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ON THE BRAUER GROUP OF ENRIQUES SURFACES

ARNAUD BEAUVILLE

ABSTRACT. Let S be a complex Enriques surface (quotient of a K3 surface X by a
fixed-point-free involution). The Brauer group Br(S) has a unique nonzero element. We
describe its pull-back in Br(X), and show that the surfaces S for which it is trivial form
a countable union of hypersurfaces in the moduli space of Enriques surfaces.

1. Introduction

Let S be a complex Enriques surface, and 7 : X — S its 2-to-1 cover by a K3
surface. Poincaré duality provides an isomorphism H3(S,Z) = H,(S,Z) = 7Z/2, so
that there is a unique nontrivial element bg in the Brauer group Br(S). What is the
pull-back of this element in Br(X)? Is it nonzero?!

The answer to the first question is easy in terms of the canonical isomorphism
Br(X) =~ Hom(Tx,Q/Z) (see §2): m*bg corresponds to the linear form 7 — (3-m.7),
where [ is any element of H?(.S,Z/2) which does not come from H?(S, Z). The second
question turns out to be more subtle: the answer depends on the surface. We will
characterize the surfaces S for which 7*bg = 0 (Corollary 5.7), and show that they
form a countable union of hypersurfaces in the moduli space of Enriques surfaces
(Corollary 6.5).

Part of our results hold over any algebraically closed field, and also in a more
general set-up (see Proposition 4.1 below); for the last part, however, we need in a
crucial way Horikawa’s description of the moduli space by transcendental methods.

2. The Brauer group of a surface

Let S be a smooth projective variety over a field; we define the Brauer group Br(.S)
as the étale cohomology group H% (S, G,,). For surfaces this definition coincides with
that of Grothendieck [G] by [G], II, Cor. 2.2; this holds in fact in any dimension by a
result of Gabber, which we will not need here (see [dJ]).

In this section we assume that S is a complex surface; we recall the description
of Br(S) in that case — this is classical but not so easy to find in the literature. The
Kummer exact sequence

0—-2/n —G,, —G,, =0
gives rise to an exact sequence
0 — Pic(S) ® Z/n — H2(S,Z/n) - Br(S)[n] — 0 (2.a)
(we denote by M[n] the kernel of the multiplication by n in a Z-module M).

Received by the editors May 19, 2009.
IThe question is mentioned in [H-S], where the authors construct an Enriques surface S over Q
for which 7*bg # 0 (see Cor. 2.8).
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On the other hand, the cohomology exact sequence associated to
0—>Z—7Z—Z/n— 0 gives:

0 — H%(S,Z) ® Z/n — H%(S,Z/n) — H3(S,Z)[n] — 0 (2.b)
Comparing (2.a) and (2.b) we get an exact sequence
0 — Pic(S) ® Z/n — H%(S,Z) ® Z/n — Br(S)[n] — H*(S,Z)[n] - 0. (2.¢)

Let H2(S, Z)¢ be the quotient of H2(S, Z) by its torsion subgroup; the cup-product
induces a perfect pairing on H?(S,Z)is. We denote by Ts C H2(S, Z)s the transcen-
dental lattice, that is, the orthogonal of the image of Pic(S). We have an exact sequence

Pic(S) % H2(S,Z) % T4 — 0

where u associates to o € H?(S,Z) the cup-product with a. Taking tensor product
with Z/n and comparing with (2.c), we get an exact sequence

0 — Hom(Ts,Z/n) — Br(S)[n] — H*(S,Z)[n] — 0 ; (2.d)
or, passing to the direct limit over n,

0 — Hom(Ts,Q/Z) — Br(S) — TorsH*(S,Z) — 0 . (2.€)

3. Algebraic topology of Enriques surfaces

3.1. Let S be an Enriques surface (over C). We first recall some elementary facts on
the topology of S. A general reference is [BHPV], ch. VIIIL.

The torsion subgroup of H2(S,Z) is isomorphic to Z/2; its nonzero element is the
canonical class Kg. Let kg denote the image of Kg in H?(S,Z/2). The universal
coefficient theorem together with Poincaré duality gives an exact sequence

0— Z/2 25 H2(S,2/2) 25 Hom(H2(S,Z),Z/2) — 0 (3.0)

where vg is deduced from the cup-product.

3.2. The linear form « +— (kg - ) on H%(S,Z/2) vanishes on the image of H?(S,Z),
hence coincides with the map H?(S,Z/2) — H3(S,Z) = Z/2 from the exact sequence
(2.b). Note that kg is the second Stiefel-Whitney class w2 (S); in particular, we have
(ks - a) = a? for all a € H%(S,Z/2) (Wu formula, see [M-S]).

3.3. The map c; : Pic(S) — H2(S,Z) is an isomorphism, hence (2.¢) provides an iso-
morphism Br(S) = Tors H3(S, Z) = Z/2. We will denote by bs the nonzero element
of Br(S).

Let m: X — S be the 2-to-1 cover of S by a K3 surface. The aim of this note is to
study the pull-back 7*bg in Br(X).

Proposition 3.4. The class ©*bs is represented, through the isomorphism
Br(X) = Hom(Tx,Q/Z), by the linear form T w— (B - mT), where T is the im-
age of T in H2(X,Z/2) and (3 any element of H?(S,Z/2) which does not come from
H2(S,Z).
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Proof. Let 3 be an element of H?(S, Z/2) which does not come from H?(.S,Z), so that
p(B8) = bs (2.a). The pull-back 7*bs € Br(X) is represented by 7*3 € H?(X,Z/2)
~ H%(X,Z) ® Z/2; its image in Hom(Tx,Z/2) is the linear form 7+ (7*3- 7). Since
(n*B-7) = (B - m.T), the Proposition follows. O

Part () of the following Proposition shows that the class 7*3 € H?(X, Z/2) which
appears above is nonzero. This does not say that m*bg is nonzero, as 7*3 could come
from a class in Pic(X) — see §6.

Proposition 3.5. (i) The kernel of n* : H%(S,Z/2) — H%(X,Z/2) is {0, ks}.

(ii) The Gysin map 7. : H*(X,Z) — H%(S,Z) is surjective.

Proof. To prove (i) we use the Hochschild-Serre spectral sequence :
EY?=HP(Z/2,HY(X,Z/2)) = HPTI(S,Z/2) .

We have Ey' = 0, and E20 = E3° = H%(Z/2,7Z/2) = 7Z/2. Thus the kernel of 7* :

H2(S,Z/2) — H?(X,Z/2) is isomorphic to Z/2. Since it contains kg, it is equal to

{0,ks}.

Let us prove (ii). Because of the formula m,m*a = 2«, the cokernel of m, :
H2(X,Z) — H?(S,Z) is a (Z/2)-vector space; therefore it suffices to prove that the
transpose map

tr, : Hom(H?(S, Z),Z/2) — Hom(H*(X,Z),Z/2)

is injective. This is implied by the commutative diagram

H2(S,Z/2) ——> Hom(H2(S,Z), Z/2)

T

H2(X,7/2) —=> Hom(H*(X,Z),7/2)

plus the fact that Ker 7* = Kervg = {0,ks} (by (¢) and (3.a)). O

4. Brauer groups and cyclic coverings

Proposition 4.1. Let 7 : X — S be an étale, cyclic covering of smooth projective
varieties over an algebraically closed field k. Let o be a generator of the Galois group
G of m, and let Nm : Pic(X) — Pic(S) be the norm homomorphism. The kernel of
7 : Br(S) — Br(X) is canonically isomorphic to Ker Nm /(1 — 0*)(Pic(X)).

Proof. We consider the Hochschild-Serre spectral sequence
EY?=HP(G,HYX,G,,)) = HPT(S,G,,) .

Since E° = H2(G, k*) = 0, the kernel of 7* : Br(S) — Br(X) is identified with
ELY = Ker(ds : Ey' — E3°). We have E3° = H3(G,k*); by periodicity of the
cohomology of G, this group is canonically isomorphic to HY(G, k*) = Hom(G, k*),

the character group of G, which we denote by G. So we view dy as a map from
HY(G,Pic(X)) to G.
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Let S be the endomorphism L +— & ¢*L of Pic(X); recall that H!(G, Pic(X))
geG

is isomorphic to KerS/Im(1 — ¢*). We have 7* Nm(L) = S(L) for L € Pic(X),

hence Nm maps KerS into Ker 7* C Pic(S). Now recall that Ker 7* is canonically

isomorphic to G: to x € G corresponds the subsheaf L, of m.Ox where G acts

through the character x. Since Nm o (1 —¢*) = 0, the norm induces a homomorphism

HY(G,Pic(X)) — Kerr* = G. The Proposition will follow from:

Lemma 4.2. The map dy : H'(G,Pic(X)) — G coincides with the homomorphism
induced by the norm.

Proof. We apply the formalism of [S], Proposition 1.1, where a very close situation
is considered. This Proposition, together with property (1) which follows it, tells us
that do is given by cup-product with the extension class in ExtZ (Pic(X),k*) of the
exact sequence of G-modules

1— k¥ — R% — Div(X) — Pic(X) — 0,
where Ry is the field of rational functions on X. This means that ds is the composition
HY(G, Pic(X)) -5 H2(G, Ry /k*) -2 H3 (G, k)
where 0 and @' are the coboundary maps associated to the short exact sequences
0 — R%/k* — Div(X) — Pic(X) — 0
and 0—k"— R%x — R%/k"—0.

Let A € H'(G,Pic(X)), represented by L € Pic(X) with Lyeqg*L = Ox. Let
D € Div(X) such that L = Ox (D). Then 3 ¢* D is the divisor of a rational function
1 € RY%, whose class in R% /k* is well-defined. This class is invariant under G, and
defines the element 9(\) € H%(G, R% /k*). Since div ¢ is invariant under G, there
exists a character y € G such that g Y = x(g)¢ for each g € G. Then dé’l()\) =x
viewed as an element of H3(G, k*) = G.

It remains to prove that Og(m.D) = L. Since div (¢) = 7*n, D, multiplication by
1 induces a global isomorphism u : 7*Og(m.D) == Ox. Let ¢ € Rx be a generator
of Ox (D) on an open G-invariant subset U of X. Then Nm(y) is a generator of
Og(mD) on ©(U), and 7* Nm(¢p) is a generator of 7*Og(m.D) on U; the function

= Y 7*Nm(p) on U satisfies g*h = x(g)h for all ¢ € G. This proves that the
homomorphism v’ : Og(n,D) — m,0Ox deduced from u maps Og(m.D) onto the
subsheaf L, of m,0x, hence our assertion. O

We will need a complement of the Proposition in the complex case:

Corollary 4.3. Assume k = C, and H*(X,0x) = H%(S,05) = 0. The following
conditions are equivalent:

(¢) The map 7 : Br(S) — Br(X) is not injective;

(ii) there exists L € Pic(X) whose class A = c1(L) in H?(X,Z) satisfies mA = 0
and X ¢ (1 —o*)(H?(X,Z)).

Observe that the hypotheses of the Corollary are satisfied when S is a complex
Enriques surfaces and 7 : X — S its universal cover.
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Proof. By Proposition 4.1 (i) is equivalent to the existence of a line bundle L on X
with Nm(L) = Og and [L] # 0 in H!(G, Pic(X)), while (ii) means that there exists
such L with [c1(L)] # 0 in HY(G,H?(X,Z)). Therefore it suffices to prove that the
map

H!(c;) : HY(G,Pic(X)) — HY(G,H*(X, 7))
is injective.
Since HY (X, Ox) = 0 we have an exact sequence

0 — Pic(X) % HY(X,Z) — Q — 0  with Q c H*(X,Ox) .

Since H2(S, Og) = 0, there is no nonzero invariant vector in H?(X, Ox), hence in Q.
Then the associated long exact sequence implies that H!(¢1) is injective. O

5. More algebraic topology

5.1. Asin §3, we denote by S a complex Enriques surface, by 7 : X — S its universal
cover and by o the corresponding involution of X. We will need some more precise
results on the topology of the surfaces X and S. We refer again to [BHPV], ch. VIIL.
Let E be the lattice (—Es) @ H, where H is the rank 2 hyperbolic lattice. Let
H2(S,Z)s be the quotient of H?(S,Z) by its torsion subgroup {0, Ks}. We have
isomorphisms
H?(S,Z) s = H*(X,Z)¥FoEoH

such that 7* : H3(S,Z)y — H?(X,Z) is identified with the diagonal embedding § :
E — E®FE, and o* is identified with the involution

p:(O{,O/,ﬂ)'—)(O/,O[,—ﬂ) Of EEBE@H

5.2. We consider now the cohomology with values in Z/2. For a lattice M, we will
write My := M/2M. The scalar product of M induces a product My @ My — Z/2;
if moreover M is even, there is a natural quadratic form ¢ : My — Z/2 associated
with that product, defined by ¢(m) = %th, where m € M is any lift of m € M,. In
particular, Hy contains a unique element € with g(g) = 1: it is the class of e+ f where
(e, f) is a hyperbolic basis of H.

Using the previous isomorphism we identify H?(X,Z/2) with Ey & Ey @ Ha.

Proposition 5.3. The image of 7 : H2(S,Z/2) — H?(X,Z/2) is 6(E2) @ (Z/2)e.

Proof. This image is invariant under ¢*, hence is contained in §(E2) @& Ha; by Propo-
sition 3.6 (7) it is 11-dimensional, hence a hyperplane in 6(Es) ® Hs, containing §(Es)
(which is spanned by the classes coming from H?(S,Z)). So 7*H?(S,Z/2) is spanned
by §(E2) and a nonzero element of Hy; it suffices to prove that this element is €. Since
the elements of H2(S,Z/2) which do not come from H?(S, Z) have square 1 (3.2), this
is a consequence of the following lemma. O

Lemma 5.4. For every a € H%(S,Z/2), q(r*a) = o?.
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Proof. This proof has been shown to me by J. Lannes. The key ingredient is the
Pontryagin square, a cohomological operation

P:H>™(M,Z/2) — H*™(M,7/4)

defined for any reasonable topological space M and satisfying a number of interesting
properties (see [M-T], ch. 2, exerc. 1). We will state only those we need in the case of
interest for us, namely m = 2 and M is a compact oriented 4-manifold. We identify
HY(M,Z/4) with Z/4; then P : H*(M,Z) — 7Z/4 satisfies:

a) For a € H%(M,Z/2), the class of P(a) in Z/2 is o?;

b) If o € H?(M,Z/2) comes from & € H*(M,Z), then P(a) = &* (mod. 4). In
particular, if M is a K3 surface, we have P(a) = 2¢(«) in Z/4.

Coming back to our situation, let o € H%(S,Z/2). We have in Z/4:

P(r*a) =2P(a) by functoriality
=2a? by a), and
P(r*a) = 2¢q(r*a) by b).
Comparing the two last lines gives the lemma. O

Corollary 5.5. The kernel of m, : Hy — {0,ks} is {0,¢}.

Proof. By Proposition 5.3 € belongs to Im7*, hence m,e = 0. It remains to check
that 7, is nonzero on H'(Z/2,H?*(X,Z)) & H,. We know that there is an element
a € H3(X,Z) with m.a = Kg (Prop. 3.6 (ii)); it belongs to Ker(1+ c*), hence defines
an element & of H'(Z/2,H?(X,Z)) with m.a # 0. O

Corollary 5.6. Let A\ € H2(X,Z). The following conditions are equivalent:
(i) mA=0and A ¢ (1 —o*)(H*(X,Z));
(ii) o*A = =X and A\*> = 2 (mod. 4).

Proof. Write A = (a, o/, 3) € E®© E® H; let 3 be the class of 3 in H,. Both conditions
imply 0*A = —A, hence o = —a. Since (o, —a) = (1—0*)(e,0) and 25 = (1—-0*)(5),
the conditions of (i) are equivalent to 7.3 = 0 and 3 # 0, that is, 3 = ¢ (Corollary
5.5). On the other hand we have \? = 2a2 + 3% = 2¢(3) (mod. 4), hence (ii) is also

equivalent to 3 = ¢. O
This allows us to rephrase Corollary 4.3 in a simpler way:

Corollary 5.7. We have m*bs = 0 if and only if there exists a line bundle L on X
with 0*L = L~ and ¢1(L)? = 2 (mod. 4). O

Remark.— My original proof of (5.3-5) was less direct and less general, but still
perhaps of some interest. The key point is to show that on Hz g takes the value 1
exactly on the nonzero element of Kerm,, or equivalently that an element o« € Ho
with m,a = kg satisfies g(a) = 0. Using deformation theory (see (6.1) below), one
can assume that a comes from a class in Pic(X). To conclude I applied the following
lemma:

Lemma 5.8. Let L be a line bundle on X with Nm(L) = Kg. Then c1(L)? 4s divisible
by 4.
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Proof. Consider the rank 2 vector bundle E = m4(L). The norm induces a non-
degenerate quadratic form N : Sym?E — Kg ([EGAZ2], 6.5.5). In particular, N
induces an isomorphism £ > E* ® Kg, and defines a pairing

HY(S,E)®@ HY(S,E) — H?(S,Kg) = C
which is skew-symmetric and non-degenerate. Thus h'(E) is even; since h(E) =

h2(E) by Serre duality, x(F) is even, and so is x(L) = x(F). By Riemann-Roch this
implies that %01 (L)2 is even. |

6. The vanishing of 7w*bg on the moduli space

6.1. We briefly recall the theory of the period map for Enriques surfaces, due to
Horikawa (see [BHPV], ch. VIII, or [N]). We keep the notations of (5.1). We denote
by L the lattice E @ F & H, and by L~ the (—1)-eigenspace of the involution p :
(o, /, B) — (o, a0, —3), that is, the submodule of elements (a, —c, 3).

A marking of the Enriques surface S is an isometry ¢ : H?(X,Z) — L which
conjugates o* to p. The line H>? C H?(X, C) is anti-invariant under ¢*, so its image
by ¢c : H*(X,C) — Lc lies in Lg . The corresponding point [w] of P(L¢ ) is the period
©(S, ¢). It belongs to the domain  C P(L¢ ) defined by the equations

(w-w)=0 (w-@©)>0 (w-A\)#0 forall A€ L™ with \* =—-2.

This is an analytic manifold, which is the moduli space for marked Enriques surfaces.
To each class A € L~ we associate the hypersurface Hy of Q defined by (A-w) = 0.

Proposition 6.2. We have 7*bs = 0 if and only if p(S,p) belongs to one of the
hypersurfaces Hy for some vector X € L™ with \*> = 2 (mod. 4).

Proof. The period point (S, ¢) belongs to Hy if and only if A belongs to ¢; (Pic(X));
by Corollary 5.7, this is equivalent to 7*bg = 0. O

To get a complete picture we want to know which of the H) are really needed:

Lemma 6.3. Let A be a primitive element of L™ .
(i) The hypersurface Hy is non-empty if and only if \> < —2.
(44) If p is another primitive element of L~ with H,, = Hy # @, then p = £\.

Proof. Let W be the subset of L defined by the conditions w2=0,w-w>0.If we
write w = a+i3 with o, 3 € Ly, these conditions translate as a® = 32 > 0, a- 3 = 0.
Thus WNAL # @ is equivalent to the existence of a positive 2-plane in Ly orthogonal
to A. Since L~ has signature (2, 10), this is also equivalent to A\? < 0.

If W N AL is non-empty, A is the only hyperplane containing it, and C X is the
orthogonal of A+ in L~. Then A and —\ are the only primitive vectors of L~ contained
in CA. In particular X is determined up to sign by H), which proves (7).

Let us prove (i). We have seen that H) is empty for A2 > 0, and also for A2 = —2
by definition of Q. Assume A\? < —2 and Hy = &; then H, must be contained in one
of the hyperplanes H,, with u? = —2; by (4i) this implies A = 4y, a contradiction. [
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6.4. Let I' be the group of isometries of L. The group I" acts properly discontinuously
on ), and the quotient M = /T is a quasi-projective variety. The image in M of
the period (5, ¢) does not depend on the choice of ¢; let us denote it by (.5). The
map S — p(5) induces a bijection between isomorphism classes of Enriques surfaces
and M; the variety M is a (coarse) moduli space for Enriques surfaces.

Corollary 6.5. The surfaces S for which m*bg = 0 form an infinite, countable union
of (non-empty) hypersurfaces in the moduli space M.

Proof. Let A be the set of primitive elements A in L™ with A\?> < —2 and A2 =
2 (mod. 4). For A € A, let H, be the image of Hy in M; the argument of [BHPV],
ch. VIII, Cor. 20.7 shows that H, is an algebraic hypersurface in M. By Proposition
6.2 and Lemma 6.3 the surfaces S with 7*(bs) = 0 form the subset |J,., Hx. By
Lemma 6.3 (i) we have Hy = H,, if and only if 4 = +g\ for some element g of T
This implies A2 = u?; but A2 can be any number of the form —2k with k odd > 1
(take for instance A = e — kf, where (e, f) is a hyperbolic basis of H), so there are
infinitely many distinct hypersurfaces among the H. O
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