A Calabi-Yau threefold with non-Abelian fundamental group

Arnaud Beauville*

Abstract

This note, written in 1994, answers a question of Dolgachev by constructing a Calabi-Yau threefold whose fundamental group is the quaternion group H_8 . The construction is reminiscent of Reid's unpublished construction of a surface with $p_g = 0$, $K^2 = 2$ and $\pi_1 = H_8$; I explain below the link between the two problems.

1 The example

Let $H_8 = \{\pm 1, \pm i, \pm j, \pm k\}$ be the quaternion group of order 8, and V its regular representation. We denote by \widehat{H}_8 the group of characters $\chi \colon H_8 \to \mathbb{C}^*$, which is isomorphic to $\mathbb{Z}_2 \times \mathbb{Z}_2$. The group H_8 acts on $\mathbb{P}(V)$ and $\mathbb{P}(V)$ or $\mathbb{P}(V)$ or $\mathbb{P}(V)$ and $\mathbb{P}(V)$ with respect to $\mathbb{P}(V)$, that is, the space of quadratic forms $\mathbb{P}(V)$ such that $\mathbb{P}(V)$ or all $\mathbb{P}(V)$ for all $\mathbb{P}(V)$.

Theorem 1.1 For each $\chi \in \widehat{H}_8$, let Q_{χ} be a general element of $(S^2 V)_{\chi}$. The subvariety \widetilde{X} of $\mathbb{P}(V)$ defined by the 4 equations

$$Q_{\chi} = 0$$
 for all $\chi \in \widehat{H}_8$

is a smooth threefold, on which the group H_8 acts freely. The quotient $X := \widetilde{X}/H_8$ is a Calabi-Yau threefold with $\pi_1(X) = H_8$.

Let me observe first that the last assertion is an immediate consequence of the others. Indeed, since \widetilde{X} is a Calabi-Yau threefold, we have $h^{1,0}(\widetilde{X}) = h^{2,0}(\widetilde{X}) = \chi(\mathcal{O}_{\widetilde{X}}) = 0$, hence $h^{1,0}(X) = h^{2,0}(X) = \chi(\mathcal{O}_X) = 0$. This implies

^{*}Partially supported by the European HCM project "Algebraic Geometry in Europe" (AGE).

¹I use Grothendieck's notation, that is, $\mathbb{P}(V)$ is the space of hyperplanes in V.

 $h^{3,0}(X)=1$, so there exists a nonzero holomorphic 3-form ω on X; since its pullback to \widetilde{X} is everywhere nonzero, ω has the same property, hence X is a Calabi–Yau threefold. Finally \widetilde{X} is a complete intersection in $\mathbb{P}(V)$, hence simply connected by the Lefschetz theorem, so the fundamental group of X is isomorphic to H_8 .

So the problem is to prove that H_8 acts freely and \widetilde{X} is smooth. To do this, we will need to write down explicit elements of $(S^2V)_{\chi}$. As an H_8 -module, V is the direct sum of the 4 one-dimensional representations of H_8 and twice the irreducible two-dimensional representation ρ . Thus there exists a system of homogeneous coordinates $(X_1, X_{\alpha}, X_{\beta}, X_{\gamma}; Y, Z; Y', Z')$ such that

$$g \cdot (X_1, X_{\alpha}, X_{\beta}, X_{\gamma}; Y, Z; Y', Z') = (X_1, \alpha(g)X_{\alpha}, \beta(g)X_{\beta}, \gamma(g)X_{\gamma}; \rho(g)(Y, Z); \rho(g)(Y', Z')).$$

To be more precise, I denote by α (respectively β , γ) the nontrivial character which is +1 on i (respectively j, k), and I take for ρ the usual representation via Pauli matrices:

$$\rho(i)(Y,Z) = (\sqrt{-1}Y, -\sqrt{-1}Z), \quad \rho(j)(Y,Z) = (-Z,Y),$$

$$\rho(k)(Y,Z) = (-\sqrt{-1}Z, -\sqrt{-1}Y).$$

Then the general element Q_{χ} of $(S^2 V)_{\chi}$ can be written

$$\begin{split} Q_1 &= t_1^1 X_1^2 + t_2^1 X_\alpha^2 + t_3^1 X_\beta^2 + t_4^1 X_\gamma^2 + t_5^1 (YZ' - Y'Z), \\ Q_\alpha &= t_1^\alpha X_1 X_\alpha + t_2^\alpha X_\beta X_\gamma + t_3^\alpha YZ + t_4^\alpha Y'Z' + t_5^\alpha (YZ' + ZY'), \\ Q_\beta &= t_1^\beta X_1 X_\beta + t_2^\beta X_\alpha X_\gamma + t_3^\beta (Y^2 + Z^2) + t_4^\beta (Y'^2 + Z'^2) + t_5^\beta (YY' + ZZ'), \\ Q_\gamma &= t_1^\gamma X_1 X_\gamma + t_2^\gamma X_\alpha X_\beta + t_3^\gamma (Y^2 - Z^2) + t_4^\gamma (Y'^2 - Z'^2) + t_5^\gamma (YY' - ZZ'). \end{split}$$

For fixed $\mathbf{t} := (t_i^\chi)$, let $\mathcal{X}_{\mathbf{t}}$ be the subvariety of $\mathbb{P}(V)$ defined by the equations $Q_\chi = 0$. Let us check first that the action of H_8 on $\mathcal{X}_{\mathbf{t}}$ has no fixed points for \mathbf{t} general enough. Since a point fixed by an element h of H_8 is also fixed by h^2 , it is sufficient to check that the element $-1 \in H_8$ acts without fixed point, that is, that $\mathcal{X}_{\mathbf{t}}$ does not meet the linear subspaces L_+ and L_- defined by Y = Z = Y' = Z' = 0 and $X_1 = X_\alpha = X_\beta = X_\gamma = 0$ respectively.

Let $x=(0,0,0,0;Y,Z;Y',Z')\in\mathcal{X}_{\mathbf{t}}\cap L_{-}$. One of the coordinates, say Z, is nonzero; since $Q_{1}(x)=0$, there exists $k\in\mathbb{C}$ such that $Y'=kY,\ Z'=kZ$. Substituting in the equations $Q_{\alpha}(x)=Q_{\beta}(x)=Q_{\gamma}(x)=0$ gives

$$\begin{array}{l} (t_3^\alpha + t_5^\alpha k + t_4^\alpha k^2) YZ = (t_3^\beta + t_5^\beta k + t_4^\beta k^2) (Y^2 + Z^2) = \\ (t_3^\alpha + t_5^\alpha k + t_4^\alpha k^2) (Y^2 - Z^2) = 0 \end{array}$$

which has no nonzero solutions for a generic choice of t.

Now let $x = (X_1, X_{\alpha}, X_{\beta}, X_{\gamma}; 0, 0; 0, 0) \in \mathcal{X}_{\mathbf{t}} \cap L_+$. As soon as the t_i^{χ} are nonzero, two of the X-coordinates cannot vanish, otherwise all the coordinates would be zero. Expressing that $Q_{\beta} = Q_{\gamma} = 0$ has a nontrivial solution in (X_{β}, X_{γ}) gives X_{α}^2 as a multiple of X_1^2 , and similarly for X_{β}^2 and X_{γ}^2 . But then $Q_1(x) = 0$ is impossible for a general choice of \mathbf{t} .

Now we want to prove that \mathcal{X}_t is smooth for t general enough. Let $\mathcal{Q} = \bigoplus_{\chi \in \widehat{H}_8} (S^2V)_{\chi}$; then $t := (t_i^{\chi})$ is a system of coordinates on \mathcal{Q} . The equations $Q_{\chi} = 0$ define a subvariety \mathcal{X} in $\mathcal{Q} \times \mathbb{P}(V)$, whose fibre above a point $t \in \mathcal{Q}$ is \mathcal{X}_t . Consider the second projection $p \colon \mathcal{X} \to \mathbb{P}(V)$. For $x \in \mathbb{P}(V)$, the fibre $p^{-1}(x)$ is the linear subspace of \mathcal{Q} defined by the vanishing of the Q_{χ} , viewed as linear forms in t. These forms are clearly linearly independent as soon as they do not vanish. In other words, if we denote by B_{χ} the base locus of the quadrics in $(S^2V)_{\chi}$ and put $B = \bigcup B_{\chi}$, the map $p \colon \mathcal{X} \to \mathbb{P}(V)$ is a vector bundle fibration above $\mathbb{P}(V) \setminus B$; in particular \mathcal{X} is nonsingular outside $p^{-1}(B)$. Therefore it is enough to prove that \mathcal{X}_t is smooth at the points of $B \cap \mathcal{X}_t$.

Observe that an element x in B has two of its X-coordinates zero. Since the equations are symmetric in the X-coordinates we may assume $X_{\beta} = X_{\gamma} = 0$. Then the Jacobian matrix

$$\left(rac{\partial Q_\chi}{\partial X_\psi}(x)
ight) \quad ext{takes the form} \quad \left(egin{array}{cccc} 2t_1^1X_1 & 2t_2^1X_lpha & 0 & 0 \ t_1^lpha X_lpha & t_1^lpha X_1 & 0 & 0 \ 0 & 0 & t_1^eta X_1 & t_2^eta X_lpha \ 0 & 0 & t_1^\gamma X_lpha & t_1^\gamma X_1 \end{array}
ight).$$

For generic t, this matrix is of rank 4 except when all the X-coordinates of x vanish; but we have seen that this is impossible when t is general enough. \Box

2 Some comments

As mentioned in the introduction, the construction is inspired by Reid's example [R] of a surface of general type with $p_g = 0$, $K^2 = 2$, $\pi_1 = H_8$. This is more than a coincidence. In fact, let \tilde{S} be the hyperplane section $X_1 = 0$ of \tilde{X} . It is stable under the action of H_8 (so that H_8 acts freely on \tilde{S}), and we can prove as above that it is smooth for a generic choice of the parameters. The surface $S := \tilde{S}/H_8$ is a Reid surface, embedded in X as an ample divisor, with $h^0(X, \mathcal{O}_X(S)) = 1$. In general, let us consider a Calabi–Yau threefold X which contains a rigid ample surface, that is, a smooth ample divisor S such that $h^0(\mathcal{O}_X(S)) = 1$. Put $L := \mathcal{O}_X(S)$. Then S is a minimal surface of general type (because $K_S = L_{|S}$ is ample); by the Lefschetz theorem, the natural map $\pi_1(S) \to \pi_1(X)$ is an isomorphism. Because of the exact sequence

$$0 \to \mathcal{O}_X \longrightarrow L \longrightarrow K_S \to 0$$
,

the geometric genus $p_g(S) := h^0(K_S)$ is zero.

We have $K_S^2 = L^3$; the Riemann-Roch theorem on X yields

$$1 = h^0(L) = \frac{L^3}{6} + \frac{L \cdot c_2}{12} \cdot$$

Since $L \cdot c_2 > 0$ as a consequence of Yau's theorem (see for instance [B], Cor. 2), we obtain $K_S^2 \leq 5$.

For surfaces with $p_g = 0$ and $K_S^2 = 1$ or 2, we have a great deal of information about the algebraic fundamental group, that is the profinite completion of the fundamental group (see [B-P-V] for an overview). In the case $K_S^2 = 1$, the algebraic fundamental group is cyclic of order ≤ 5 ; if $K_S^2 = 2$, it is of order ≤ 9 ; moreover the dihedral group D_8 cannot occur. D. Naie [N] has recently proved that the symmetric group \mathfrak{S}_3 can also not occur; therefore the quaternion group H_8 is the only non-Abelian group which occurs in this range.

On the other hand, little is known about surfaces with $p_g = 0$ and $K_S^2 = 3, 4$ or 5. Inoue has constructed examples with $\pi_1 = H_8 \times (\mathbb{Z}_2)^n$, with $n = K^2 - 2$ (loc. cit.); I do not know if they can appear as rigid ample surfaces in a Calabi–Yau threefold.

Let us denote by \widetilde{X} the universal cover of X, by \widetilde{L} the pullback of L to \widetilde{X} , and by ρ the representation of G on $H^0(\widetilde{X},\widetilde{L})$. We have $\operatorname{Tr}\rho(g)=0$ for $g\neq 1$ by the holomorphic Lefschetz formula, and $\operatorname{Tr}\rho(1)=\chi(\widetilde{L})=|G|\chi(L)=|G|$. Therefore ρ is isomorphic to the regular representation. Looking at the list in loc. cit. we get a few examples of this situation, for instance:

- $G = \mathbb{Z}_5$, $\widetilde{X} =$ a quintic hypersurface in \mathbb{P}^4 ;
- $G = (\mathbb{Z}_2)^3$ or $\mathbb{Z}_4 \times \mathbb{Z}_2$, $\widetilde{X} =$ an intersection of 4 quadrics in \mathbb{P}^7 as above;
- $G = \mathbb{Z}_3 \times \mathbb{Z}_3$, $\widetilde{X} =$ a hypersurface of bidegree (3,3) in $\mathbb{P}^2 \times \mathbb{P}^2$.

Of course, when looking for Calabi–Yau threefolds with interesting π_1 , there is no reason to assume that it contains an ample rigid surface. Observe however that if we want to use the preceding method, in other words, to find a projective space $\mathbb{P}(V)$ with an action of G and a smooth invariant linearly normal Calabi–Yau threefold $\widetilde{X} \subset \mathbb{P}(V)$, then the line bundle $\mathcal{O}_{\widetilde{X}}(1)$ will be the pullback of an ample line bundle L on X, and by the above argument the representation of G on V will be $h^0(L)$ times the regular representation. This leaves little hope to find an invariant Calabi–Yau threefold when the product $h^0(L)|G|$ becomes large.

References

- [B-P-V] W. Barth, C. Peters, A. Van de Ven, Compact complex surfaces. Ergebnisse der Math., Springer Verlag (1984)
- [B] J.-P. Bourguignon, Premières formes de Chern des variétés kählériennes compactes. Séminaire Bourbaki 77–78, exp. 507; Lecture Notes in Math. **710**, Springer Verlag (1979)
- [N] D. Naie, Numerical Campedelli surfaces cannot have \mathfrak{S}_3 as algebraic fundamental group. Bull. London Math. Soc., to appear
- [R] M. Reid, Surfaces with $p_g=0$, $K^2=2$. Unpublished manuscript and letters (1979)

Arnaud Beauville,
DMI – École Normale Supérieure (URA 762 du CNRS),
45 rue d'Ulm,
F75230 Paris Cedex 05
e-mail: beauville@dmi.ens.fr