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Introd uction 

The main character of these lectures is a finite-dimensional vector space, 
the space of generalized (or non-Abelian) theta functions, which has re-
cently appeared in (at least) three different domains: Conformal Field The-
ory (CFT), Topological Quantum Field Theory (TQFT), and Algebraic 
Geometry. The fact that the same space appears in such different frame-
works has some fascinating consequences, which have not yet been fully 
explored. For instance the dimension of this space can be computed by 
CFT-type methods, while algebraic geometers would have never dreamed 
of being able to perform such a computation. 

In the Kaciveli conference I had focussed (apart from the Algebraic 
Geometry) on the TQFT point of view. Here I have chosen instead to 
explain the CFT aspect. The main reason is that there is an excellent 
account of the TQFT part in the little book [1], which anyone wishing to 
learn about the subject should read. On the other hand the CFT is the 
most relevant part for algebraic geometers, and it is not easily accessible in 
the literature. 

This is an introductory survey, intended for mathematicians with little 
background in Algebraic Geometry or Quantum Field Theory. In the first 
part I define a rational CFT as a way of associating to each marked Rie-
mann surface a finite-dimensional vector space, so that certain axioms are 
satisfied. I explain how the dimensions of these spaces can be encoded in a 
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finite-dimensional :i:-algebra, the fusion ring of the theory. Then I consider 
a particular RCFT, the WZW model, associated to a simple Lie algebra 
and a positive integer, and I show how the dimensions can be computed in 
that case. 

In the second part I try to explain what is the space of non-abelian 
theta functions, and why it coincides with the spaces which appear in the 
WZW model. This allows to give an explicit formula for the dimension of 
this space. Then I discuss how such a formula can be used in Algebraic 
Geometry. 

Part 1: Conformal Field Theory 

1.1. THE DEFINITION OF A RCFT 

There are various definitions in the literature of what is (or should be) a 
Rational Conformal Field Theory (see e.g. [8, 12, 14, 16]; unfortunately 
they do not seem to coincide. In the following I will follow the approach of 
[12], i.e. I will deal only with compact algebraic curves. 

I suppose given an auxiliary finite set A, endowed with an involution 
A I---> A * (in practice A will be a set of representations of the symmetry alge-
bra of the theory). By a marked Riemann surface (G, p, X) I mean a compact 
Riemann surface (not necessarily connected) G with a finite number of dis-
tinguished points p = (PI, ... ,Pn), each Pi having attached a "label" Ai EA. 
Then a RCFT is a functor which associates to any marked Riemann surface 
(G, p, X) a finite-dimensional complex vector space Vc(p, X), satisfying the 
following axioms: 

AO. VIPI (0) = C (the symbol 0 means no marked points). 

A 1. There is a canonical isomorphism 

with X * = (Ai, ... 
A 2. Let (G, p, X) be the disjoint union of two marked Riemann surfaces 
(G' , p', X') and (Gil, p", X"). Then 

A3. Let (Gt)lED be a holomorphic family of compact Riemann surfaces, 
parametrized by the unit disk DeC, with marked points Pl(t), ... ,Pn(t) 
depending holomorphically on t (fig. 1 below). Then for any tED there is 
a canonical isomorphism 
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A4. Same picture, but assume now that the "special fibre" Co acquires a 
node 8 (fig. 2a and 2b); we assume that the points Pi (0) stay away from 8. 

Let Co be the normalization of Co, i.e. the Riemann surface obtained by 
separating the two branches at 8 to get two distinct points 8' and 8". There 
is an isomorphism 

VCt(p(t),X) 2:Vco(p(0),8',8"; X, 1/, 1/*) . 
vEA 
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There are a number of compatibilities that these isomorphisms should 
satisfy, but we won't need to write them down in this lecture. Let me 
just mention that they are most easily described in the language of vector 
bundles over the moduli space of marked Riemann surfaces: for instance 
A3 means that the spaces Vc(p, -X) form a projectively fiat vector bundle 
over the moduli space when (C, P; varies. 

The physicists usually want the spaces Vc(p, -X) to be hermitian, with 
the above axioms suitably adapted. I will not adopt this point of view here. 

1.2. PHYSICAL INTERPRETATION 

In this section I would like to discuss in a very informal and 
sketchy way why these spaces appear in physics. We are considering a 
quantum field theory in dimension 1 + 1, so space-time is a surface that 
we assume to be compact (and oriented). We are given a certain type of 
geometric objects, that the physicists call fields: these may be functions, 
vector fields, connections on some vector bundle ... One of the most basic 
objects in the theory are the correlation junctions, which assign to any fi-
nite collection of fields AI, . .. , An located at distinct points Zl ... , Zn on 
a number (AI(ZI) ... An(zn)). Physically, each field Ai corresponds to some 
observable quantity (energy, momentum ... ); intuitively (and very roughly) 
we may think of (AI(Zl) ... An(zn)) as the expectation value of the joint 
measurement of these quantities at the given points. 

These correlation functions are usually defined in terms of Feynman 
integrals, for which no mathematically correct definition is known (in fact 
what we are trying to do here is to bypass the Feynman integral by formu-
lating its main properties as axioms). These integrals involve a metric on 
the surface but if the theory is conformal they actually depend essen-
tially only on the conformal class of the metric - i.e. on a complex structure 
on which we see as a point m in the moduli space of Riemann surfaces. 

The symmetry algebra of the theory acts on the space of fields; let me 
assume that each field A belongs to an irreducible representation Ai (these 
are called "primary fields"). From the behaviour of the Feynman integral, 
the physicists conclude that 

(A1(Zl) .. . An(zn)) =< vA(z,m) IVA(z,m) > 

where v A (z, m) is an element of (z; -X) which depends holomorphically 
on z and m (more precisely, VA is a holomorphic section of the projectively 
fiat vector bundle formed by the (z"X)); here < I > denote the scalar 
product on the hermitian vector space (z, -X). From the known proper-
ties of the correlation functions one may deduce that the spaces Vc(z,-X) 
must satisfy AD to A4 (see [12]). 
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Let me conclude this section with an important warning: in the phys-
ical literature the correlation functions are often normalized so that one 
gets 1 when there are no fields. Here we consider unnormalized correlation 
functions, which means that when no field is inserted we get the partition 
function of the theory - so this is somehow the most important case. We will 
see later that in algebraic geometry also the corresponding vector spaces 
Vc(0) playa prominent part. 

1.3. THE FUSION RING 

In this lecture I will be interested only in the dimension of the spaces 
Vc(p,5:) (this is why I didn't care to be precise about the isomorphisms in-
volved in the axioms). Observe that as a consequence of A3 this dimension 
does not change when one deforms (holomorphically) the surface and its 
marked points; therefore it depends only on the genus g of G, and of the set 
of labels (>'1," ., An) (the order is irrelevant). It is convenient to introduce 
the monoid N(A) of formal sums Al + ... + An for n 2: 0, AI,"" An E A 
("free monoid generated by A"). For x = Al + ... + An E N(A), we put 

Ng(x) := dim Vc(P1, ... ,Pn; AI, ... , An) , 

where G is any Riemann surface of genus 9 with n arbitrary (distinct) 
points PI) ... , Pn. So we can view N g as a function from N(A) into N. Let us 
write the consequences of our axioms. A 0 and A 1 give respectively: 

No(O) = 1 and Ng(x*) = Ng(x) (1) 

(we have extended the involution A f---' A* to N(A) by linearity). 
A3 has been already taken into account. As for A4, there are two cases 

to consider (fig. 2a and 2b). In case a), the normalization Co has genus g-l, 
so we get: 

(2) 

In case b) Co is the disjoint union of two smooth curves G' and Gil, of genus 
g' and gil respectively, with g' + gil = g; the curve Go is obtained from Co 
by identifying 8' E G' with S" E Gil. Some of the marked points (Pi) of Go 
lie on G', while the others are on Gil; let x' = L Ai, x" = 'LpjECIi Aj. 

PiEG' 
Using A4 and A2 we get 

Ng(x' + x") = L Ngl(X' + v) NglI(X" + v*) . 
vEA 

(3) 

Clearly formula (2) allows to compute all the Ng's by induction starting 
from No, so the problem is to compute the function No : N(A) --+ N. For 
the case 9 = ° the above relations read 
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(F 0) No(O) = 1; 
(F 1) No(x*) = No(x) for every x E N(A); 

(F 2) No(x + y) = L No(x + 1/) No(y + 1/*) for x, yin N(A). 
vEA 

These relations (together with (2» are called the fusion rules. We are 
now faced with a purely combinatorial problem: can we describe in some 
simple way all functions satisfying these identities? Here is the elegant 
solution found by the physicists. 

Let me define a fusion rule on A as a function N : N(A) -7 Z satisfying 
(F 0) to (F 2); I will assume moreover that N takes at least one positive 
value on A. I will also assume that N is non-degenerate in the sense that 
for each A E A, there exists an element x of N(A) such that N(A + x) =I 0 
(otherwise one can forget this A and consider the restriction of N to A \ { A} ). 

Let us denote by F the free abelian group Z(A) generated by A; we will 
consider A as a subset of F. 

Proposition 1.1 There exists a one-to-one correspondence between fusion 
rules on A as above and multiplication maps F®zF -7 F with the following 
properties: 

(i) F is a commutative ring, with a unit 1 EA. 
(ii) Let t : F -7 Z be the Z-linear form such that t(l) = 1, t(A) = 0 

for A E A, A =I 1. Then A is an orthonormal basis for the bilinear form 
<x I y>:= t(xy*). 

The correspondence is as follows: given N, the multiplication on F is 
defined by 

A . J.1. = L N (A + J.1. + 1/*) 1/ . (4) 
vEA 

Conversely, starting from the ring F, we define N by 

It is not difficult to check that the two constructions are inverse of each 
other: I refer to [5] for a detailed proof. 0 

So to each CFT is associated a commutative ring F, the fusion ring 
of the theory. It carries a ring involution *, and a scalar product < I > 
satisfying < xz I Y >=< x I z*y >, with an orthonormal basis containing l. 
The structure of these rings is quite subtle. However, once we extend the 
scalars from Z to e, it becomes essentially trivial: 

Lemma 1.2 The ring Fe := F ®z e is isomorphic to the product ring en, 
with n = Card(A). 
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Proof· Extend the bilinear form < I > on :F to a hermitian scalar product 
on :Fe. For any x E :F, let mx denote the endomorphism y f---+ xy of :Fe. The 
formula < yx I z >=< Y I x* z > implies that the adjoint endomorphism of 
mx is m x*; since the endomorphisms mx commute, they are normal, hence 
diagonalizable, and the ((:>algebra :Fe is semi-simple. 0 

Let be the spectrum of :Fe, that is the (finite) set of characters (= ring 
homomorphisms) :F ----t C. There is a natural homomorphism of C-algebras 
<I> : :Fe ----t mapping x E :F to One can rephrase the lemma 
in a more intrinsic way by saying that <I> is an isomorphism of C-algebras. 

For any x E :F, let mx denote the endomorphism y f---+ xy of :F. Then 
the endomorphism <I> mx <I>-1 of is the multiplication by <I>(x); in the 
canonical basis of it is represented by the diagonal matrix with entries 
(X( x) This implies in particular Tr mx = X( x). On the other 
hand, from the relation 

AI1 = L N(A + j1 + v*) v = L t(Aj1V*) v 
vEA vEA 

one gets TrmA = LVEA t(AVV*) = t(AW), where W is the element LAEA AA* 
of :F. By linearity this gives 

t(xw) = Trmx = L X(x) (5) 

for all x E :Fe- Since X(w) = LAEA IX(AW > 0, the element w is invertible 
in :Fe; replacing x by xw- 1 gives 

" X(x) t(x) = L -(-)' 
X w 

Let us now compute N g : from (3) we get by induction on g 

Ng(A1 + ... + An) = 

L NO(A1 + ... + An + V1 + vi + ... + Vg + v;) 
vl, ... ,vgEA 

L t(A1 ... An v1vi· .. VgV;) 
vl, ... ,vgEA 

comparing with (5) we obtain 

N g(A1 + ... + An) = L x(Ad ... X(An) X(w)g-1 . 

In conclusion: 
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Proposition 1.3 Let (C, p,.\) be a Riemann surface of genus 9 with n 
marked points. Then for any RCFT 

dim Vc(p,.\) = L X(Al) ... X(An) X(w)9-1 
XEI: 

where 2:: is the set of characters of the fusion ring, and 

X(w) = L IX(A)12. 0 
>'EA 

Thus we will be able to compute the dimensions of the spaces Vc(p,.\) 
once we know explicitly the characters of the fusion ring - or equivalently 
the isomorphism Fcc CE • 

1.4. THE VERLINDE CONJECTURE 

The physicists use an equivalent, but slightly different formulation of the 
Proposition. We have seen in lemma 1.2 that the endomorphisms mx (x E 
Fcc) form a commutative subalgebra of End(Fc), stable under adjunction. 
Such an algebra is diagonalizable in an orthonormal basis; in other words, 
there exists a unitary matrix S = (SAI1}\,P.EA such that the matrix b.x := 
SmxS-1 is diagonal for every x E F (here we still use the notation mx for 
the matrix of the endomorphism mx in the basis A). The physicists use to 
say that the matrix S "diagonalizes the fusion rules" . 

Fix such a matrix S. For A E A, x E F, let X>.(x) be the diagonal 
coefficient (b.XhA. Clearly XA is a character of F, and we get in this way all 
the characters. So the choice of the matrix S provides a bijection A 2::. 
Moreover the characters XA have a simple expression in terms of S: the 
equality Smp' = b.p.S, for f-L E A, is equivalent to 

L SAV N(f-L + P + v*) = XA(f-L) SAP 
v 

for every A, pEA. Take p = 1; from (4) we get N(1 + f-L + v*) = 8p.v, hence 

) SAP. 
X>. (f-L = -S . 

>'1 

Let us express Proposition 1.1 in terms of S. Replacing S by DS, where 
D is a diagonal unitary matrix, we can suppose that the numbers SAl are 
real positive. Since S is unitary we have 
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and therefore 
'""" SV>I] ... Sv).. 

N.q()..l + ... + )..p) = L... S2g-2+p P ; 

1/ v1 

this is the formulation usually found in the physics literature. 
Let me now explain the original Verlinde conjecture. I have to be sketchy 

here because I have not formulated precisely the rules that the isomor-
phisms which appear in the axioms AO to A4 should obey. 

Let E be an elliptic curve, which we write as the quotient of C by 
a lattice Z + ZT, with T E lHI (Poincare upper half-plane). In this way 
lHI parametrizes a (universal) family of elliptic curves. Since for each "( E 
SL2(Z) the curves corresponding to "(T is isomorphic to E, axiom A3 pro-
vides an action of SL2(Z) on VE(0). This action should be linear (or at 
least projective), and unitary for the natural hermitian metric of VE(0). 

On the other hand, let us degenerate E into p1 with 2 points p, p* 
identified. Axiom A4 gives an isomorphism 

VE(0) EB V!,l(p,p*;).., )..*), 
)..EA 

which again must be unitary. We know that V!,l(p,p*;)..,)..*) is one-dimen-
sional; actually, because of A4 it should have a canonical generator, so we 
get a unitary isomorphism VE(0) Fe. Putting things together we ob-
tain a unitary action ofSL2(Z) onto Fe. This action can usually be written 
explicitely: for instance when the symmetry algebra is a Kac-Moody alge-
bra (as in the WZW model that we will study below), it corresponds to the 
usual action of SL2 (Z) on the characters of the representations parametrized 
by A. In any case, the conjecture is: 

Verlinde's Conjecture The matrix S = acting on Fe diago-

nalizes the fusion rules. 

I must say the current status of the conjecture is not clear to me. A 
proof appears in [15]' but there seems to be some doubt among the experts. 
Moreover it is not obvious that the axioms of a RCFT given in [14, 15J 
coincide with ours. 

1.5. THE WZW MODEL 

Of course the above analysis is interesting only if we can exhibit examples 
of theories satisfying our axioms. A basic example for the physicists is 
the Wess-Zumino-Witten (WZW) model. It is usually defined through a 
Feynman integral; in our framework, the rigorous construction of these 
models and the proof that they satisfy axioms A 0 to A 4 have been carried 
out in the beautiful paper [18J. 
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The WZW model is associated to a simple complex Lie algebra 9 and a 
positive integer .e (the level). We choose a Cartan subalgebra f) C g. Recall 
that the irreducible finite-dimensional representations of 9 are parametrized 
by certain linear forms on f) called the dominant weights (in the case 
9 = S[r(<C) , we take for f) the subspace of diagonal matrices; the dominant 

r-l 
weights are the linear combinations L niCi where Ci is the linear form 

i=l 
H f-> Hii and the n/s are integers satisfying nl 2: n2 2: ... 2: nr-l). 
We denote by P+ the set of dominant weights; for>.. E P+, we let VA be 
the corresponding representation. We define the level of VA as the integer 
(>.., eV ), where ev is the coroot associated to the highest root of (g, f)) - for 
9 = s[r(C) and>" = L: niCi as above, the level is nl. 

The set Pe of dominant weights of level ::; .e is finite; this will be our 
auxiliary set A. For>.. E Pe, the dominant weight>.. * associated to the dual 
representation of VA still belongs to Pe; this defines the involution on Pe. 

To define the spaces Vc(p,.\) for a connected Riemann surface C, we 
choose an auxiliary point q E C distinct from the Pi'S, and a local coordinate 
z at q (the construction will be independent of these choices). We denote 
by Ac the algebra of regular functions on C \ {q} - that is, functions which 
are holomorphic in C \ {q} and meromorphic at q. We endow 9 0 Ac with 
the obvious Lie algebra structure given by [X ® f, Y ® g] = [X, Y] ® fg. We 
will define below a natural representation 'He of 9 ® Ac; on the other hand, 
9 ® Ac acts on each VAi by (X ® f) . v = f(Pi)XV, hence on the tensor 
product V,\ := VAl ® ... ® VAn' We put 

To explain what is 'He, let me first recall the definition of the affine 
Lie algebra 9 associated to 9 (I refer to [13] for the few facts I will use 
about Kac-Moody algebras; the reader may take them as a black box). Let 
C«(z)) denote the field of merom orphic (formal) Laurent series in Z; we put 
9 = (g ® C( (z)) ) EB Ce, the bracket of two elements of 9 ® C( (z)) being given 
by 

[X 0 f, Y 0 g] = [X, Y] ® fg + e· (X I Y) Reso(g df) , (6) 

where ( I ) is the normalized Killing form ((A I B) = Tr AB for 9 = s[r(<C)). 
Kac-Moody theory tells us that 9 admits a unique irreducible repre-

sentation 'He, called the basic representation of level £, with the following 
properties: 

a) The central element e acts by multiplication by £; 
b) There exists a non-zero vector v in 'He annihilated by 9 ® C[[zlJ. 
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Let U- be the subalgebra of End(He) spanned by the elements X ® z-p 

with p 2:: 1; let Xe E 9 be an eigenvector for the adjoint action of I) w.r.t. 
the highest root e (for 9 = s[r(C), Xe is the elementary matrix E 1r). Then 

c) As a U- -module, He is spanned by the vector v, with the only relation 
(Xe ® z-I )HIv = O. 

Let us go back to our situation. By associating to each function f E Ac 
its Laurent expansion at q, we get an embedding Ac '------+ <C( (z)), hence 
also an embedding of Lie algebras 9 ® Ac '------+ 9 ® C((z)). The Residue 
theorem and formula (6) imply that 9 ® Ac is also a Lie sub algebra of g, 
hence 9 ® Ac acts on He as required. 

Let me now state the main result of [18): 

Proposition 1.4 The spaces Vc(p, X) = HOmg®Ac(He, Vx) satisfy the ax-
ioms AO to A4, and therefore define a RCFT. 0 

We will denote by Re(g) the corresponding fusion ring. What can we 
say about this ring? 

The spaces Vc(p, X) are quite difficult to compute in general, but the 
situation is simpler when C = pI: the ring Ac is just the polynomial ring 
C[z-l], so Vjpl (p, X) is the space of maps He -+ Vx which are both g-linear 
and U- -linear. By property c) above such a map is determined by the 
image Vi of v, with the only relations 9 . Vi = 0 and (Xe ® z-I )HI . Vi = O. 
Therefore: 

Proposition 1.5 VJP'1 (p, X) is the subspace of elements of v); which are an-
nihilated by 9 and by (Xe ® z-l )Hl. 0 

To explain the significance of this result, consider the situation when £ -+ 

00. The set Pe becomes the (infinite) set P+ parametrizing all irreducible 
(finite-dimensional) representations of g. The condition of annihilation by 
(Xe ® z-I )HI is always satisfied for £ large enough, since the action of Xe 
on any representation is nilpotent. So the limit space Vjp\oo) (p, X) is simply 
the g-invariant subspace of Vx. In particular, we find 

Write VA ® Vi-' as a sum of irreducible representations Vp (possibly with 
multiplicities). By Schur's lemma Homg(Vv, Vp) is 0 for v i=- p, and C for 
v = p. Hence N(>' + ft + v*) is (in the limit) the multiplicity of Vv as an 
irreducible component of VA ® Vi-" In other words, the limit fusion ring F= 
is the representation ring R(g) of g: by definition, this is the free abelian 
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group with basis ([VA])AEP+ and with multiplication rule 

[VA] . [Vft] = [VA 0 Vft] := z= Nfft [Vv] 
v 

where 

VA 0 Vft = E9 Nfft Vv . 
vEP+ 

For finite e, we only get N(A + f.-l + v*) :s; Nfft' Hence the product 
[VA] . [Vft] in the fusion ring R£(g) is the class of a g-module VA 0 Vft which 
appears as a quotient (or a submodule) of VA 0 Vft. We have thus defined 
a kind of "skew tensor product" for representations of level :s; e, which 
unlike the usual tensor product is still of level :s; e. Finding a more natural 
definition of this product, e.g. through the theory of quantum groups, is a 
very interesting question which is apparently still open; such a definition 
should provide a better proof of the proposition below. 

We see in particular that the natural inclusion of R£(g) into R(g) is not 
a ring homomorphism. It turns out that Re(g) can be viewed as a quotient 
of R(g): 

Proposition 1.6 There is a natural ring homomorphism 

7r : R(g) ---+ Re(g) 

such that 7r([VA]) = [VA] for each A E Pc. 

The proof (see [11]) follows from a case by case combinatorial analysis. 
It is easy for the Lie algebras s[r or Sj:J2r, more involved for the other classical 
Lie algebras; to my knowledge it does not even exist for some exceptional 
Lie algebras. Hopefully a more conceptual proof would follow from a better 
definition of the product in R£(g) as mentioned above. 0 

From Proposition 1.6 it is not difficult to write down explicitely the 
characters of Rc(g): they correspond to those characters of R(g) which 
factor through 7r. I refer to [5] for the general case, which involves some 
Lie theory. Let me give the simplest possible example, namely the case 
9 = S[2(C). 

1.6. AN EXAMPLE: 9 = S[2(<C) 

In this section we take 9 = S[2(<C); we denote by SP the p-th symmetric 
product of the standard representation C2 of g. The SP's for p 2': 0 form all 
irreducible representations of g. The tensor product of two such represen-
tations is given by the Clebsch-Gordan rule 

for p 2': q . 
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The level of the representation SP is p (with the notation of §5, the 
highest weight is pc:t), so Re(g) is the free Z-module with basis {So, ... , Se}. 
Working out Proposition 1.5 in that case gives the following rule for the 
product: 

SP 0 sq = SP 0 sq if p + q :::; £ 

SP 0 sq = s2e-p-q E9 S2£-p-q-2 E9 ... E9 sp-q if p q , p + q £ . 

From this it is an easy exercise to check that the fusion ring Re(g) is the 
quotient ofR(g) by the ideal generated by [S£+I]. 

A convenient way of describing the characters of R(g) as follows. Let 
a E C; for any representation V of g, put Xa(V) = Tr eav , where av is 

the endomorphism of V defined by the element (i; of g. Then Xa 

is a character of R(g), and all characters are obtained in this way. The 
character Xa factors through Re(g) if and only if it vanishes on [S£+I]; an 
easy computation gives 

(SP) _ sin(p + 1 )a 
Xa - . , 

sma 

so Xa(S£+I) = 0 iff a is of the form £ 2 for 1 :::; k :::; £ + 1. In other words, 

the characters of the fusion ring Re(g) are the characters [V] 1---+ Xa(V) for 
k7r 

a= £+2' (1:::;k:::;£+1). 
Recall that the formula for dim Vc(0) involves the numbers 

e 
X(w) = L X(SP)2 

p=o 

k7r 
(the involution * is trivial for .6(2). Let a = £ + 2; a simple computation 

gives 
e £ 

Lsin2((p+ 1)a) ="2 + 1 , 
p=o 

hence Xa(w) = + 1) / sin2 a. Applying Proposition 1.3 we obtain: 

Proposition 1. 7 Let C be a Riemann surface of genus g. For the RCFT 
associated to 5[2(C) at level £, one has 

( £ )9-1 £+1 1 
dim Vc(0) = "2 + 1 L. k1f 2g-2 . 0 

k=1 (sm £+2) 
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Part 2: Algebraic Geometry 

2.1. CLASSICAL THETA FUNCTIONS: A REMINDER 

This section contains a brief overview, meant for non-specialists, of the 
classical theory of theta functions. There are plenty of places that the reader 
wishing to learn more may consult, like [7] or [2]; a short and accessible 
introduction can be found in [9]. 

Let me start with some generalities on line bundles and their global 
sections. Let X be a compact complex manifold and L a (holomorphic) 
line bundle on X. We denote by HO(X, L) the space of global holomorphic 
sections of L; it is finite-dimensional. Let s E HO(M, L). Locally over X 
we can write s = fT where T is a nowhere vanishing section and f is 
a holomorphic function; we see in this way that s vanishes along finitely 
many irreducible hypersurfaces Di , possibly with some multiplicities mi: 
we write div(s) = L:i miDi· 

So we have associated to the pair (L, s) a divisor, that is a (finite) formal 
combination of irreducible hypersurfaces with integer coefficients; moreover 
this divisor is effective, which means that the coefficients are non-negative. 
Conversely, given an effective divisor D, there exists a unique line bundle 
O(D) on X and a section s E HO(X,O(D)), unique up to a scalar, such 
that div(s) = D. We say that O(D) is the line bundle associated to D. 

Let us denote by Div(X) the group of divisors on X, and by Pic(X) the 
set of isomorphism classes of line bundles on X. The tensor product oper-
ation defines a group structure on Pic(X), which is called the Picard group 
of X. The map D I--t O(D) extends by linearity to a group homomorphism 

Div(X) -> Pic(X) 

which is surjective if the manifold X is projective. 
Let me now specialize to the case of a compact Riemann surface C. 

Then a divisor is simply a finite sum D = L:i miPi, with Pi E C; we put 
deg(D) := L:i mi· It is easy to see that the homomorphism 

deg : Div( C) -7 Z 

factors through Pic(C), so we have an exact sequence 

0-7 JC -> Pic(C) Z -7 0 . 

The group JC which parametrizes line bundles of degree 0 on C has a 
natural holomorphic structure; it is called the Jacobian of C, and is certainly 
the most fundamental object associated to the Riemann surface C. It is a 
complex torus, i.e. the quotient of a complex vector space V by a lattice r: 
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in our case we take for V the dual 0* of the space of holomorphic I-forms 
on C, and for r the homology H 1 (C, Z), embedded in 0* by associating to a 
looP'Y the linear form f-y on 0 (the fact that this complex torus parametrizes 
in a natural way the line bundles of degree 0 on C is a translation in modern 
language of the classical Abel-Jacobi theorem). 

The complex torus JC = V /r has the extra property of having a prin-
cipal polarization, that is a hermitian form H on V whose imaginary part 
takes integral values on r and defines a unimodular alternate form on r 
(here H will be the dual form of the hermitian form (a, fJ) f--7 fe a /\ fJ on 
0; the integrality property follows from Poincare duality). 

What makes a polarization interesting is that it allows to define beau-
tiful functions on V. By the maximum principle we cannot expect any 
interesting holomorphic function on V periodic with respect to r, but we 
can look for quasi-periodic functions, namely those which satisfy 

O(z + 'Y) = e-y(z) O(z) for all z E V, 'Y E r (7) 

for a certain system of nowhere vanishing functions (e-yhEr on V. In order 
for (7) to have solutions this system must necessarily satisfy 

(8) 

For a general lattice reV (8) will have only uninteresting solutions. 
However, if we have a (principal) polarization H, we can take 

(9) 

where k is a positive integer, and c: : r -t C* is any map satisfying 

(the particular choice of c: is essentially irrelevant, since one passes from 
one choice to another by a translation z f--7 z + a). Then (7) has solutions, 
which are called theta functions of order k; they form (for a fixed c:) a vector 
space of dimension kg. These functions have a simple explicit description as 
convergent series, at the same time they encode a large part of the geometry 
of the torus. 

The theta functions can be naturally interpreted as sections of a line 
bundle on V /r. To explain this, notice first that any system of functions 
(e-y) satisfying (8) defines a natural action of r onto V X C by 

'Y. (z, t) = (z + 'Y, e-y(z)t) . 

This action is free, linear in the fibres, and it makes the projection 
7r : V X C --+ V equivariant. Let us denote by Le the quotient variety 
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(V x C)jr. We have a commutative diagram 

VxC 

V Vjr 

and Ce is (via 7f) a line bundle over V jr. The sections of this line bundle 
correspond in a one-to-one way to the sections of 7r which are r-equivariant; 
but the condition for a section Z I-> (z, 8(z)) to be equivariant is exactly (7). 
In other words, solutions of (7) with respect to the system (e'Y) correspond 
in a natural one-to-one way to holomorphic sections of Ce . In particular, 
let us consider the system (e'Y) given by (9) with k = 1, for a fixed C; let 
us denote simply by C the corresponding line bundle Ce . One checks at 
once that the system corresponds to the line bundle Ck ; hence theta 
functions of order k correspond in a natural way to holomorphic sections 
of Ck . 

The case k = 1 is particularly important. In that case the line bundle 
C has only one non-zero section (up to a scalar), whose divisor is therefore 
canonically defined up to translation: it is called the theta divisor of the 
torus. 

All I have said so far applies to any complex torus with a principal 
polarization. A special feature in the case of the Jacobian of a curve C 
is a simple geometric interpretation of the theta divisor. Recall that JC 
parametrizes line bundles of degree 0 on C. Fix a line bundle M of degree 
9 - 1 on C and put 

8M:= {L E JC I HO(C,L@M) =f. O}. 

Then 8M is a theta divisor on JC (Riemann's theorem). So in this case we 
can define the theta divisor either as a geometric locus, or by an equation 
given by an explicit power series. This interplay between the analysis and 
the geometry of theta functions gives rise to one of the most beautiful 
chapters of Algebraic Geometry; I have to refer e.g. to [2J or [7J for an 
introductory account. 

2.2. NON-ABELIAN THETA FUNCTIONS 

Theta functions play such a prominent role in the theory of Riemann sur-
faces that it is natural to look for generalizations. In the influential pa-
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per [20], A. Weil observes that topologically JC is just the space of 1-
dimensional unitary representations of 7rl (C), i.e. Hom( 7rl (C), §l); he pro-
poses as a natural generalization the space of equivalence classes of r-
dimensional unitary representations of 7rl (C). It is only much later than 
a celebrated theorem of Narasimhan and Seshadri provided this space with 
a natural complex structure (depending on the complex structure of C): 
this analytic space Uc(r) is a projective variety, which parametrizes holo-
morphic vector bundles of rank r and degree 0 on C (the degree of a rank 
r vector bundle E is defined as the degree of the line bundle ArE). Actu-
ally a new phenomenon occurs in rank > 1: in order to make the above 
assertion correct, and also to obtain a reasonable moduli space, one must 
exclude some degenerate vector bundles, and consider only those which are 
semi-stable, i.e. which do not contain subbundles of degree> o. 

The variety Uc(r) is, up to a finite etale covering, a product of JC with 
the subvariety SUc(r) parametrizing semi-stable vector bundles of rank r 
with trivial determinant; since we know pretty well the Jacobian part, it 
is more convenient to study SUc(r), which is somehow, together with JC, 
the primitive building block. 

So we now have projective varieties SUc(r) which by all means consti-
tute natural non-abelian generalizations of the Jacobian. What should be 
the generalization of theta functions, however, is not so clear: we do not 
know what should replace the presentation of JC as vir. The varieties 
SUc(r) are simply connected, so we cannot define quasi-periodic functions. 
But we can still look at line bundles on SUc(r) and their global sections. 
The classification of line bundles on SUe( r) turns out to be very simple. 
Note that the geometric definition of the theta divisor extends in a natural 
way to the higher rank case: for any line bundle M E Jg-1(X), define 

8M = {E E SUx(r) I HO(X, E ® M) =J O} . 

This turns out to be a divisor on SUx(r). The associated line bundle £ := 
O( 8 M ), called the determinant bundle, does not depend on the choice of 
M. It is in fact canonical, because of the following result [10]: 

Proposition 2.1 Any line bundle on SUc(r) is a power of £. D 

By analogy with the rank one case, the global sections of the line bundles 
£k are sometimes called generalized (or non-abelian) theta functions. The 
link between these spaces and Conformal Field Theory is provided by the 
following result ([11, 6]): 

Theorem 2.2 The space HO(SUe(r), £c) of Eth-order generalized theta func-
tions is naturally isomorphic to the space Vc(0) associated to the Lie alge-
bra s[r(C) and the level E. 
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Recall the definition of Vc(0): we choose a point q E C and let Ac be 
the algebra of regular functions on C \ {q}; then VC(0) is the subspace of 
the dual h; annihilated by the Lie algebra sqAc). 

Let me give a very sketchy idea of the proof in [6]. 
1) The key point is that a vector bundle with trivial determinant is 

algebraically trivial over C \ {q} (Hint: show that such a bundle has always 
a nowhere vanishing section, and use induction on the rank). We consider 
triples (E, p, a) where E is a vector bundle on C, p a trivialization of 
E over C \ {q} and a a trivialization of E in an open disk D centered 
at q. Over D \ {q} these two trivializations differ by a holomorphic map 
D \ {q} ---. G Lr (C) which is meromorphic at q, that is given by a Laurent 
series 'Y(z) E GLr(c«(z))). Conversely given such a matrix 'Y(z) one can 
use it to glue together the trivial bundles on C \ {q} and D and recover 
the triple (E, p, a). Since we want 'Y(z) in SLr(C((z))) we impose moreover 
that A r p and Ar a coincide over D \ {q}. This gives a bijection of the set of 
triples (E, p, a) (up to isomorphism) onto SLr(C((z))). 

2) To get rid of the the trivializations, we have to mod out by the 
automorphism group of the trivial bundle over D and C \ {q}. We get the 
following diagram: 

{(E, p, a)} SLr(C((z))) 

1 1 
{(E, p)} Q := SLr(c«(z)))/ SLr(C[[Z]]) 

1 In 
{E} SLr(Ac)\ SLr(C((z)))/ SLr(C[[z]]) . 

So the set of isomorphism classes of vector bundles on C with trivial 
determinant appears in one-to-one correspondence with the set of dou-
ble classes SLr(Ac)\ SLr(c«(z)))/ SLr(C[[z]]). With some technical work 
one shows that this bijection is actually an isomorphism between algebro-
geometric objects. The appropriate objects here are slightly more compli-
cated than algebraic varieties: the quotient Q = SLr(c«(z)))/ SLr(C[[z]]) 
is an ind-variety, i.e. the (infinite-dimensional) direct limit of an increas-
ing sequence of projective varieties; the double coset space SLr(Ac)\Q is 
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isomorphic to the algebraic stack of rank r vector bundles with trivial de-
terminant. For simplicity I will ignore these technical difficulties and just 
pretend that I have a quotient map of algebraic varieties n : Q --- SUe( r). 
We want to describe the pull back n* C of our determinant line bundle to 
Q. 

3) On a homogeneous space Q = G/ H, one associates to any character 
X : H ---+ C* a line bundle Lx: it is the quotient of the trivial bundle G x <C on 
G by the action of H defined by h·(g, >.) = (gh, X(h)>.). We apply this to the 
homogeneous space Q = SLr(<C((z)))/ SLr(<C[[z]]). The line bundle n* C does 
not admit an action of SLr(<C((z))), but of a group SLr(<C((z))) which is a 
central <C* -extension of SLr (<C( (z))). This extension splits over the subgroup 
SLr(<C[[z]]), so that Q is isomorphic to SLr(<C((z)))/(<C* x SLr(<C[[z]])). Then 
n* C is the line bundle Lx, where X : <C* x SLr(<C[[z]]) --- <C* is the first 
projection. 

4) A theorem of Kumar and Mathieu provides an isomorphism 
HO ( Q, 'He. It follows that HO (SUe( r), CR.) can be identified with 
the subspace of 'He invariant under SLr(Ac). This turns out to coincide 
with the subspace of 'He invariant under the Lie algebra str(Ac), which is 
by definition Ve(0). 0 

The theorem can be extended to an arbitrary simple Lie algebra g; the 
space SUc(r) must be replaced by the moduli space of principal G-bundles 
on C, where G is the simply-connected complex Lie group with Lie algebra 
9 (see [11]). More generally, there is an analogous interpretation for the 
spaces Ve(p, X), which has been worked out by C. Pauly (to appear); it 
involves the moduli spaces of parabolic bundles on the curve C. 

2.3. A FEW EXAMPLES 

The main application of Theorem 2.2 is to give an explicit formula for the 
dimension of HO(SUe(r),cR.). In this final section I would like to explain 
how this formula may be used in algebraic geometry. I will restrict myself 
to rank 2 vector bundles, partly for simplicity and partly because we know 
much more in this case. 

Proposition 1.7 gives us a formula for hO(Cl ) := dimHO(SUe(2),Ce). 
The first values are: 

hO(C) = 2g , 

hO(C2 ) = 2g- 1 (2g + 1), 
hO(£3) = 2((5 + V5)g-l + (5 - V5)g-l) ... 
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The first two of these formulas have nice geometric interpretations. Ob-
serve first that there is a natural map i : JC --t SUc(2) which associates 
to L E J C the vector bundle L e L -1. It is easy to check that the pull back 
i* C of the determinant bundle is 0(28). 

Proposition 2.3 ([3]) The pull back map 

is an isomorphism. 

This means that theta functions of order 2 extend (uniquely) to the 
moduli space SUc(2). From this it is easy for instance to give an explicit 
basis for the space HO(SUc(2) , C). 

The Proposition is an easy consequence of the formula hO(C) = 2g - the 
main part of [3] is actually devoted to an ad hoc proof of the formula in 
that particular case. 

The next number, 2g- 1(2g + I), is well-known from algebraic geometers; 
it is the number of even theta-characteristics on C, i.e. of line bundles I{, 

such that 1{,2 is isomorphic to the canonical bundle Kc and dimHO(C, I{,) is 
even. As a matter of fact, we can associate to each even theta-characteristic 
I{, the subset Dr;, C SUc(2) consisting of vector bundles E such that there 
exists a non-scalar map E ---t E @ I{,. It turns out that Dr;, is the divisor of a 
section dr;, of £2, and that the sections dr;, form a basis of HO(SUc(2) , £2) 
[4]. The proof uses in a decisive way the formula for hO(C2 ). 

I should finally mention that in the rank 2 case there are various proofs 
of the formula using more classical algebraic geometry - the most illu-
minating probably appears in [17]. So far none of these proofs has been 
extended to the higher rank case. 

Acknowledgments 

I would like to thank the organizers of the Conference for providing such a 
warm and stimulating atmosphere during the Conference - despite all the 
material difficulties they had to face. 

References 

1. Atiyah, M.: The Geometry and Physics of Knots, Cambridge University Press, Cam-
bridge 1990. 

2. Arbarello, E., Cornalba, M., Griffiths, P., and Harris, J.: Geometry of Algebraic 
Curves, I, Springer-Verlag, Berlin 1985. 

3. Beauville, A.: Fibres de rang 2 sur les courbes, fibre determinant et fonctions theta, 
Bull. Soc. math. France 116 (1988) 431-448. 

4. __ , Fibres de rang 2 sur les courbes, fibre determinant et fonctions theta, II, 
Bull. Soc. math. France 119 (1991) 259-291. 



166 ARNAUD BEAUVILLE 

5. ___ , Conformal blocks, Fusion rings and the Verlinde formula, Proc. of the Con-
ference "Hirzebruch 65", to appear. 

6. Beauville, A. and Laszlo, Y.: Conformal blocks and generalized theta functions, 
Commun. Math. Phys. 164 (1994) 385-419. 

7. Birkenhake, Ch. and Lange, H.: Complex Abelian Varieties, Springer-Verlag, Berlin, 
1992. 

8. Belavin, A., Polyakov, A., and Zamolodchikov, A.: Infinite conformal symmetry in 
two-dimensional Quantum Field Theory, Nucl. Phys. B 241 (1984) 333-380. 

9. Cornalba, M.: Complex tori and Jacobians, Complex Analysis and its applications, 
vol. II (1976) 39-100, Intern. Atomic Energy, Vienna. 

10. Drezet, J.-M. and Narasimhan, M.S.: Groupe de Picard des varietes de modules de 
fibres semi-stables sur les courbes algebriques, Invent. math. 97 (1989) 53-94. 

11. Faltings, G.: A proof for the Verlinde formula, J. Algebraic Geometry 3, 347-374 
(1994). 

12. Friedan, D. and Shenker, S.: The analytic Geometry of two-dimensional Conformal 
Field Theory, Nucl. Phys. B 281 (1987) 509-545. 

13. Kac, V.: Infinite dimensional Lie algebras (3rd edition). Cambridge University Press, 
Cambridge, 1990. 

14. Moore, G. and Seiberg, N.: Classical and Quantum Conformal Field Theory, Com-
mun. Math. Phys. 123 (1989) 177-254. 

15. ___ , Polynomial Equations for Rational Conformal Field Theories, Phys. Let. B 
212 (1988) 451-460. 

16. Segal, G.: Two dimensional Conformal Field Theory and modular functors, Proc. 
Intern. Congo Math. Phys., Swansea, A. Hilger (1989) 22-37. 

17. Thaddeus, M.: Stable pairs, linear systems and the Verlinde formula, Invent. math. 
117 (1994) 317-353. 

18. Tsuchiya, A., Ueno, K., and Yamada, Y.: Conformal field theory on universal family 
of stable curves with gauge symmetries, Adv. Studies in Pure Math. 19 (1989) 459-
566. 

19. Verlinde, E.: Fusion rules and modular transformations in 2d conformal field theory, 
Nuclear Physics B 300 (1988) 360-376. 

20. Weil, A.: Generalisation des fonctions abeliennes, J. Math. Pures et Appl. 17 (9-eme 
ser.) (1938) 47-87. 


