not come from $\operatorname{H}^2(S, \mathbb{Z})$. The second question turns out to be more subtle: the answer depends on the surface. We will characterize the surfaces S for which $\pi^*b_S = 0$ (Corollary 5.7), and show that they form a countable union of hypersurfaces in the moduli space of Enriques surfaces (Corollary 6.5).

Part of our results hold over any algebraically closed field, and also in a more general set-up (see Proposition 4.1 below); for the last part, however, we need in a crucial way Horikawa's description of the moduli space by transcendental methods.

2. The Brauer group of a surface

Let S be a smooth projective variety over a field; we define the Brauer group Br(S) as the étale cohomology group $H^2_{\text{\'et}}(S, \mathbb{G}_m)$. For surfaces this definition coincides with that of Grothendieck [G] by [G], II, Cor. 2.2; this holds in fact in any dimension by a result of Gabber, which we will not need here (see [dJ]).

In this section we assume that S is a complex surface; we recall the description of Br(S) in that case – this is classical but not so easy to find in the literature. The Kummer exact sequence

$$0 \to \mathbb{Z}/n \longrightarrow \mathbb{G}_m \longrightarrow \mathbb{G}_m \to 0$$

gives rise to an exact sequence

$$0 \to \operatorname{Pic}(S) \otimes \mathbb{Z}/n \longrightarrow \operatorname{H}^{2}(S, \mathbb{Z}/n) \stackrel{p}{\longrightarrow} \operatorname{Br}(S)[n] \to 0 \tag{2.a}$$

(we denote by M[n] the kernel of the multiplication by n in a \mathbb{Z} -module M).

Received by the editors May 19, 2009.

¹The question is mentioned in [H-S], where the authors construct an Enriques surface S over \mathbb{Q} for which $\pi^*b_S \neq 0$ (see Cor. 2.8).

On the other hand, the cohomology exact sequence associated to $0 \to \mathbb{Z} \to \mathbb{Z} \to \mathbb{Z}/n \to 0$ gives:

$$0 \to \mathrm{H}^2(S, \mathbb{Z}) \otimes \mathbb{Z}/n \longrightarrow \mathrm{H}^2(S, \mathbb{Z}/n) \longrightarrow \mathrm{H}^3(S, \mathbb{Z})[n] \to 0 \tag{2.b}$$

Comparing (2.a) and (2.b) we get an exact sequence

$$0 \to \operatorname{Pic}(S) \otimes \mathbb{Z}/n \longrightarrow \operatorname{H}^{2}(S, \mathbb{Z}) \otimes \mathbb{Z}/n \longrightarrow \operatorname{Br}(S)[n] \longrightarrow \operatorname{H}^{3}(S, \mathbb{Z})[n] \to 0 . \tag{2.c}$$

Let $H^2(S, \mathbb{Z})_{tf}$ be the quotient of $H^2(S, \mathbb{Z})$ by its torsion subgroup; the cup-product induces a perfect pairing on $H^2(S, \mathbb{Z})_{tf}$. We denote by $T_S \subset H^2(S, \mathbb{Z})_{tf}$ the transcendental lattice, that is, the orthogonal of the image of Pic(S). We have an exact sequence

$$\operatorname{Pic}(S) \xrightarrow{c_1} \operatorname{H}^2(S, \mathbb{Z}) \xrightarrow{u} T_S^* \to 0$$

where u associates to $\alpha \in H^2(S, \mathbb{Z})$ the cup-product with α . Taking tensor product with \mathbb{Z}/n and comparing with (2.c), we get an exact sequence

$$0 \to \operatorname{Hom}(T_S, \mathbb{Z}/n) \longrightarrow \operatorname{Br}(S)[n] \longrightarrow \operatorname{H}^3(S, \mathbb{Z})[n] \to 0 ; \qquad (2.d)$$

or, passing to the direct limit over n,

$$0 \to \operatorname{Hom}(T_S, \mathbb{Q}/\mathbb{Z}) \longrightarrow \operatorname{Br}(S) \longrightarrow \operatorname{Tors} H^3(S, \mathbb{Z}) \to 0$$
. (2.e)

3. Algebraic topology of Enriques surfaces

3.1. Let S be an Enriques surface (over \mathbb{C}). We first recall some elementary facts on the topology of S. A general reference is [BHPV], ch. VIII.

The torsion subgroup of $H^2(S, \mathbb{Z})$ is isomorphic to $\mathbb{Z}/2$; its nonzero element is the canonical class K_S . Let k_S denote the image of K_S in $H^2(S, \mathbb{Z}/2)$. The universal coefficient theorem together with Poincaré duality gives an exact sequence

$$0 \to \mathbb{Z}/2 \xrightarrow{k_S} \mathrm{H}^2(S, \mathbb{Z}/2) \xrightarrow{v_S} \mathrm{Hom}(\mathrm{H}^2(S, \mathbb{Z}), \mathbb{Z}/2) \to 0 \tag{3.a}$$

where v_S is deduced from the cup-product.

- **3.2.** The linear form $\alpha \mapsto (k_S \cdot \alpha)$ on $H^2(S, \mathbb{Z}/2)$ vanishes on the image of $H^2(S, \mathbb{Z})$, hence coincides with the map $H^2(S, \mathbb{Z}/2) \to H^3(S, \mathbb{Z}) = \mathbb{Z}/2$ from the exact sequence (2.b). Note that k_S is the second Stiefel-Whitney class $w_2(S)$; in particular, we have $(k_S \cdot \alpha) = \alpha^2$ for all $\alpha \in H^2(S, \mathbb{Z}/2)$ (Wu formula, see [M-S]).
- **3.3.** The map $c_1 : \operatorname{Pic}(S) \to \operatorname{H}^2(S, \mathbb{Z})$ is an isomorphism, hence (2.e) provides an isomorphism $\operatorname{Br}(S) \xrightarrow{\sim} \operatorname{Tors} \operatorname{H}^3(S, \mathbb{Z}) \cong \mathbb{Z}/2$. We will denote by b_S the nonzero element of $\operatorname{Br}(S)$.

Let $\pi: X \to S$ be the 2-to-1 cover of S by a K3 surface. The aim of this note is to study the pull-back π^*b_S in Br(X).

Proposition 3.4. The class π^*b_S is represented, through the isomorphism $\operatorname{Br}(X) \xrightarrow{\sim} \operatorname{Hom}(T_X, \mathbb{Q}/\mathbb{Z})$, by the linear form $\tau \mapsto (\beta \cdot \pi_* \bar{\tau})$, where $\bar{\tau}$ is the image of τ in $\operatorname{H}^2(X, \mathbb{Z}/2)$ and β any element of $\operatorname{H}^2(S, \mathbb{Z}/2)$ which does not come from $\operatorname{H}^2(S, \mathbb{Z})$.

Proof. Let β be an element of $H^2(S, \mathbb{Z}/2)$ which does not come from $H^2(S, \mathbb{Z})$, so that $p(\beta) = b_S(2.a)$. The pull-back $\pi^*b_S \in Br(X)$ is represented by $\pi^*\beta \in H^2(X, \mathbb{Z}/2)$ $\cong H^2(X, \mathbb{Z}) \otimes \mathbb{Z}/2$; its image in $Hom(T_X, \mathbb{Z}/2)$ is the linear form $\tau \mapsto (\pi^*\beta \cdot \bar{\tau})$. Since $(\pi^*\beta \cdot \bar{\tau}) = (\beta \cdot \pi_*\bar{\tau})$, the Proposition follows.

Part (i) of the following Proposition shows that the class $\pi^*\beta \in H^2(X, \mathbb{Z}/2)$ which appears above is nonzero. This does *not* say that π^*b_S is nonzero, as $\pi^*\beta$ could come from a class in Pic(X) – see §6.

Proposition 3.5. (i) The kernel of $\pi^* : H^2(S, \mathbb{Z}/2) \to H^2(X, \mathbb{Z}/2)$ is $\{0, k_S\}$. (ii) The Gysin map $\pi_* : H^2(X, \mathbb{Z}) \to H^2(S, \mathbb{Z})$ is surjective.

Proof. To prove (i) we use the Hochschild-Serre spectral sequence :

$$E_2^{p,q} = \mathrm{H}^p(\mathbb{Z}/2, \mathrm{H}^q(X, \mathbb{Z}/2)) \ \Rightarrow \ \mathrm{H}^{p+q}(S, \mathbb{Z}/2) \ .$$

We have $E_2^{1,1}=0$, and $E_\infty^{2,0}=E_2^{2,0}=\mathrm{H}^2(\mathbb{Z}/2,\mathbb{Z}/2)=\mathbb{Z}/2$. Thus the kernel of π^* : $\mathrm{H}^2(S,\mathbb{Z}/2)\to\mathrm{H}^2(X,\mathbb{Z}/2)$ is isomorphic to $\mathbb{Z}/2$. Since it contains k_S , it is equal to $\{0,k_S\}$.

Let us prove (ii). Because of the formula $\pi_*\pi^*\alpha=2\alpha$, the cokernel of π_* : $\mathrm{H}^2(X,\mathbb{Z})\to\mathrm{H}^2(S,\mathbb{Z})$ is a $(\mathbb{Z}/2)$ -vector space; therefore it suffices to prove that the transpose map

$${}^t\pi_*: \operatorname{Hom}(\operatorname{H}^2(S,\mathbb{Z}),\mathbb{Z}/2) \longrightarrow \operatorname{Hom}(\operatorname{H}^2(X,\mathbb{Z}),\mathbb{Z}/2)$$

is injective. This is implied by the commutative diagram

$$\begin{split} \mathrm{H}^2(S,\mathbb{Z}/2) &\xrightarrow{\ v_S} \mathrm{Hom}(\mathrm{H}^2(S,\mathbb{Z}),\mathbb{Z}/2) \\ \downarrow^{\pi^*} & {}^t\pi_* \\ \downarrow^{\mathrm{H}^2(X,\mathbb{Z}/2)} &\xrightarrow{\sim \atop v_X} \mathrm{Hom}(\mathrm{H}^2(X,\mathbb{Z}),\mathbb{Z}/2) \end{split}$$

plus the fact that $\operatorname{Ker} \pi^* = \operatorname{Ker} v_S = \{0, k_S\}$ (by (i) and (3.a)).

4. Brauer groups and cyclic coverings

Proposition 4.1. Let $\pi: X \to S$ be an étale, cyclic covering of smooth projective varieties over an algebraically closed field k. Let σ be a generator of the Galois group G of π , and let $\operatorname{Nm}: \operatorname{Pic}(X) \to \operatorname{Pic}(S)$ be the norm homomorphism. The kernel of $\pi^*: \operatorname{Br}(S) \to \operatorname{Br}(X)$ is canonically isomorphic to $\operatorname{Ker} \operatorname{Nm}/(1-\sigma^*)(\operatorname{Pic}(X))$.

Proof. We consider the Hochschild-Serre spectral sequence

$$E_2^{p,q} = \mathrm{H}^p(G, \mathrm{H}^q(X, \mathbb{G}_m)) \Rightarrow \mathrm{H}^{p+q}(S, \mathbb{G}_m)$$
.

Since $E_2^{2,0}=\mathrm{H}^2(G,k^*)=0$, the kernel of $\pi^*:\mathrm{Br}(S)\to\mathrm{Br}(X)$ is identified with $E_\infty^{1,1}=\mathrm{Ker}\big(d_2:E_2^{1,1}\to E_2^{3,0}\big)$. We have $E_2^{3,0}=\mathrm{H}^3(G,k^*)$; by periodicity of the cohomology of G, this group is canonically isomorphic to $\mathrm{H}^1(G,k^*)=\mathrm{Hom}(G,k^*)$, the character group of G, which we denote by \widehat{G} . So we view d_2 as a map from $\mathrm{H}^1(G,\mathrm{Pic}(X))$ to \widehat{G} .

Let **S** be the endomorphism $L \mapsto \bigotimes_{g \in G} g^*L$ of $\operatorname{Pic}(X)$; recall that $\operatorname{H}^1(G,\operatorname{Pic}(X))$ is isomorphic to $\operatorname{Ker} \mathbf{S}/\operatorname{Im}(1-\sigma^*)$. We have $\pi^*\operatorname{Nm}(L) = \mathbf{S}(L)$ for $L \in \operatorname{Pic}(X)$, hence Nm maps $\operatorname{Ker} \mathbf{S}$ into $\operatorname{Ker} \pi^* \subset \operatorname{Pic}(S)$. Now recall that $\operatorname{Ker} \pi^*$ is canonically isomorphic to \widehat{G} : to $\chi \in \widehat{G}$ corresponds the subsheaf L_χ of $\pi_*\mathcal{O}_X$ where G acts through the character χ . Since $\operatorname{Nm} \circ (1-\sigma^*) = 0$, the norm induces a homomorphism $\operatorname{H}^1(G,\operatorname{Pic}(X)) \to \operatorname{Ker} \pi^* \cong \widehat{G}$. The Proposition will follow from:

Lemma 4.2. The map $d_2: H^1(G, Pic(X)) \to \widehat{G}$ coincides with the homomorphism induced by the norm.

Proof. We apply the formalism of [S], Proposition 1.1, where a very close situation is considered. This Proposition, together with property (1) which follows it, tells us that d_2 is given by cup-product with the extension class in $\operatorname{Ext}_G^2(\operatorname{Pic}(X), k^*)$ of the exact sequence of G-modules

$$1 \to k^* \longrightarrow R_X^* \to \operatorname{Div}(X) \to \operatorname{Pic}(X) \to 0$$
,

where R_X is the field of rational functions on X. This means that d_2 is the composition

$$\mathrm{H}^1(G,\mathrm{Pic}(X)) \stackrel{\partial}{\longrightarrow} \mathrm{H}^2(G,R_X^*/k^*) \stackrel{\partial'}{\longrightarrow} \mathrm{H}^3(G,k^*)$$

where ∂ and ∂' are the coboundary maps associated to the short exact sequences

$$0 \to R_X^*/k^* \to \operatorname{Div}(X) \to \operatorname{Pic}(X) \to 0$$
$$0 \to k^* \to R_X^* \to R_X^*/k^* \to 0.$$

and

Let $\lambda \in H^1(G, \operatorname{Pic}(X))$, represented by $L \in \operatorname{Pic}(X)$ with $\bot_{g \in G} g^* L \cong \mathcal{O}_X$. Let $D \in \operatorname{Div}(X)$ such that $L = \mathcal{O}_X(D)$. Then $\sum_g g^* D$ is the divisor of a rational function $\psi \in R_X^*$, whose class in R_X^*/k^* is well-defined. This class is invariant under G, and defines the element $\partial(\lambda) \in H^2(G, R_X^*/k^*)$. Since div ψ is invariant under G, there exists a character $\chi \in \widehat{G}$ such that $g^*\psi = \chi(g)\psi$ for each $g \in G$. Then $d_2^{1,1}(\lambda) = \chi$ viewed as an element of $H^3(G, k^*) = \widehat{G}$.

It remains to prove that $\mathcal{O}_S(\pi_*D) = L_\chi$. Since $\operatorname{div}(\psi) = \pi^*\pi_*D$, multiplication by ψ induces a global isomorphism $u: \pi^*\mathcal{O}_S(\pi_*D) \xrightarrow{\sim} \mathcal{O}_X$. Let $\varphi \in R_X$ be a generator of $\mathcal{O}_X(D)$ on an open G-invariant subset U of X. Then $\operatorname{Nm}(\varphi)$ is a generator of $\mathcal{O}_S(\pi_*D)$ on $\pi(U)$, and $\pi^*\operatorname{Nm}(\varphi)$ is a generator of $\pi^*\mathcal{O}_S(\pi_*D)$ on U; the function $h:=\psi\pi^*\operatorname{Nm}(\varphi)$ on U satisfies $g^*h=\chi(g)h$ for all $g\in G$. This proves that the homomorphism $u^\flat:\mathcal{O}_S(\pi_*D)\to\pi_*\mathcal{O}_X$ deduced from u maps $\mathcal{O}_S(\pi_*D)$ onto the subsheaf L_χ of $\pi_*\mathcal{O}_X$, hence our assertion.

We will need a complement of the Proposition in the complex case:

Corollary 4.3. Assume $k = \mathbb{C}$, and $H^1(X, \mathcal{O}_X) = H^2(S, \mathcal{O}_S) = 0$. The following conditions are equivalent:

- (i) The map $\pi^* : Br(S) \to Br(X)$ is not injective;
- (ii) there exists $L \in \text{Pic}(X)$ whose class $\lambda = c_1(L)$ in $H^2(X, \mathbb{Z})$ satisfies $\pi_* \lambda = 0$ and $\lambda \notin (1 \sigma^*)(H^2(X, \mathbb{Z}))$.

Observe that the hypotheses of the Corollary are satisfied when S is a complex Enriques surfaces and $\pi: X \to S$ its universal cover.

Proof. By Proposition 4.1 (i) is equivalent to the existence of a line bundle L on X with $\text{Nm}(L) = \mathcal{O}_S$ and $[L] \neq 0$ in $H^1(G, \text{Pic}(X))$, while (ii) means that there exists such L with $[c_1(L)] \neq 0$ in $H^1(G, H^2(X, \mathbb{Z}))$. Therefore it suffices to prove that the map

$$H^{1}(c_{1}): H^{1}(G, Pic(X)) \to H^{1}(G, H^{2}(X, \mathbb{Z}))$$

is injective.

Since $H^1(X, \mathcal{O}_X) = 0$ we have an exact sequence

$$0 \to \operatorname{Pic}(X) \xrightarrow{c_1} \operatorname{H}^2(X, \mathbb{Z}) \longrightarrow Q \to 0 \qquad \text{with } Q \subset \operatorname{H}^2(X, \mathcal{O}_X) \ .$$

Since $H^2(S, \mathcal{O}_S) = 0$, there is no nonzero invariant vector in $H^2(X, \mathcal{O}_X)$, hence in Q. Then the associated long exact sequence implies that $H^1(c_1)$ is injective.

5. More algebraic topology

5.1. As in §3, we denote by S a complex Enriques surface, by $\pi: X \to S$ its universal cover and by σ the corresponding involution of X. We will need some more precise results on the topology of the surfaces X and S. We refer again to [BHPV], ch. VIII.

Let E be the lattice $(-E_8) \oplus H$, where H is the rank 2 hyperbolic lattice. Let $\mathrm{H}^2(S,\mathbb{Z})_{\mathrm{tf}}$ be the quotient of $\mathrm{H}^2(S,\mathbb{Z})$ by its torsion subgroup $\{0,K_S\}$. We have isomorphisms

$$\mathrm{H}^2(S,\mathbb{Z})_{\mathrm{tf}} \cong E \qquad \mathrm{H}^2(X,\mathbb{Z}) \cong E \oplus E \oplus H$$

such that $\pi^*: H^2(S, \mathbb{Z})_{tf} \to H^2(X, \mathbb{Z})$ is identified with the diagonal embedding $\delta: E \hookrightarrow E \oplus E$, and σ^* is identified with the involution

$$\rho: (\alpha, \alpha', \beta) \mapsto (\alpha', \alpha, -\beta) \text{ of } E \oplus E \oplus H$$
.

5.2. We consider now the cohomology with values in $\mathbb{Z}/2$. For a lattice M, we will write $M_2 := M/2M$. The scalar product of M induces a product $M_2 \otimes M_2 \to \mathbb{Z}/2$; if moreover M is even, there is a natural quadratic form $q: M_2 \to \mathbb{Z}/2$ associated with that product, defined by $q(m) = \frac{1}{2}\tilde{m}^2$, where $\tilde{m} \in M$ is any lift of $m \in M_2$. In particular, H_2 contains a unique element ε with $q(\varepsilon) = 1$: it is the class of e + f where (e, f) is a hyperbolic basis of H.

Using the previous isomorphism we identify $H^2(X, \mathbb{Z}/2)$ with $E_2 \oplus E_2 \oplus H_2$.

Proposition 5.3. The image of
$$\pi^* : H^2(S, \mathbb{Z}/2) \to H^2(X, \mathbb{Z}/2)$$
 is $\delta(E_2) \oplus (\mathbb{Z}/2)\varepsilon$.

Proof. This image is invariant under σ^* , hence is contained in $\delta(E_2) \oplus H_2$; by Proposition 3.6 (i) it is 11-dimensional, hence a hyperplane in $\delta(E_2) \oplus H_2$, containing $\delta(E_2)$ (which is spanned by the classes coming from $\mathrm{H}^2(S,\mathbb{Z})$). So $\pi^*\mathrm{H}^2(S,\mathbb{Z}/2)$ is spanned by $\delta(E_2)$ and a nonzero element of H_2 ; it suffices to prove that this element is ε . Since the elements of $\mathrm{H}^2(S,\mathbb{Z}/2)$ which do not come from $\mathrm{H}^2(S,\mathbb{Z})$ have square 1 (3.2), this is a consequence of the following lemma.

Lemma 5.4. For every $\alpha \in H^2(S, \mathbb{Z}/2)$, $q(\pi^*\alpha) = \alpha^2$.

Proof. This proof has been shown to me by J. Lannes. The key ingredient is the *Pontryagin square*, a cohomological operation

$$\mathcal{P}: \mathrm{H}^{2m}(M,\mathbb{Z}/2) \longrightarrow \mathrm{H}^{4m}(M,\mathbb{Z}/4)$$

defined for any reasonable topological space M and satisfying a number of interesting properties (see [M-T], ch. 2, exerc. 1). We will state only those we need in the case of interest for us, namely m=2 and M is a compact oriented 4-manifold. We identify $\mathrm{H}^4(M,\mathbb{Z}/4)$ with $\mathbb{Z}/4$; then $\mathcal{P}:\mathrm{H}^2(M,\mathbb{Z})\to\mathbb{Z}/4$ satisfies:

- a) For $\alpha \in H^2(M, \mathbb{Z}/2)$, the class of $\mathcal{P}(\alpha)$ in $\mathbb{Z}/2$ is α^2 ;
- b) If $\alpha \in H^2(M, \mathbb{Z}/2)$ comes from $\tilde{\alpha} \in H^2(M, \mathbb{Z})$, then $\mathcal{P}(\alpha) = \tilde{\alpha}^2$ (mod. 4). In particular, if M is a K3 surface, we have $\mathcal{P}(\alpha) = 2q(\alpha)$ in $\mathbb{Z}/4$.

Coming back to our situation, let $\alpha \in H^2(S, \mathbb{Z}/2)$. We have in $\mathbb{Z}/4$:

$$\mathcal{P}(\pi^*\alpha) = 2\,\mathcal{P}(\alpha)$$
 by functoriality
= $2\,\alpha^2$ by a), and
 $\mathcal{P}(\pi^*\alpha) = 2\,q(\pi^*\alpha)$ by b).

Comparing the two last lines gives the lemma.

Corollary 5.5. The kernel of $\pi_*: H_2 \to \{0, k_S\}$ is $\{0, \varepsilon\}$.

Proof. By Proposition 5.3 ε belongs to $\operatorname{Im} \pi^*$, hence $\pi_* \varepsilon = 0$. It remains to check that π_* is nonzero on $\operatorname{H}^1(\mathbb{Z}/2, \operatorname{H}^2(X, \mathbb{Z})) \cong H_2$. We know that there is an element $\alpha \in \operatorname{H}^2(X, \mathbb{Z})$ with $\pi_* \alpha = K_S$ (Prop. 3.6 (ii)); it belongs to $\operatorname{Ker}(1 + \sigma^*)$, hence defines an element $\bar{\alpha}$ of $\operatorname{H}^1(\mathbb{Z}/2, \operatorname{H}^2(X, \mathbb{Z}))$ with $\pi_* \bar{\alpha} \neq 0$.

Corollary 5.6. Let $\lambda \in H^2(X,\mathbb{Z})$. The following conditions are equivalent:

- (i) $\pi_*\lambda = 0$ and $\lambda \notin (1 \sigma^*)(\mathrm{H}^2(X, \mathbb{Z}))$;
- (ii) $\sigma^* \lambda = -\lambda$ and $\lambda^2 \equiv 2 \pmod{4}$.

Proof. Write $\lambda = (\alpha, \alpha', \beta) \in E \oplus E \oplus H$; let $\bar{\beta}$ be the class of β in H_2 . Both conditions imply $\sigma^*\lambda = -\lambda$, hence $\alpha' = -\alpha$. Since $(\alpha, -\alpha) = (1 - \sigma^*)(\alpha, 0)$ and $2\beta = (1 - \sigma^*)(\beta)$, the conditions of (i) are equivalent to $\pi_*\bar{\beta} = 0$ and $\bar{\beta} \neq 0$, that is, $\bar{\beta} = \varepsilon$ (Corollary 5.5). On the other hand we have $\lambda^2 = 2\alpha^2 + \beta^2 \equiv 2q(\bar{\beta})$ (mod. 4), hence (ii) is also equivalent to $\bar{\beta} = \varepsilon$.

This allows us to rephrase Corollary 4.3 in a simpler way:

Corollary 5.7. We have $\pi^*b_S = 0$ if and only if there exists a line bundle L on X with $\sigma^*L = L^{-1}$ and $c_1(L)^2 \equiv 2 \pmod{4}$.

Remark.— My original proof of (5.3-5) was less direct and less general, but still perhaps of some interest. The key point is to show that on H_2 q takes the value 1 exactly on the nonzero element of Ker π_* , or equivalently that an element $\alpha \in H_2$ with $\pi_*\alpha = k_S$ satisfies $q(\alpha) = 0$. Using deformation theory (see (6.1) below), one can assume that α comes from a class in $\operatorname{Pic}(X)$. To conclude I applied the following lemma:

Lemma 5.8. Let L be a line bundle on X with $Nm(L) = K_S$. Then $c_1(L)^2$ is divisible by 4.

Proof. Consider the rank 2 vector bundle $E = \pi_*(L)$. The norm induces a non-degenerate quadratic form $N : \operatorname{Sym}^2 E \to K_S$ ([EGA2], 6.5.5). In particular, N induces an isomorphism $E \xrightarrow{\sim} E^* \otimes K_S$, and defines a pairing

$$\mathrm{H}^1(S,E)\otimes\mathrm{H}^1(S,E)\to\mathrm{H}^2(S,K_S)\cong\mathbb{C}$$

which is skew-symmetric and non-degenerate. Thus $h^1(E)$ is even; since $h^0(E) = h^2(E)$ by Serre duality, $\chi(E)$ is even, and so is $\chi(L) = \chi(E)$. By Riemann-Roch this implies that $\frac{1}{2}c_1(L)^2$ is even.

6. The vanishing of $\pi^*b_{\rm S}$ on the moduli space

6.1. We briefly recall the theory of the period map for Enriques surfaces, due to Horikawa (see [BHPV], ch. VIII, or [N]). We keep the notations of (5.1). We denote by L the lattice $E \oplus E \oplus H$, and by L^- the (-1)-eigenspace of the involution ρ : $(\alpha, \alpha', \beta) \mapsto (\alpha', \alpha, -\beta)$, that is, the submodule of elements $(\alpha, -\alpha, \beta)$.

A marking of the Enriques surface S is an isometry $\varphi: \mathrm{H}^2(X,\mathbb{Z}) \to L$ which conjugates σ^* to ρ . The line $\mathrm{H}^{2,0} \subset \mathrm{H}^2(X,\mathbb{C})$ is anti-invariant under σ^* , so its image by $\varphi_{\mathbb{C}}: \mathrm{H}^2(X,\mathbb{C}) \to L_{\mathbb{C}}$ lies in $L_{\mathbb{C}}^-$. The corresponding point $[\omega]$ of $\mathbb{P}(L_{\mathbb{C}}^-)$ is the period $\wp(S,\varphi)$. It belongs to the domain $\Omega \subset \mathbb{P}(L_{\mathbb{C}}^-)$ defined by the equations

$$(\omega \cdot \omega) = 0$$
 $(\omega \cdot \bar{\omega}) > 0$ $(\omega \cdot \lambda) \neq 0$ for all $\lambda \in L^-$ with $\lambda^2 = -2$.

This is an analytic manifold, which is the moduli space for marked Enriques surfaces. To each class $\lambda \in L^-$ we associate the hypersurface H_{λ} of Ω defined by $(\lambda \cdot \omega) = 0$.

Proposition 6.2. We have $\pi^*b_S = 0$ if and only if $\wp(S,\varphi)$ belongs to one of the hypersurfaces H_{λ} for some vector $\lambda \in L^-$ with $\lambda^2 \equiv 2 \pmod{4}$.

Proof. The period point $\wp(S,\varphi)$ belongs to H_{λ} if and only if λ belongs to $c_1(\operatorname{Pic}(X))$; by Corollary 5.7, this is equivalent to $\pi^*b_S=0$.

To get a complete picture we want to know which of the H_{λ} are really needed:

Lemma 6.3. Let λ be a primitive element of L^- .

- (i) The hypersurface H_{λ} is non-empty if and only if $\lambda^2 < -2$.
- (ii) If μ is another primitive element of L^- with $H_{\mu} = H_{\lambda} \neq \emptyset$, then $\mu = \pm \lambda$.

Proof. Let W be the subset of $L_{\mathbb{C}}^-$ defined by the conditions $\omega^2 = 0$, $\omega \cdot \bar{\omega} > 0$. If we write $\omega = \alpha + i\beta$ with $\alpha, \beta \in L_{\mathbb{R}}^-$, these conditions translate as $\alpha^2 = \beta^2 > 0$, $\alpha \cdot \beta = 0$. Thus $W \cap \lambda^{\perp} \neq \emptyset$ is equivalent to the existence of a positive 2-plane in $L_{\mathbb{R}}^-$ orthogonal to λ . Since L^- has signature (2, 10), this is also equivalent to $\lambda^2 < 0$.

If $W \cap \lambda^{\perp}$ is non-empty, λ^{\perp} is the only hyperplane containing it, and $\mathbb{C} \lambda$ is the orthogonal of λ^{\perp} in L^- . Then λ and $-\lambda$ are the only primitive vectors of L^- contained in $\mathbb{C} \lambda$. In particular λ is determined up to sign by H_{λ} , which proves (ii).

Let us prove (i). We have seen that H_{λ} is empty for $\lambda^2 \geq 0$, and also for $\lambda^2 = -2$ by definition of Ω . Assume $\lambda^2 < -2$ and $H_{\lambda} = \emptyset$; then H_{λ} must be contained in one of the hyperplanes H_{μ} with $\mu^2 = -2$; by (ii) this implies $\lambda = \pm \mu$, a contradiction. \square

6.4. Let Γ be the group of isometries of L^- . The group Γ acts properly discontinuously on Ω , and the quotient $\mathcal{M} = \Omega/\Gamma$ is a quasi-projective variety. The image in \mathcal{M} of the period $\wp(S,\varphi)$ does not depend on the choice of φ ; let us denote it by $\wp(S)$. The map $S \mapsto \wp(S)$ induces a bijection between isomorphism classes of Enriques surfaces and \mathcal{M} ; the variety \mathcal{M} is a (coarse) moduli space for Enriques surfaces.

Corollary 6.5. The surfaces S for which $\pi^*b_S = 0$ form an infinite, countable union of (non-empty) hypersurfaces in the moduli space \mathcal{M} .

Proof. Let Λ be the set of primitive elements λ in L^- with $\lambda^2 < -2$ and $\lambda^2 \equiv 2 \pmod{4}$. For $\lambda \in \Lambda$, let \mathcal{H}_{λ} be the image of H_{λ} in \mathcal{M} ; the argument of [BHPV], ch. VIII, Cor. 20.7 shows that \mathcal{H}_{λ} is an algebraic hypersurface in \mathcal{M} . By Proposition 6.2 and Lemma 6.3 the surfaces S with $\pi^*(b_S) = 0$ form the subset $\bigcup_{\lambda \in \Lambda} \mathcal{H}_{\lambda}$. By Lemma 6.3 (ii) we have $\mathcal{H}_{\lambda} = \mathcal{H}_{\mu}$ if and only if $\mu = \pm g\lambda$ for some element g of Γ . This implies $\lambda^2 = \mu^2$; but λ^2 can be any number of the form -2k with k odd > 1 (take for instance $\lambda = e - kf$, where (e, f) is a hyperbolic basis of H), so there are infinitely many distinct hypersurfaces among the \mathcal{H}_{λ} .

Acknowledgements

I am indebted to J.-L. Colliot-Thélène for explaining the problem to me, and for very useful discussions and comments. I am grateful to J. Lannes for providing the topological proof of Lemma 5.4.

References

- [BHPV] W. Barth, K. Hulek, C. Peters, A. Van de Ven: Compact complex surfaces. 2nd edition. Ergebnisse der Mathematik und ihrer Grenzgebiete, 4. Springer-Verlag, Berlin (2004).
- [EGA2] A. Grothendieck: Éléments de géométrie algébrique II. Publ. Math. IHES 8 (1961).
- [G] A. Grothendieck: Le groupe de Brauer I–II. Dix Exposés sur la Cohomologie des Schémas, pp. 46–87; North-Holland, Amsterdam (1968).
- [H-S] D. Harari, A. Skorobogatov: Non-abelian descent and the arithmetic of Enriques surfaces. Intern. Math. Res. Notices 52 (2005), 3203–3228.
- $[\mathrm{dJ}]~$ A.J. de Jong: A result of Gabber. Preprint.
- [M-S] J. Milnor, J. Stasheff: Characteristic classes. Annals of Math. Studies 76. Princeton University Press, Princeton (1974).
- [M-T] R. Mosher, M. Tangora: Cohomology operations and applications in homotopy theory. Harper & Row, New York-London (1968).
- [N] Y. Namikawa: Periods of Enriques surfaces. Math. Ann. 270 (1985), no. 2, 201–222.
- A. Skorobogatov: On the elementary obstruction to the existence of rational points. Math. Notes 81 (2007), no. 1, 97–107.

Laboratoire J.-A. Dieudonné, UMR 6621 du CNRS, Université de Nice, Parc Valrose, F-06108 Nice cedex 2, France

E-mail address: arnaud.beauville@unice.fr