ON THE BRAUER GROUP OF ENRIQUES SURFACES

Arnaud Beauville

Abstract

Let S be a complex Enriques surface (quotient of a K3 surface X by a fixed-point-free involution). The $\operatorname{Brauer} \operatorname{group} \operatorname{Br}(S)$ has a unique nonzero element. We describe its pull-back in $\operatorname{Br}(X)$, and show that the surfaces S for which it is trivial form a countable union of hypersurfaces in the moduli space of Enriques surfaces.

1. Introduction

Let S be a complex Enriques surface, and $\pi: X \rightarrow S$ its 2-to-1 cover by a K3 surface. Poincaré duality provides an isomorphism $\mathrm{H}^{3}(S, \mathbb{Z}) \cong \mathrm{H}_{1}(S, \mathbb{Z})=\mathbb{Z} / 2$, so that there is a unique nontrivial element b_{S} in the Brauer group $\operatorname{Br}(S)$. What is the pull-back of this element in $\operatorname{Br}(X)$? Is it nonzero? ${ }^{1}$

The answer to the first question is easy in terms of the canonical isomorphism $\operatorname{Br}(X) \xrightarrow{\sim} \operatorname{Hom}\left(T_{X}, \mathbb{Q} / \mathbb{Z}\right)($ see $\S 2): \pi^{*} b_{S}$ corresponds to the linear form $\tau \mapsto\left(\beta \cdot \pi_{*} \tau\right)$, where β is any element of $\mathrm{H}^{2}(S, \mathbb{Z} / 2)$ which does not come from $\mathrm{H}^{2}(S, \mathbb{Z})$. The second question turns out to be more subtle: the answer depends on the surface. We will characterize the surfaces S for which $\pi^{*} b_{S}=0$ (Corollary 5.7), and show that they form a countable union of hypersurfaces in the moduli space of Enriques surfaces (Corollary 6.5).

Part of our results hold over any algebraically closed field, and also in a more general set-up (see Proposition 4.1 below); for the last part, however, we need in a crucial way Horikawa's description of the moduli space by transcendental methods.

2. The Brauer group of a surface

Let S be a smooth projective variety over a field; we define the Brauer group $\operatorname{Br}(S)$ as the étale cohomology group $\mathrm{H}_{\text {ét }}^{2}\left(S, \mathbb{G}_{m}\right)$. For surfaces this definition coincides with that of Grothendieck [G] by [G], II, Cor. 2.2; this holds in fact in any dimension by a result of Gabber, which we will not need here (see [dJ]).

In this section we assume that S is a complex surface; we recall the description of $\operatorname{Br}(S)$ in that case - this is classical but not so easy to find in the literature. The Kummer exact sequence

$$
0 \rightarrow \mathbb{Z} / n \longrightarrow \mathbb{G}_{m} \longrightarrow \mathbb{G}_{m} \rightarrow 0
$$

gives rise to an exact sequence

$$
\begin{equation*}
0 \rightarrow \operatorname{Pic}(S) \otimes \mathbb{Z} / n \longrightarrow \mathrm{H}^{2}(S, \mathbb{Z} / n) \xrightarrow{p} \operatorname{Br}(S)[n] \rightarrow 0 \tag{2.a}
\end{equation*}
$$

(we denote by $M[n]$ the kernel of the multiplication by n in a \mathbb{Z}-module M).

[^0]On the other hand, the cohomology exact sequence associated to $0 \rightarrow \mathbb{Z} \rightarrow \mathbb{Z} \rightarrow \mathbb{Z} / n \rightarrow 0$ gives:

$$
\begin{equation*}
0 \rightarrow \mathrm{H}^{2}(S, \mathbb{Z}) \otimes \mathbb{Z} / n \longrightarrow \mathrm{H}^{2}(S, \mathbb{Z} / n) \longrightarrow \mathrm{H}^{3}(S, \mathbb{Z})[n] \rightarrow 0 \tag{2.b}
\end{equation*}
$$

Comparing (2.a) and (2.b) we get an exact sequence

$$
\begin{equation*}
0 \rightarrow \operatorname{Pic}(S) \otimes \mathbb{Z} / n \longrightarrow \mathrm{H}^{2}(S, \mathbb{Z}) \otimes \mathbb{Z} / n \longrightarrow \operatorname{Br}(S)[n] \longrightarrow \mathrm{H}^{3}(S, \mathbb{Z})[n] \rightarrow 0 \tag{2.c}
\end{equation*}
$$

Let $\mathrm{H}^{2}(S, \mathbb{Z})_{\mathrm{tf}}$ be the quotient of $\mathrm{H}^{2}(S, \mathbb{Z})$ by its torsion subgroup; the cup-product induces a perfect pairing on $\mathrm{H}^{2}(S, \mathbb{Z})_{\mathrm{tf}}$. We denote by $T_{S} \subset \mathrm{H}^{2}(S, \mathbb{Z})_{\mathrm{tf}}$ the transcendental lattice, that is, the orthogonal of the image of $\operatorname{Pic}(S)$. We have an exact sequence

$$
\operatorname{Pic}(S) \xrightarrow{c_{1}} \mathrm{H}^{2}(S, \mathbb{Z}) \xrightarrow{u} T_{S}^{*} \rightarrow 0
$$

where u associates to $\alpha \in \mathrm{H}^{2}(S, \mathbb{Z})$ the cup-product with α. Taking tensor product with \mathbb{Z} / n and comparing with (2.c), we get an exact sequence

$$
\begin{equation*}
0 \rightarrow \operatorname{Hom}\left(T_{S}, \mathbb{Z} / n\right) \longrightarrow \operatorname{Br}(S)[n] \longrightarrow \mathrm{H}^{3}(S, \mathbb{Z})[n] \rightarrow 0 ; \tag{2.d}
\end{equation*}
$$

or, passing to the direct limit over n,

$$
\begin{equation*}
0 \rightarrow \operatorname{Hom}\left(T_{S}, \mathbb{Q} / \mathbb{Z}\right) \longrightarrow \operatorname{Br}(S) \longrightarrow \operatorname{Tors} \mathrm{H}^{3}(S, \mathbb{Z}) \rightarrow 0 \tag{2.e}
\end{equation*}
$$

3. Algebraic topology of Enriques surfaces

3.1. Let S be an Enriques surface (over \mathbb{C}). We first recall some elementary facts on the topology of S. A general reference is [BHPV], ch. VIII.

The torsion subgroup of $\mathrm{H}^{2}(S, \mathbb{Z})$ is isomorphic to $\mathbb{Z} / 2$; its nonzero element is the canonical class K_{S}. Let k_{S} denote the image of K_{S} in $\mathrm{H}^{2}(S, \mathbb{Z} / 2)$. The universal coefficient theorem together with Poincaré duality gives an exact sequence

$$
\begin{equation*}
0 \rightarrow \mathbb{Z} / 2 \xrightarrow{k_{S}} \mathrm{H}^{2}(S, \mathbb{Z} / 2) \xrightarrow{v_{S}} \operatorname{Hom}\left(\mathrm{H}^{2}(S, \mathbb{Z}), \mathbb{Z} / 2\right) \rightarrow 0 \tag{3.a}
\end{equation*}
$$

where v_{S} is deduced from the cup-product.
3.2. The linear form $\alpha \mapsto\left(k_{S} \cdot \alpha\right)$ on $\mathrm{H}^{2}(S, \mathbb{Z} / 2)$ vanishes on the image of $\mathrm{H}^{2}(S, \mathbb{Z})$, hence coincides with the map $\mathrm{H}^{2}(S, \mathbb{Z} / 2) \rightarrow \mathrm{H}^{3}(S, \mathbb{Z})=\mathbb{Z} / 2$ from the exact sequence (2.b). Note that k_{S} is the second Stiefel-Whitney class $w_{2}(S)$; in particular, we have $\left(k_{S} \cdot \alpha\right)=\alpha^{2}$ for all $\alpha \in \mathrm{H}^{2}(S, \mathbb{Z} / 2)$ (Wu formula, see [M-S]).
3.3. The $\operatorname{map} c_{1}: \operatorname{Pic}(S) \rightarrow \mathrm{H}^{2}(S, \mathbb{Z})$ is an isomorphism, hence (2.e) provides an isomorphism $\operatorname{Br}(S) \xrightarrow{\sim} \operatorname{Tors}^{3}(S, \mathbb{Z}) \cong \mathbb{Z} / 2$. We will denote by b_{S} the nonzero element of $\operatorname{Br}(S)$.

Let $\pi: X \rightarrow S$ be the 2 -to- 1 cover of S by a K3 surface. The aim of this note is to study the pull-back $\pi^{*} b_{S}$ in $\operatorname{Br}(X)$.

Proposition 3.4. The class $\pi^{*} b_{S}$ is represented, through the isomorphism $\operatorname{Br}(X) \xrightarrow{\sim} \operatorname{Hom}\left(T_{X}, \mathbb{Q} / \mathbb{Z}\right)$, by the linear form $\tau \mapsto\left(\beta \cdot \pi_{*} \bar{\tau}\right)$, where $\bar{\tau}$ is the image of τ in $\mathrm{H}^{2}(X, \mathbb{Z} / 2)$ and β any element of $\mathrm{H}^{2}(S, \mathbb{Z} / 2)$ which does not come from $\mathrm{H}^{2}(S, \mathbb{Z})$.

Proof. Let β be an element of $\mathrm{H}^{2}(S, \mathbb{Z} / 2)$ which does not come from $\mathrm{H}^{2}(S, \mathbb{Z})$, so that $p(\beta)=b_{S}(2 . a)$. The pull-back $\pi^{*} b_{S} \in \operatorname{Br}(X)$ is represented by $\pi^{*} \beta \in \mathrm{H}^{2}(X, \mathbb{Z} / 2)$ $\cong \mathrm{H}^{2}(X, \mathbb{Z}) \otimes \mathbb{Z} / 2$; its image in $\operatorname{Hom}\left(T_{X}, \mathbb{Z} / 2\right)$ is the linear form $\tau \mapsto\left(\pi^{*} \beta \cdot \bar{\tau}\right)$. Since $\left(\pi^{*} \beta \cdot \bar{\tau}\right)=\left(\beta \cdot \pi_{*} \bar{\tau}\right)$, the Proposition follows.

Part (i) of the following Proposition shows that the class $\pi^{*} \beta \in \mathrm{H}^{2}(X, \mathbb{Z} / 2)$ which appears above is nonzero. This does not say that $\pi^{*} b_{S}$ is nonzero, as $\pi^{*} \beta$ could come from a class in $\operatorname{Pic}(X)$ - see $\S 6$.
Proposition 3.5. (i) The kernel of $\pi^{*}: \mathrm{H}^{2}(S, \mathbb{Z} / 2) \rightarrow \mathrm{H}^{2}(X, \mathbb{Z} / 2)$ is $\left\{0, k_{S}\right\}$.
(ii) The Gysin map $\pi_{*}: \mathrm{H}^{2}(X, \mathbb{Z}) \rightarrow \mathrm{H}^{2}(S, \mathbb{Z})$ is surjective.

Proof. To prove (i) we use the Hochschild-Serre spectral sequence :

$$
E_{2}^{p, q}=\mathrm{H}^{p}\left(\mathbb{Z} / 2, \mathrm{H}^{q}(X, \mathbb{Z} / 2)\right) \Rightarrow \mathrm{H}^{p+q}(S, \mathbb{Z} / 2)
$$

We have $E_{2}^{1,1}=0$, and $E_{\infty}^{2,0}=E_{2}^{2,0}=\mathrm{H}^{2}(\mathbb{Z} / 2, \mathbb{Z} / 2)=\mathbb{Z} / 2$. Thus the kernel of π^{*} : $\mathrm{H}^{2}(S, \mathbb{Z} / 2) \rightarrow \mathrm{H}^{2}(X, \mathbb{Z} / 2)$ is isomorphic to $\mathbb{Z} / 2$. Since it contains k_{S}, it is equal to $\left\{0, k_{S}\right\}$.

Let us prove (ii). Because of the formula $\pi_{*} \pi^{*} \alpha=2 \alpha$, the cokernel of π_{*} : $\mathrm{H}^{2}(X, \mathbb{Z}) \rightarrow \mathrm{H}^{2}(S, \mathbb{Z})$ is a $(\mathbb{Z} / 2)$-vector space; therefore it suffices to prove that the transpose map

$$
{ }^{t} \pi_{*}: \operatorname{Hom}\left(\mathrm{H}^{2}(S, \mathbb{Z}), \mathbb{Z} / 2\right) \longrightarrow \operatorname{Hom}\left(\mathrm{H}^{2}(X, \mathbb{Z}), \mathbb{Z} / 2\right)
$$

is injective. This is implied by the commutative diagram

plus the fact that $\operatorname{Ker} \pi^{*}=\operatorname{Ker} v_{S}=\left\{0, k_{S}\right\}($ by (i) and (3.a)).

4. Brauer groups and cyclic coverings

Proposition 4.1. Let $\pi: X \rightarrow S$ be an étale, cyclic covering of smooth projective varieties over an algebraically closed field k. Let σ be a generator of the Galois group G of π, and let $\mathrm{Nm}: \operatorname{Pic}(X) \rightarrow \operatorname{Pic}(S)$ be the norm homomorphism. The kernel of $\pi^{*}: \operatorname{Br}(S) \rightarrow \operatorname{Br}(X)$ is canonically isomorphic to Ker Nm /(1- $\left.\sigma^{*}\right)(\operatorname{Pic}(X))$.

Proof. We consider the Hochschild-Serre spectral sequence

$$
E_{2}^{p, q}=\mathrm{H}^{p}\left(G, \mathrm{H}^{q}\left(X, \mathbb{G}_{m}\right)\right) \Rightarrow \mathrm{H}^{p+q}\left(S, \mathbb{G}_{m}\right)
$$

Since $E_{2}^{2,0}=\mathrm{H}^{2}\left(G, k^{*}\right)=0$, the kernel of $\pi^{*}: \operatorname{Br}(S) \rightarrow \operatorname{Br}(X)$ is identified with $E_{\infty}^{1,1}=\operatorname{Ker}\left(d_{2}: E_{2}^{1,1} \rightarrow E_{2}^{3,0}\right)$. We have $E_{2}^{3,0}=\mathrm{H}^{3}\left(G, k^{*}\right)$; by periodicity of the cohomology of G, this group is canonically isomorphic to $\mathrm{H}^{1}\left(G, k^{*}\right)=\operatorname{Hom}\left(G, k^{*}\right)$, the character group of G, which we denote by \widehat{G}. So we view d_{2} as a map from $\mathrm{H}^{1}(G, \operatorname{Pic}(X))$ to \widehat{G}.

Let S be the endomorphism $L \mapsto \bigotimes_{g \in G} g^{*} L$ of $\operatorname{Pic}(X)$; recall that $\mathrm{H}^{1}(G, \operatorname{Pic}(X))$ is isomorphic to $\operatorname{Ker} \mathbf{S} / \operatorname{Im}\left(1-\sigma^{*}\right)$. We have $\pi^{*} \operatorname{Nm}(L)=\mathbf{S}(L)$ for $L \in \operatorname{Pic}(X)$, hence Nm maps $\operatorname{Ker} \mathbf{S}$ into $\operatorname{Ker} \pi^{*} \subset \operatorname{Pic}(S)$. Now recall that $\operatorname{Ker} \pi^{*}$ is canonically isomorphic to \widehat{G} : to $\chi \in \widehat{G}$ corresponds the subsheaf L_{χ} of $\pi_{*} \mathcal{O}_{X}$ where G acts through the character χ. Since $\mathrm{Nm} \circ\left(1-\sigma^{*}\right)=0$, the norm induces a homomorphism $\mathrm{H}^{1}(G, \operatorname{Pic}(X)) \rightarrow \operatorname{Ker} \pi^{*} \cong \widehat{G}$. The Proposition will follow from:

Lemma 4.2. The map $d_{2}: \mathrm{H}^{1}(G, \operatorname{Pic}(X)) \rightarrow \widehat{G}$ coincides with the homomorphism induced by the norm.

Proof. We apply the formalism of [S], Proposition 1.1, where a very close situation is considered. This Proposition, together with property (1) which follows it, tells us that d_{2} is given by cup-product with the extension class in $\operatorname{Ext}_{G}^{2}\left(\operatorname{Pic}(X), k^{*}\right)$ of the exact sequence of G-modules

$$
1 \rightarrow k^{*} \longrightarrow R_{X}^{*} \rightarrow \operatorname{Div}(X) \rightarrow \operatorname{Pic}(X) \rightarrow 0
$$

where R_{X} is the field of rational functions on X. This means that d_{2} is the composition

$$
\mathrm{H}^{1}(G, \operatorname{Pic}(X)) \xrightarrow{\partial} \mathrm{H}^{2}\left(G, R_{X}^{*} / k^{*}\right) \xrightarrow{\partial^{\prime}} \mathrm{H}^{3}\left(G, k^{*}\right)
$$

where ∂ and ∂^{\prime} are the coboundary maps associated to the short exact sequences

$$
0 \rightarrow R_{X}^{*} / k^{*} \rightarrow \operatorname{Div}(X) \rightarrow \operatorname{Pic}(X) \rightarrow 0
$$

and

$$
0 \rightarrow k^{*} \rightarrow R_{X}^{*} \rightarrow R_{X}^{*} / k^{*} \rightarrow 0
$$

Let $\lambda \in \mathrm{H}^{1}(G, \operatorname{Pic}(X))$, represented by $L \in \operatorname{Pic}(X)$ with $\perp_{g \in G} g^{*} L \cong \mathcal{O}_{X}$. Let $D \in \operatorname{Div}(X)$ such that $L=\mathcal{O}_{X}(D)$. Then $\sum_{g} g^{*} D$ is the divisor of a rational function $\psi \in R_{X}^{*}$, whose class in R_{X}^{*} / k^{*} is well-defined. This class is invariant under G, and defines the element $\partial(\lambda) \in \mathrm{H}^{2}\left(G, R_{X}^{*} / k^{*}\right)$. Since $\operatorname{div} \psi$ is invariant under G, there exists a character $\chi \in \widehat{G}$ such that $g^{*} \psi=\chi(g) \psi$ for each $g \in G$. Then $d_{2}^{1,1}(\lambda)=\chi$ viewed as an element of $\mathrm{H}^{3}\left(G, k^{*}\right)=\widehat{G}$.

It remains to prove that $\mathcal{O}_{S}\left(\pi_{*} D\right)=L_{\chi}$. Since $\operatorname{div}(\psi)=\pi^{*} \pi_{*} D$, multiplication by ψ induces a global isomorphism $u: \pi^{*} \mathcal{O}_{S}\left(\pi_{*} D\right) \xrightarrow{\sim} \mathcal{O}_{X}$. Let $\varphi \in R_{X}$ be a generator of $\mathcal{O}_{X}(D)$ on an open G-invariant subset U of X. Then $\operatorname{Nm}(\varphi)$ is a generator of $\mathcal{O}_{S}\left(\pi_{*} D\right)$ on $\pi(U)$, and $\pi^{*} \operatorname{Nm}(\varphi)$ is a generator of $\pi^{*} \mathcal{O}_{S}\left(\pi_{*} D\right)$ on U; the function $h:=\psi \pi^{*} \operatorname{Nm}(\varphi)$ on U satisfies $g^{*} h=\chi(g) h$ for all $g \in G$. This proves that the homomorphism $u^{b}: \mathcal{O}_{S}\left(\pi_{*} D\right) \rightarrow \pi_{*} \mathcal{O}_{X}$ deduced from u maps $\mathcal{O}_{S}\left(\pi_{*} D\right)$ onto the subsheaf L_{χ} of $\pi_{*} \mathcal{O}_{X}$, hence our assertion.

We will need a complement of the Proposition in the complex case:
Corollary 4.3. Assume $k=\mathbb{C}$, and $\mathrm{H}^{1}\left(X, \mathcal{O}_{X}\right)=\mathrm{H}^{2}\left(S, \mathcal{O}_{S}\right)=0$. The following conditions are equivalent:
(i) The map $\pi^{*}: \operatorname{Br}(S) \rightarrow \operatorname{Br}(X)$ is not injective;
(ii) there exists $L \in \operatorname{Pic}(X)$ whose class $\lambda=c_{1}(L)$ in $H^{2}(X, \mathbb{Z})$ satisfies $\pi_{*} \lambda=0$ and $\lambda \notin\left(1-\sigma^{*}\right)\left(\mathrm{H}^{2}(X, \mathbb{Z})\right)$.

Observe that the hypotheses of the Corollary are satisfied when S is a complex Enriques surfaces and $\pi: X \rightarrow S$ its universal cover.

Proof. By Proposition $4.1(i)$ is equivalent to the existence of a line bundle L on X with $\operatorname{Nm}(L)=\mathcal{O}_{S}$ and $[L] \neq 0$ in $\mathrm{H}^{1}(G, \operatorname{Pic}(X))$, while $(i i)$ means that there exists such L with $\left[c_{1}(L)\right] \neq 0$ in $\mathrm{H}^{1}\left(G, \mathrm{H}^{2}(X, \mathbb{Z})\right)$. Therefore it suffices to prove that the map

$$
\mathrm{H}^{1}\left(c_{1}\right): \mathrm{H}^{1}(G, \operatorname{Pic}(X)) \rightarrow \mathrm{H}^{1}\left(G, \mathrm{H}^{2}(X, \mathbb{Z})\right)
$$

is injective.
Since $\mathrm{H}^{1}\left(X, \mathcal{O}_{X}\right)=0$ we have an exact sequence

$$
0 \rightarrow \operatorname{Pic}(X) \xrightarrow{c_{1}} \mathrm{H}^{2}(X, \mathbb{Z}) \longrightarrow Q \rightarrow 0 \quad \text { with } Q \subset \mathrm{H}^{2}\left(X, \mathcal{O}_{X}\right)
$$

Since $\mathrm{H}^{2}\left(S, \mathcal{O}_{S}\right)=0$, there is no nonzero invariant vector in $\mathrm{H}^{2}\left(X, \mathcal{O}_{X}\right)$, hence in Q. Then the associated long exact sequence implies that $\mathrm{H}^{1}\left(c_{1}\right)$ is injective.

5. More algebraic topology

5.1. As in $\S 3$, we denote by S a complex Enriques surface, by $\pi: X \rightarrow S$ its universal cover and by σ the corresponding involution of X. We will need some more precise results on the topology of the surfaces X and S. We refer again to [BHPV], ch. VIII.

Let E be the lattice $\left(-E_{8}\right) \oplus H$, where H is the rank 2 hyperbolic lattice. Let $\mathrm{H}^{2}(S, \mathbb{Z})_{\mathrm{tf}}$ be the quotient of $\mathrm{H}^{2}(S, \mathbb{Z})$ by its torsion subgroup $\left\{0, K_{S}\right\}$. We have isomorphisms

$$
\mathrm{H}^{2}(S, \mathbb{Z})_{\mathrm{tf}} \cong E \quad \mathrm{H}^{2}(X, \mathbb{Z}) \cong E \oplus E \oplus H
$$

such that $\pi^{*}: \mathrm{H}^{2}(S, \mathbb{Z})_{\mathrm{tf}} \rightarrow \mathrm{H}^{2}(X, \mathbb{Z})$ is identified with the diagonal embedding δ : $E \hookrightarrow E \oplus E$, and σ^{*} is identified with the involution

$$
\rho:\left(\alpha, \alpha^{\prime}, \beta\right) \mapsto\left(\alpha^{\prime}, \alpha,-\beta\right) \quad \text { of } \quad E \oplus E \oplus H
$$

5.2. We consider now the cohomology with values in $\mathbb{Z} / 2$. For a lattice M, we will write $M_{2}:=M / 2 M$. The scalar product of M induces a product $M_{2} \otimes M_{2} \rightarrow \mathbb{Z} / 2$; if moreover M is even, there is a natural quadratic form $q: M_{2} \rightarrow \mathbb{Z} / 2$ associated with that product, defined by $q(m)=\frac{1}{2} \tilde{m}^{2}$, where $\tilde{m} \in M$ is any lift of $m \in M_{2}$. In particular, H_{2} contains a unique element ε with $q(\varepsilon)=1$: it is the class of $e+f$ where (e, f) is a hyperbolic basis of H.

Using the previous isomorphism we identify $\mathrm{H}^{2}(X, \mathbb{Z} / 2)$ with $E_{2} \oplus E_{2} \oplus H_{2}$.
Proposition 5.3. The image of $\pi^{*}: \mathrm{H}^{2}(S, \mathbb{Z} / 2) \rightarrow \mathrm{H}^{2}(X, \mathbb{Z} / 2)$ is $\delta\left(E_{2}\right) \oplus(\mathbb{Z} / 2) \varepsilon$.
Proof. This image is invariant under σ^{*}, hence is contained in $\delta\left(E_{2}\right) \oplus H_{2}$; by Proposition $3.6(i)$ it is 11-dimensional, hence a hyperplane in $\delta\left(E_{2}\right) \oplus H_{2}$, containing $\delta\left(E_{2}\right)$ (which is spanned by the classes coming from $\mathrm{H}^{2}(S, \mathbb{Z})$). So $\pi^{*} \mathrm{H}^{2}(S, \mathbb{Z} / 2)$ is spanned by $\delta\left(E_{2}\right)$ and a nonzero element of H_{2}; it suffices to prove that this element is ε. Since the elements of $\mathrm{H}^{2}(S, \mathbb{Z} / 2)$ which do not come from $\mathrm{H}^{2}(S, \mathbb{Z})$ have square 1 (3.2), this is a consequence of the following lemma.

Lemma 5.4. For every $\alpha \in \mathrm{H}^{2}(S, \mathbb{Z} / 2), q\left(\pi^{*} \alpha\right)=\alpha^{2}$.

Proof. This proof has been shown to me by J. Lannes. The key ingredient is the Pontryagin square, a cohomological operation

$$
\mathcal{P}: \mathrm{H}^{2 m}(M, \mathbb{Z} / 2) \longrightarrow \mathrm{H}^{4 m}(M, \mathbb{Z} / 4)
$$

defined for any reasonable topological space M and satisfying a number of interesting properties (see [M-T], ch. 2, exerc. 1). We will state only those we need in the case of interest for us, namely $m=2$ and M is a compact oriented 4 -manifold. We identify $\mathrm{H}^{4}(M, \mathbb{Z} / 4)$ with $\mathbb{Z} / 4$; then $\mathcal{P}: \mathrm{H}^{2}(M, \mathbb{Z}) \rightarrow \mathbb{Z} / 4$ satisfies:
a) For $\alpha \in \mathrm{H}^{2}(M, \mathbb{Z} / 2)$, the class of $\mathcal{P}(\alpha)$ in $\mathbb{Z} / 2$ is α^{2};
b) If $\alpha \in \mathrm{H}^{2}(M, \mathbb{Z} / 2)$ comes from $\tilde{\alpha} \in \mathrm{H}^{2}(M, \mathbb{Z})$, then $\mathcal{P}(\alpha)=\tilde{\alpha}^{2}(\bmod .4)$. In particular, if M is a K3 surface, we have $\mathcal{P}(\alpha)=2 q(\alpha)$ in $\mathbb{Z} / 4$.

Coming back to our situation, let $\alpha \in \mathrm{H}^{2}(S, \mathbb{Z} / 2)$. We have in $\mathbb{Z} / 4$:

$$
\begin{aligned}
\mathcal{P}\left(\pi^{*} \alpha\right) & =2 \mathcal{P}(\alpha) & & \text { by functoriality } \\
& =2 \alpha^{2} & & \text { by a), and } \\
\mathcal{P}\left(\pi^{*} \alpha\right) & =2 q\left(\pi^{*} \alpha\right) & & \text { by b). }
\end{aligned}
$$

Comparing the two last lines gives the lemma.
Corollary 5.5. The kernel of $\pi_{*}: H_{2} \rightarrow\left\{0, k_{S}\right\}$ is $\{0, \varepsilon\}$.
Proof. By Proposition 5.3ε belongs to $\operatorname{Im} \pi^{*}$, hence $\pi_{*} \varepsilon=0$. It remains to check that π_{*} is nonzero on $\mathrm{H}^{1}\left(\mathbb{Z} / 2, \mathrm{H}^{2}(X, \mathbb{Z})\right) \cong H_{2}$. We know that there is an element $\alpha \in \mathrm{H}^{2}(X, \mathbb{Z})$ with $\pi_{*} \alpha=K_{S}$ (Prop. $\left.3.6(i i)\right)$; it belongs to $\operatorname{Ker}\left(1+\sigma^{*}\right)$, hence defines an element $\bar{\alpha}$ of $\mathrm{H}^{1}\left(\mathbb{Z} / 2, \mathrm{H}^{2}(X, \mathbb{Z})\right)$ with $\pi_{*} \bar{\alpha} \neq 0$.

Corollary 5.6. Let $\lambda \in \mathrm{H}^{2}(X, \mathbb{Z})$. The following conditions are equivalent:
(i) $\pi_{*} \lambda=0$ and $\lambda \notin\left(1-\sigma^{*}\right)\left(\mathrm{H}^{2}(X, \mathbb{Z})\right)$;
(ii) $\sigma^{*} \lambda=-\lambda$ and $\lambda^{2} \equiv 2(\bmod .4)$.

Proof. Write $\lambda=\left(\alpha, \alpha^{\prime}, \beta\right) \in E \oplus E \oplus H$; let $\bar{\beta}$ be the class of β in H_{2}. Both conditions imply $\sigma^{*} \lambda=-\lambda$, hence $\alpha^{\prime}=-\alpha$. Since $(\alpha,-\alpha)=\left(1-\sigma^{*}\right)(\alpha, 0)$ and $2 \beta=\left(1-\sigma^{*}\right)(\beta)$, the conditions of (i) are equivalent to $\pi_{*} \bar{\beta}=0$ and $\bar{\beta} \neq 0$, that is, $\bar{\beta}=\varepsilon$ (Corollary 5.5). On the other hand we have $\lambda^{2}=2 \alpha^{2}+\beta^{2} \equiv 2 q(\bar{\beta})(\bmod .4)$, hence (ii) is also equivalent to $\bar{\beta}=\varepsilon$.

This allows us to rephrase Corollary 4.3 in a simpler way:
Corollary 5.7. We have $\pi^{*} b_{S}=0$ if and only if there exists a line bundle L on X with $\sigma^{*} L=L^{-1}$ and $c_{1}(L)^{2} \equiv 2(\bmod .4)$.

Remark.- My original proof of (5.3-5) was less direct and less general, but still perhaps of some interest. The key point is to show that on $H_{2} q$ takes the value 1 exactly on the nonzero element of $\operatorname{Ker} \pi_{*}$, or equivalently that an element $\alpha \in H_{2}$ with $\pi_{*} \alpha=k_{S}$ satisfies $q(\alpha)=0$. Using deformation theory (see (6.1) below), one can assume that α comes from a class in $\operatorname{Pic}(X)$. To conclude I applied the following lemma:
Lemma 5.8. Let L be a line bundle on X with $\operatorname{Nm}(L)=K_{S}$. Then $c_{1}(L)^{2}$ is divisible by 4 .

Proof. Consider the rank 2 vector bundle $E=\pi_{*}(L)$. The norm induces a nondegenerate quadratic form $N: \operatorname{Sym}^{2} E \rightarrow K_{S}$ ([EGA2], 6.5.5). In particular, N induces an isomorphism $E \xrightarrow{\sim} E^{*} \otimes K_{S}$, and defines a pairing

$$
\mathrm{H}^{1}(S, E) \otimes \mathrm{H}^{1}(S, E) \rightarrow \mathrm{H}^{2}\left(S, K_{S}\right) \cong \mathbb{C}
$$

which is skew-symmetric and non-degenerate. Thus $h^{1}(E)$ is even; since $h^{0}(E)=$ $h^{2}(E)$ by Serre duality, $\chi(E)$ is even, and so is $\chi(L)=\chi(E)$. By Riemann-Roch this implies that $\frac{1}{2} c_{1}(L)^{2}$ is even.

6. The vanishing of $\pi^{*} b_{\mathrm{S}}$ on the moduli space

6.1. We briefly recall the theory of the period map for Enriques surfaces, due to Horikawa (see [BHPV], ch. VIII, or [N]). We keep the notations of (5.1). We denote by L the lattice $E \oplus E \oplus H$, and by L^{-}the (-1)-eigenspace of the involution ρ : $\left(\alpha, \alpha^{\prime}, \beta\right) \mapsto\left(\alpha^{\prime}, \alpha,-\beta\right)$, that is, the submodule of elements $(\alpha,-\alpha, \beta)$.

A marking of the Enriques surface S is an isometry $\varphi: \mathrm{H}^{2}(X, \mathbb{Z}) \rightarrow L$ which conjugates σ^{*} to ρ. The line $\mathrm{H}^{2,0} \subset \mathrm{H}^{2}(X, \mathbb{C})$ is anti-invariant under σ^{*}, so its image by $\varphi_{\mathbb{C}}: \mathrm{H}^{2}(X, \mathbb{C}) \rightarrow L_{\mathbb{C}}$ lies in $L_{\mathbb{C}}^{-}$. The corresponding point $[\omega]$ of $\mathbb{P}\left(L_{\mathbb{C}}^{-}\right)$is the period $\wp(S, \varphi)$. It belongs to the domain $\Omega \subset \mathbb{P}\left(L_{\mathbb{C}}^{-}\right)$defined by the equations

$$
(\omega \cdot \omega)=0 \quad(\omega \cdot \bar{\omega})>0 \quad(\omega \cdot \lambda) \neq 0 \quad \text { for all } \lambda \in L^{-} \text {with } \lambda^{2}=-2
$$

This is an analytic manifold, which is the moduli space for marked Enriques surfaces. To each class $\lambda \in L^{-}$we associate the hypersurface H_{λ} of Ω defined by $(\lambda \cdot \omega)=0$.

Proposition 6.2. We have $\pi^{*} b_{S}=0$ if and only if $\wp(S, \varphi)$ belongs to one of the hypersurfaces H_{λ} for some vector $\lambda \in L^{-}$with $\lambda^{2} \equiv 2(\bmod .4)$.

Proof. The period point $\wp(S, \varphi)$ belongs to H_{λ} if and only if λ belongs to $c_{1}(\operatorname{Pic}(X))$; by Corollary 5.7, this is equivalent to $\pi^{*} b_{S}=0$.

To get a complete picture we want to know which of the H_{λ} are really needed:
Lemma 6.3. Let λ be a primitive element of L^{-}.
(i) The hypersurface H_{λ} is non-empty if and only if $\lambda^{2}<-2$.
(ii) If μ is another primitive element of L^{-}with $H_{\mu}=H_{\lambda} \neq \varnothing$, then $\mu= \pm \lambda$.

Proof. Let W be the subset of $L_{\mathbb{C}}^{-}$defined by the conditions $\omega^{2}=0, \omega \cdot \bar{\omega}>0$. If we write $\omega=\alpha+i \beta$ with $\alpha, \beta \in L_{\mathbb{R}}^{-}$, these conditions translate as $\alpha^{2}=\beta^{2}>0, \alpha \cdot \beta=0$. Thus $W \cap \lambda^{\perp} \neq \varnothing$ is equivalent to the existence of a positive 2-plane in $L_{\mathbb{R}}^{-}$orthogonal to λ. Since L^{-}has signature $(2,10)$, this is also equivalent to $\lambda^{2}<0$.

If $W \cap \lambda^{\perp}$ is non-empty, λ^{\perp} is the only hyperplane containing it, and $\mathbb{C} \lambda$ is the orthogonal of λ^{\perp} in L^{-}. Then λ and $-\lambda$ are the only primitive vectors of L^{-}contained in $\mathbb{C} \lambda$. In particular λ is determined up to sign by H_{λ}, which proves (ii).

Let us prove (i). We have seen that H_{λ} is empty for $\lambda^{2} \geq 0$, and also for $\lambda^{2}=-2$ by definition of Ω. Assume $\lambda^{2}<-2$ and $H_{\lambda}=\varnothing$; then H_{λ} must be contained in one of the hyperplanes H_{μ} with $\mu^{2}=-2$; by (ii) this implies $\lambda= \pm \mu$, a contradiction.
6.4. Let Γ be the group of isometries of L^{-}. The group Γ acts properly discontinuously on Ω, and the quotient $\mathcal{M}=\Omega / \Gamma$ is a quasi-projective variety. The image in \mathcal{M} of the period $\wp(S, \varphi)$ does not depend on the choice of φ; let us denote it by $\wp(S)$. The map $S \mapsto \wp(S)$ induces a bijection between isomorphism classes of Enriques surfaces and \mathcal{M}; the variety \mathcal{M} is a (coarse) moduli space for Enriques surfaces.
Corollary 6.5. The surfaces S for which $\pi^{*} b_{S}=0$ form an infinite, countable union of (non-empty) hypersurfaces in the moduli space \mathcal{M}.

Proof. Let Λ be the set of primitive elements λ in L^{-}with $\lambda^{2}<-2$ and $\lambda^{2} \equiv$ 2 (mod. 4). For $\lambda \in \Lambda$, let \mathcal{H}_{λ} be the image of H_{λ} in \mathcal{M}; the argument of [BHPV], ch. VIII, Cor. 20.7 shows that \mathcal{H}_{λ} is an algebraic hypersurface in \mathcal{M}. By Proposition 6.2 and Lemma 6.3 the surfaces S with $\pi^{*}\left(b_{S}\right)=0$ form the subset $\bigcup_{\lambda \in \Lambda} \mathcal{H}_{\lambda}$. By Lemma 6.3 (ii) we have $\mathcal{H}_{\lambda}=\mathcal{H}_{\mu}$ if and only if $\mu= \pm g \lambda$ for some element g of Γ. This implies $\lambda^{2}=\mu^{2}$; but λ^{2} can be any number of the form $-2 k$ with k odd >1 (take for instance $\lambda=e-k f$, where (e, f) is a hyperbolic basis of H), so there are infinitely many distinct hypersurfaces among the \mathcal{H}_{λ}.

Acknowledgements

I am indebted to J.-L. Colliot-Thélène for explaining the problem to me, and for very useful discussions and comments. I am grateful to J. Lannes for providing the topological proof of Lemma 5.4.

References

[BHPV] W. Barth, K. Hulek, C. Peters, A. Van de Ven: Compact complex surfaces. 2nd edition. Ergebnisse der Mathematik und ihrer Grenzgebiete, 4. Springer-Verlag, Berlin (2004).
[EGA2] A. Grothendieck: Éléments de géométrie algébrique II. Publ. Math. IHES 8 (1961).
[G] A. Grothendieck: Le groupe de Brauer I-II. Dix Exposés sur la Cohomologie des Schémas, pp. 46-87; North-Holland, Amsterdam (1968).
[H-S] D. Harari, A. Skorobogatov: Non-abelian descent and the arithmetic of Enriques surfaces. Intern. Math. Res. Notices 52 (2005), 3203-3228.
[dJ] A.J. de Jong: A result of Gabber. Preprint.
[M-S] J. Milnor, J. Stasheff: Characteristic classes. Annals of Math. Studies 76. Princeton University Press, Princeton (1974).
[M-T] R. Mosher, M. Tangora: Cohomology operations and applications in homotopy theory. Harper \& Row, New York-London (1968).
[N] Y. Namikawa: Periods of Enriques surfaces. Math. Ann. 270 (1985), no. 2, 201-222.
[S] A. Skorobogatov: On the elementary obstruction to the existence of rational points. Math. Notes 81 (2007), no. 1, 97-107.

Laboratoire J.-A. Dieudonné, UMR 6621 du CNRS, Université de Nice, Parc Valrose, F-06108 Nice cedex 2, France

E-mail address: arnaud.beauville@unice.fr

[^0]: Received by the editors May 19, 2009.
 ${ }^{1}$ The question is mentioned in $[\mathrm{H}-\mathrm{S}]$, where the authors construct an Enriques surface S over \mathbb{Q} for which $\pi^{*} b_{S} \neq 0$ (see Cor. 2.8).

