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Introduction

A smooth anticanonical divisor in a Fano threefold is a K3 surface, endowed with
a natural polarization (the restriction of the anticanonical bundle). The question we
address in this note is: which K3 surfaces do we get in this way? The answer turns
out to be very easy, but it does not seem to be well-known, so the Fano Conference
might be a good opportunity to write it down.

To explain the result, let us consider a component Fg of the moduli stack1 of
pairs (V,S) , where V is a Fano threefold of genus g and S a smooth surface in
the linear system |K−1

V | . Let Kg be the moduli stack of polarized K3 surfaces of
degree 2g − 2 . By associating to (V,S) the surface S we get a morphism of stacks

sg : Fg −→ Kg .

We cannot expect sg to be generically surjective, at least if our Fano threefolds
have b2 > 1 : indeed for each (V,S) in Fg the restriction map Pic(V) → Pic(S)
is injective by the weak Lefschetz theorem, and this is a constraint on the K3
surface S . This map is actually a lattice embedding when we equip Pic(V) with
the scalar product (L,M) 7→ (L ·M ·K−1

V ) ; it maps the element K−1
V of Pic(V) to

the polarization of S .
To take this into account, we fix a lattice R with a distinguished element ρ of

square 2g − 2 , and we consider the moduli stack FR
g parametrizing pairs (V,S)

with a lattice isomorphism R ∼−→ Pic(V) mapping ρ to K−1
V . Let KR

g be the
algebraic stack parametrizing K3 surfaces S together with an embedding of R as
a primitive sublattice of Pic(S) , mapping ρ to an ample class. We have as before
a forgetful morphism sR

g : FR
g → KR

g .

Theorem .− The morphism sR
g : FR

g → KR
g is smooth and generically surjective;

its relative dimension at (V,S) is b3(V)/2 .
As a corollary, a general K3 surface with given Picard lattice R and polar-

ization class ρ ∈ R is an anticanonical divisor in a Fano threefold if and only if
(R, ρ) ∼= (Pic(V),K−1

V ) for some Fano threefold V .
The proof of the Theorem is given in § 3, after some preliminaries on deformation

theory ( § 1) and construction of the moduli stacks ( § 2). We give some comments in
§ 4, and in § 5 we discuss the analogous question for curve sections of K3 surfaces.

1
The frightened reader may replace “stack” by “orbifold” or even “space”; in the latter case the

word “smooth” in the Theorem below has to be taken with a grain of salt.
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We will work for simplicity over C , though part of the results remain valid over
an arbitrary algebraically closed field.

1. A reminder on deformation theory

In this section we will quickly review two well-known results on deformation
theory that are needed for the proof. The experts are encouraged to skip this part.

Let X be a smooth variety, Y a closed, smooth subvariety of X . We denote
by TX〈Y〉 ⊂ TX the subsheaf of vector fields which are tangent to Y , and by
r : TX〈Y〉 → TY the restriction map.

Proposition 1.1 .− The infinitesimal deformations of (X,Y) are controlled by the
sheaf TX〈Y〉 (that is, obstructions lie in H2(X,TX〈Y〉) , first order deformations
are parametrized by H1 and infinitesimal automorphisms by H0 ). The map which
associates to a first order deformation of (X,Y) the corresponding deformation of
Y is the induced map H1(r) : H1(X,TX〈Y〉) → H1(Y,TY) .

This can be extracted, for instance, from [R], but in such a simple situation
it is more direct to apply Grothendieck’s theory, as explained in [Gi], VII.1.2. Let
us sketch briefly how this works. Put Xε = X⊗C C[ε] and Yε = Y ⊗C C[ε] , with
ε2 = 0 ; let AX,Y (resp. AY ) be the sheaf of local automorphisms of Yε ⊂ Xε

(resp. Yε ) which induce the identity modulo ε . According to (loc. cit.), since the
deformations of Y ⊂ X (resp. Y ) are locally trivial, they are controlled by the sheaf
AX,Y (resp. AY ) (technically, these deformations form a gerbe, and the sheaf A
is a band for this gerbe). So we just have to identify these sheaves. For AY this
is classical: a section of AY over an open subset U of Y is given by an algebra
automorphism

OU[ε] −→ OU[ε]

which must be of the form I + ε δ , where δ is a derivation of OU ; this gives a
group isomorphism AY

∼= TY . Similarly a local automorphism of (X,Y) is given
by a diagram

OX[ε] I+εD−−−−→ OX[ε]y y
OY[ε] I+ε δ−−−−→ OY[ε] ,

where D and δ are local derivations of OX and OY . The commutativity of the
diagram means that D , viewed as a vector field, is tangent to Y , and induces the
vector field δ on Y . This gives an isomorphism AX,Y

∼= TX〈Y〉 ; the forgetful map
AX,Y → AY maps (D, δ) onto δ , thus coincides with r : TX〈Y〉 → TY .
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(1.2) Let now X be a smooth variety and R a free, finitely generated
submodule of Pic(X) ; we consider the deformation problem for (X,R) . Choosing
a basis for R this amounts to deform X together with line bundles L1, . . . ,Lp .
As above the deformations of a pair (X,L) are controlled by the sheaf of local
automorphisms of (X⊗C C[ε],L⊗C C[ε]) inducing the identity modulo ε ; this is
readily identified with the sheaf D1(L) of first order differential operators of L ,
the map (X,L) 7→ [X] corresponding to the symbol map σ : D1(L) → TX (this is
of course classical). Therefore deformations of (X,L1, . . . ,Lp) are controlled by the
sheaf D1(R) := D1(L1)×TX . . .×TX D1(Lp) , which appears as an extension

0 → Op
X −→ D1(R) −→ TX → 0 .

The extension class lies in H1(Ω1
X)p , its i-th component being the Atiyah class

c1(Li) ∈ H1(X,Ω1
X) . In a more intrinsic way this can be written as an extension

0 → R∗ ⊗Z OX −→ D1(R) −→ TX → 0 (1.3)

whose class in H1(X,Ω1
X)⊗Z R∗ is deduced from the map c1 : R → H1(X,Ω1

X) .
Assume now that X is a K3 surface. We have H1(X,OX) = H2(X,TX) = 0 ,

and choosing a non-zero holomorphic 2-form on X defines an isomorphism
H2(X,OX) ∼−→ C . The extension (1.3) gives rise to an exact sequence

0 → H1(X,D1(R)) −→ H1(X,TX) ∂−→ R∗ ⊗Z C −→ H2(X,D1(R)) → 0

where ∂ is the cup-product with the extension class; that is, for ξ ∈ H1(X,TX) and
L a line bundle in R , we have 〈∂(ξ),L〉 = ξ ∪ c1(L) . In other words, using Serre
duality, ∂ is the transpose of the natural map c1 : R⊗Z C → H1(X,Ω1

X) . Since c1

is injective, ∂ is surjective, hence H2(X,D1(R)) = 0 and H1(X,D1(R)) = Ker ∂ .
Therefore:

Proposition 1.4 .− Let X be a K3 surface and R a subgroup of Pic(X) . The
infinitesimal deformations of (X,R) are unobstructed. The first order deformations
are parametrized by the orthogonal of c1(R) ⊂ H1(X,Ω1

X) in H1(X,TX) .

2. The stacks KR
g and FR

g

(2.1) Let V be a smooth Fano threefold. Recall that the genus g of V is
defined by the formula 2g − 2 = (K−1

V )3 . If S is a smooth K3 surface in the linear
system |K−1

V | , the induced polarization L := K−1
V |S satisfies L2 = 2g − 2 , so that

the curves of |L| have genus g .
As explained in the introduction, we will consider Pic(V) as a lattice with the

product (L,M) 7→ (L ·M ·K−1
V ) .
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(2.2) The definition of the moduli stack F of pairs (V,S) is straightforward:
we start from the moduli stack T of Fano threefolds. Let f : V → T be the
universal family; the projective bundle P((f∗KV/T )∗) parametrizes pairs (V,S)
with S ∈ |K−1

V | , and we take for F the open substack defined by the condition that
S is smooth. We add the subscript g when we restrict to pairs (V,S) of genus g .

(2.3) The definition of the moduli stacks KR
g and FR

g is slightly more involved.
Let f : X → B be a smooth, projective morphism of noetherian schemes. Following
[G], we denote by PicX/B the sheaf on B (for the faithfully flat topology) associated
to the presheaf (B′ → B) 7→ Pic(X×B B′) . According to loc. cit., this sheaf is
representable by a group scheme over B , for which we will use the same notation.
If f has relative dimension 2 , the intersection product defines a bilinear form
PicX/B × PicX/B → ZB ; the same holds in (relative) dimension 3 by taking the
intersection product with K−1

X/B .

Let R be a lattice, with a distinguished element ρ . The moduli stacks FR
g and

KR
g are defined as follows. An object of FR

g over a scheme B is a pair (V,S) over
B , where V → B is a family of Fano threefolds, of genus g , and S ⊂ V a family of
K3 surfaces over B , together with a lattice isomorphism RB

∼−→ PicV/B mapping
ρ onto the class of K−1

V . Similarly, an object of KR
g over B is a family S → B of

polarized K3 surfaces, of genus g , together with a lattice embedding RB ↪−→ PicS/B

mapping ρ onto the polarization class.

That KR
g and FR

g are indeed algebraic stacks follows from the result of
Grothendieck quoted above. Consider for instance the universal family S → Kg of
K3 surfaces with a genus g polarization. Then PicS/Kg

is representable by an
algebraic stack, which is a group scheme over Kg . Choosing a basis (e0, . . . , ep) of
R with e0 = ρ , we realize KR

g as an open and closed substack of (PicS/Kg
)p .

Associating to a pair (V,S) over B the family S → B with the induced
polarization and the composite map RB

∼−→ PicV/B ↪−→ PicS/B defines a morphism
of stacks sR

g : FR
g → KR

g .

(2.4) Let us say a few words about the lattice R . In order for our moduli
stacks to be non-empty, R must be a sublattice of the Picard group of a K3 surface,
containing a polarization; also it must be isomorphic to the Picard lattice of a Fano
threefold. Thus:

• R is even, of signature (1, r − 1) ;

• R has rank r ≤ 10 ; if r ≥ 6 , it is isomorphic to the Picard lattice of
S11−r ×P1 , where Sd is the Del Pezzo surface of degree d .

(The latter property follows from Theorem 2 in [M-M]).

(2.5) Since R has signature (1, r − 1) , the orthogonal of ρ is negative definite,
and therefore the group of automorphisms of R fixing ρ is finite. It follows that
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the forgetful maps FR
g → Fg and KR

g → Kg are (representable and) finite. The
former map is actually is an étale covering, because for any family V → B of Fano
threefolds the sheaf PicV/B becomes trivial on an étale covering of B .

As for the stack KR
g , we have

Proposition 2.6 .− The stack KR
g is smooth, irreducible, of dimension 20− r .

The smoothness and dimension of KR
g follow from Proposition 1.4; its irre-

ducibility is a consequence of the theory of the period mapping. Let us recall briefly
how this works, following the exposition in [D], 4.1. Let L be an even unimod-
ular lattice of signature (3, 19) (all such lattices are isomorphic). We choose an
embedding of R as a primitive sublattice of L (such an embedding is unique up
to an automorphism of L by Nikulin’s results, see [D], thm. 1.4.8). We consider
marked K3 surfaces of type R , that is, K3 surfaces S with a lattice isomorphism
σ : L ∼−→ H2(S,Z) such that σ(R) is contained in Pic(S) ⊂ H2(S,Z) , and σ(ρ) is
an ample class. These marked surfaces admit a fine (analytic) moduli space K̃R

g ;
the period map induces an isomorphism of K̃R

g onto the period domain DR , which
is the disjoint union of two copies of a bounded symmetric domain of type IV (loc.
cit.). Our stack KR

g is isomorphic to the quotient of K̃R
g by the group ΓR of au-

tomorphisms of L which fix the elements of R . This group acts on DR permuting
its two connected components (this can be seen exactly as in [B], Cor. p. 151). Thus
the quotient stack KR

g is irreducible.

3. Proof of the theorem

(3.1) By Proposition 1.1 the infinitesimal behaviour of Fg (or FR
g , since the

forgetful map FR
g → Fg is étale) at a pair (V,S) is controlled by the sheaf TV〈S〉 ,

which is defined by the exact sequence

0 → TV〈S〉 −→ TV −→ NS/V → 0 . (3.2)

We have H2(V,TV) = H2(V,Ω2
V ⊗K−1

V ) = 0 by the Akizuki-Nakano theorem, and
H1(S,NS/V) = 0 because NS/V is an ample line bundle on S . Thus the exact
sequence (3.2) gives H2(S,TV〈S〉) = 0 , so that the first order deformations of (V,S)
are unobstructed (in other words, the stack FR

g is smooth).

It follows from Proposition 1.1 that the tangent map to sg : Fg → Kg at (V,S)
is H1(r) , where r : TV〈S〉 → TS is the restriction map. The map r is surjective,
and its kernel is the subsheaf TV(−S) of vector fields vanishing along S , which in
our case is isomorphic to Ω2

V . Thus we have an exact sequence

0 → Ω2
V −→ TV〈S〉

r−→ TS → 0 . (3.3)
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Let us consider the associated cohomology exact sequence. Since H0(V,Ω2
V) and

H0(S,TS) are zero, we get first of all H0(V,TV〈S〉) = 0 , so that (V,S) has no
infinitesimal automorphisms (that is, FR

g is a Deligne-Mumford stack). Then we
get the exact sequence

0 → H1(V,Ω2
V) −→ H1(V,TV〈S〉)

H1(r)−−−−→ H1(S,TS) ∂−→ H2(V,Ω2
V) → 0 . (3.4)

Let i : S ↪→ V be the inclusion map. To evaluate ∂ , consider the exact sequence

0 → Ω1
V(log S)(−S) −→ Ω1

V
i∗−→ Ω1

S → 0 (3.5)

deduced from (3.3) by applying the duality functor RHomV( ,KV) and using
the canonical isomorphisms RHomV(TS,KV) ∼= RHomS(TS,KS) ∼= Ω1

S . By general
non-sense the cohomogy exact sequence associated to (3.5) is the dual of the one
associated to (3.4); in particular the transpose of ∂ is identified (through Serre
duality on V and S ) with the restriction map H1(i∗) : H1(V,Ω1

V) → H1(S,Ω1
S)

– up to a sign which is irrelevant for our purpose.
Therefore Ker ∂ is the orthogonal of the image of H1(i∗) . Because of the

commutative diagram

R

�� ''OOOOOOOOOOOO

Pic(V) i∗ //

c1

��

Pic(S)

��
c1

��
H1(V,Ω1

V)
H1(i∗) // H1(S,Ω1

S)

it is also the orthogonal of c1(R) ⊂ H1(S,Ω1
S) . By Proposition 1.4 this is exactly the

tangent space to KR
g at S , so the induced map TV〈S〉 → Ker ∂ is the tangent map

to sR
g at (V,S) . This proves that this map is surjective, and the exact sequence

(3.4) shows that its kernel is isomorphic to H1(V,Ω2
V) . Hence sR

g is smooth, of
relative dimension b3(V)/2 , and generically surjective because KR

g is irreducible
(Proposition 2.6).

4. Consequences and comments

Corollary 4.1 .− Let (S, h) be a polarized K3 surface, P its Picard group; assume
that (S, h) is general in KP

g . Then S is an anticanonical divisor in a Fano threefold
if and only if (P, h) is isomorphic to (Pic(V),K−1

V ) for some Fano threefold V .

We leave to the reader the enjoyable task of listing the pairs (P, h) for the 87
types of Fano threefolds with b2 > 1 classified in [M-M]. In the case b2 = 1 we get
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the generic surjectivity of sg : Fg → Kg ; this is actually well-known, and follows for
instance from the work of Mukai [M1].

(4.2) In most cases the map sR
g is not surjective. Consider for instance the

component of F5 parametrizing pairs (V,S) with Pic(V) = Z ·KV and g = 5 .
Each threefold V is the complete intersection of 3 quadrics in P6 , so we get in the
image of s5 all complete intersections of 3 quadrics in P5 , which form a proper
open substack of K5 (it does not contain hyperelliptic and trigonal K3 surfaces).

(4.3) Part of the argument extends to Fano manifolds of arbitrary dimension
n , but the exact sequence (3.4) becomes

0 → H1(V,Ωn−1
V ) −→ H1(V,TV〈S〉) −→ H1(S,TS) ∂−→ H2(V,Ωn−1

V ) → 0 ,

so that the geometric meaning of Ker ∂ is not so clear. When bn−1(V) = 0 we see
that the map (V,S) 7→ S is smooth.

(4.4) A glance at the list of [M-M] shows that roughly half of the families
of Fano threefolds have b3 = 0 ; for these the map sR

g is étale, and one can ask
whether it is an isomorphism onto an open substack. This is easy to prove in some
cases (V = P3,Q3,P1 ×P2, . . .) . For Fano threefolds of index 2 and genus 6 , it
has been proved by Mukai ([M1], Cor. 4.3). An interesting open case is the one of
Fano threefolds of genus 12 with b2 = 1 .

5. K3 surfaces and canonical curves

(5.1) Let KCg be the moduli stack of pairs (S,C) , where S is a K3 surface with
a primitive polarization of genus g , and C ⊂ S a smooth curve in the polarization
class; let Mg be the moduli stack of curves of genus g . We have as before a
morphism of stacks

cg : KCg −→Mg .

This morphism has been studied extensively. Let me summarize the main results.
Recall first that dimKCg = 19 + g is greater than dimMg = 3g − 3 for g ≤ 10 ,
equal for g = 11 and smaller for g ≥ 12 .

• cg is generically surjective for g ≤ 9 and g = 11 [M1].

• cg is not surjective for g = 10 [M1]; its image is the hypersurface of Mg

where the Wahl map ∧2H0(C,KC) → H0(C,K⊗3
C ) fails to be bijective [C-U].

• cg is generically finite for g = 11 and g ≥ 13 , but not for g = 12 [M2].

(5.2) Let us consider the map cg from the differential point of view that we have
adopted in this note. Let (S,C) ∈ KCg ; we have by Serre duality H2(S,TS〈C〉) =
H0(S,Ω1

S(log C))∗ = 0 , hence the stack KCg is smooth. By Proposition 1.1, the
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tangent map to cg at (S,C) is H1(r) : H1(S,TS〈C〉) → H1(C,TC) . It appears in
the cohomology exact sequence analogous to (3.4)

0 → H1(S,TS(−C)) −→ H1(S,TS〈C〉)
H1(r)−−−−→ H1(C,TC) ∂−→ H2(S,TS(−C)) → 0 .

Using Serre duality, we see that cg is smooth at (C,S) if and only if H0(S,Ω1
S(C))

= 0 , and unramified at (C,S) if and only if H1(S,Ω1
S(C)) = 0 . Note that this

condition depends only on the polarization L = OS(C) and not on the particular
curve C in |L| – a fact which is not a priori obvious.

The results of (5.1) are thus equivalent to:
Let (S,L) be a general K3 surface with a primitive polarization of genus g .

We have:
• H0(S,Ω1

S ⊗ L) = 0 for g ≤ 9 and g = 11 ;
• dim H0(S,Ω1

S ⊗ L) = 1 for g = 10 ;
• H1(S,Ω1

S ⊗ L) = 0 for g = 11 and g ≥ 13 .
A direct proof of these results would provide an alternative approach to the

results of (5.1).

(5.3) Let us observe that though cg is generically surjective for g ≤ 9 and
g = 11 , it is not everywhere smooth. Take for instance a K3 surface S with an
elliptic pencil |E| and a smooth curve Γ of genus γ ∈ {0, 1} with E · Γ = 2 ;
put L = OS(kE + Γ) . Then L is a primitive polarization of genus 2k + γ . Let
f : S → P1 be the map defined by the pencil |E| ; since Ω1

S contains f∗Ω1
P1 , we

get dim H0(S,Ω1
S ⊗ L) ≥ k − 1 . This gives pairs (S,C) in KCg , for g ≥ 4 , where

cg is not smooth.
Similarly, cg is not everywhere unramified for g = 11 or g ≥ 13 . A series of

examples is provided by the following result, which is essentially due to Mukai ([M2],
Prop. 6):

Proposition 5.4 .− Let V be a Fano threefold of index 1 and genus g such that
K−1

V is very ample, S ∈ |K−1
V | a K3 surface, L := K−1

V |S , C a smooth curve in the
linear system |L| . The fibre of cg : KCg →Mg at (S,C) is positive-dimensional.
In particular, the space H1(S,Ω1

S ⊗ L) is non-zero.

Proof : Consider V embedded in P(H0(V,K−1
V )) . A general C in |L| is contained

in a Lefschetz pencil (St)t∈P1 of hyperplane sections of V : there is a finite subset ∆
of P1 such that St is smooth for t ∈ P1 ∆ and has an ordinary node for t ∈ ∆ .
The corresponding map P1 ∆ → Kg goes to the boundary of Kg (consisting of
K3 surfaces with a pseudo-polarization of degree 2g − 2 ), and therefore cannot be
constant. Thus we get a 1-dimensional family of pairs (St,C) , for t ∈ P1 ∆ , which
maps to the same point [C] of Mg . This gives the result for C general in |L| ,
hence for every smooth C in |L| .
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In view of the list in [M-M], we get examples of positive-dimensional fibres of
cg for all g ≤ 28 and for g = 32 (note that we want the polarization of S to be
primitive, so V must be of index one). We know no examples in higher genus.
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[C-U] F. CUKIERMAN, D. ULMER: Curves of genus ten on K3 surfaces. Compositio
Math. 89 (1993), 81–90.

[D] I. DOLGACHEV: Integral quadratic forms: applications to algebraic geometry

(after V. Nikulin). Sém. Bourbaki 1982/83, Exp. 611, 251–278. Astérisque
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Bourbaki 1961/62, Exp. 232, 143–161. SMF, Paris (1995).
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