On the Second Lower Quotient of the Fundamental Group

Arnaud Beauville

Dedicated to Klaus Hulek on his 60th birthday

Abstract Let *X* be a topological space, $G = \pi_1(X)$ and D = (G, G). We express the second quotient D/(D, G) of the lower central series of *G* in terms of the homology and cohomology of *X*. As an example, we recover the isomorphism $D/(D, G) \cong \mathbb{Z}/2$ (due to Collino) when *X* is the Fano surface parametrizing lines in a cubic threefold.

1 Introduction

Let X be a connected topological space. The group $G := \pi_1(X)$ admits a lower central series

$$G \supseteq D := (G, G) \supseteq (D, G) \supseteq \dots$$

The first quotient G/D is the homology group $H_1(X, \mathbb{Z})$. We consider in this note the second quotient D/(D, G). In particular when $H_1(X, \mathbb{Z})$ is torsion free, we obtain a description of D/(D, G) in terms of the homology and cohomology of X (see Corollary 2 below).

As an example, we recover in the last section the isomorphism $D/(D,G) \cong \mathbb{Z}/2$ (due to Collino) for the Fano surface parametrizing the lines contained in a cubic threefold.

A. Beauville (⊠)

Laboratoire J.-A. Dieudonné, UMR 7351 du CNRS, Université de Nice Sophia Antipolis, Parc Valrose, F-06108 Nice cedex 2, France e-mail: arnaud.beauville@unice.fr

A. Frühbis-Krüger et al. (eds.), *Algebraic and Complex Geometry*, Springer Proceedings in Mathematics & Statistics 71, DOI 10.1007/978-3-319-05404-9_2,

[©] Springer International Publishing Switzerland 2014

2 The Main Result

Proposition 1. Let X be a connected space homotopic to a CW-complex, with $H_1(X, \mathbb{Z})$ finitely generated. Let $G = \pi_1(X)$, D = (G, G) its derived subgroup, \tilde{D} the subgroup of elements of G which are torsion in G/D. The group $D/(\tilde{D}, G)$ is canonically isomorphic to the cokernel of the map

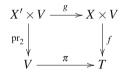
 $\mu: H_2(X,\mathbb{Z}) \to \operatorname{Alt}^2(H^1(X,\mathbb{Z})) \quad \text{given by } \mu(\sigma)(\alpha,\beta) = \sigma \frown (\alpha \land \beta) ,$

where $\operatorname{Alt}^2(H^1(X,\mathbb{Z}))$ is the group of skew-symmetric integral bilinear forms on $H^1(X,\mathbb{Z})$.

Proof. Let *H* be the quotient of $H_1(X, \mathbb{Z})$ by its torsion subgroup; we put $V := H \otimes_{\mathbb{Z}} \mathbb{R}$ and T := V/H. The quotient map $\pi : V \to T$ is the universal covering of the real torus *T*.

Consider the surjective homomorphism $\alpha : \pi_1(X) \to H$. Since *T* is a *K*(*H*, 1), there is a continuous map $a : X \to T$, well defined up to homotopy, inducing α on the fundamental groups. Let $\rho : X' \to X$ be the pull back by *a* of the étale covering $\pi : V \to T$, so that $X' := X \times_T V$ and ρ is the covering associated to the homomorphism α .

Our key ingredient will be the map $f : X \times V \to T$ defined by $f(x, v) = a(x) - \pi(v)$. It is a locally trivial fibration, with fibers isomorphic to X'. Indeed the diagram



where g((x, v), w) = (x, v - w), is cartesian.

It follows from this diagram that the monodromy action of $\pi_1(T) = H$ on $H_1(X', \mathbb{Z})$ is induced by the action of H on X'; it is deduced from the action of $\pi_1(X)$ on $\pi_1(X')$ by conjugation in the exact sequence

$$1 \to \pi_1(X') \xrightarrow{\rho_*} \pi_1(X) \to H \to 1.$$
 (1)

The homology spectral sequence of the fibration f (see for instance [5]) gives rise in low degree to a five terms exact sequence

$$H_2(X,\mathbb{Z}) \xrightarrow{a_*} H_2(T,\mathbb{Z}) \longrightarrow H_1(X',\mathbb{Z})_H \xrightarrow{\rho_*} H_1(X,\mathbb{Z}) \longrightarrow H_1(T,\mathbb{Z}) \longrightarrow 0,$$
(2)

where $H_1(X', \mathbb{Z})_H$ denote the coinvariants of $H_1(X', \mathbb{Z})$ under the action of H.

The exact sequence (1) identifies $\pi_1(X')$ with \tilde{D} , hence $H_1(X', \mathbb{Z})$ with $\tilde{D}/(\tilde{D}, \tilde{D})$, the action of H being deduced from the action of G by conjugation. The group of coinvariants is the largest quotient of this group on which G acts trivially, that is, the quotient $\tilde{D}/(\tilde{D}, G)$.

The exact sequence (2) gives an isomorphism Ker $\rho_* \xrightarrow{\sim} \operatorname{Coker} a_*$. The map $\rho_* : H_1(X', \mathbb{Z})_H \to H_1(X, \mathbb{Z})$ is identified with the natural map $\tilde{D}/(\tilde{D}, G) \to G/D$ deduced from the inclusions $\tilde{D} \subset G$ and $(\tilde{D}, G) \subset D$. Therefore its kernel is $D/(\tilde{D}, G)$. On the other hand since T is a torus we have canonical isomorphisms

 $H_2(T,\mathbb{Z}) \xrightarrow{\sim} \operatorname{Hom}(H^2(T,\mathbb{Z}),\mathbb{Z}) \xrightarrow{\sim} \operatorname{Alt}^2(H^1(T,\mathbb{Z})) \xrightarrow{\sim} \operatorname{Alt}^2(H^1(X,\mathbb{Z}))$,

through which a_* corresponds to μ , hence the Proposition.

Corollary 1. 1. There is a canonical surjective map $D/(D,G) \rightarrow \text{Coker } \mu$ with *finite kernel.*

2. There are canonical exact sequences

$$H_2(X, \mathbb{Q}) \xrightarrow{\mu_{\mathbb{Q}}} \operatorname{Alt}^2(H^1(X, \mathbb{Q})) \longrightarrow D/(D, G) \otimes \mathbb{Q} \to 0$$
$$0 \to \operatorname{Hom}(D/(D, G), \mathbb{Q}) \longrightarrow \wedge^2 H^1(X, \mathbb{Q}) \xrightarrow{c_{\mathbb{Q}}} H^2(X, \mathbb{Q}),$$

where $c_{\mathbb{O}}$ is the cup-product map.

Proof. (2) follows from (1), and from the fact that the transpose of $\mu_{\mathbb{Q}}$ is $c_{\mathbb{Q}}$. Therefore in view of the Proposition, it suffices to prove that the kernel of the natural map $D/(D,G) \to D/(\tilde{D},G)$, that is, $(\tilde{D},G)/(D,G)$, is finite. Consider the surjective homomorphism

$$G/D \otimes G/D \to D/(D,G)$$

deduced from $(x, y) \mapsto xyx^{-1}y^{-1}$. It maps $\tilde{D}/D \otimes G/D$ onto $(\tilde{D}, G)/(D, G)$; since \tilde{D}/D is finite and G/D finitely generated, the result follows.

Corollary 2. Assume that $H_1(X, \mathbb{Z})$ is torsion free.

- 1. The second quotient D/(D,G) of the lower central series of G is canonically isomorphic to Coker μ .
- 2. For every ring R the group Hom(D/(D, G), R) is canonically isomorphic to the kernel of the cup-product map $c_R : \wedge^2 H^1(X, R) \to H^2(X, R)$.

Proof. We have $\tilde{D} = D$ in that case, so (1) follows immediately from the Proposition. Since $H_1(X, \mathbb{Z})$ is torsion free, the universal coefficient theorem provides an isomorphism $H^2(X, R) \xrightarrow{\sim} \text{Hom}(H_2(X, \mathbb{Z}), R)$, hence applying Hom(-, R) to the exact sequence

$$H_2(X,\mathbb{Z}) \to \operatorname{Alt}^2(H^1(X,\mathbb{Z})) \to D/(D,G) \to 0$$

gives (2).

Remark 1. The Proposition and its Corollaries hold (with the same proofs) under weaker assumptions on X, for instance for a connected space X which is paracompact, admits a universal cover and is such that $H_1(X, \mathbb{Z})$ is finitely generated. We leave the details to the reader.

Remark 2. For compact Kähler manifolds, the isomorphism $\text{Hom}(D/(D, G), \mathbb{Q}) \cong$ Ker $c_{\mathbb{Q}}$ (Corollary 1) is usually deduced from Sullivan's theory of minimal models (see [1], ch.3); it can be used to prove that certain manifolds, for instance Lagrangian submanifolds of an abelian variety, have a non-abelian fundamental group.

3 Example: The Fano Surface

Let $V \subset \mathbb{P}^4$ be a smooth cubic threefold. The Fano surface F of V parametrizes the lines contained in V. It is a smooth connected surface, which has been thoroughly studied in [2]. Its Albanese variety A is canonically isomorphic to the intermediate Jacobian JV of V, and the Albanese map $a : F \to A$ is an embedding. Recall that A = JV carries a principal polarization $\theta \in H^2(A, \mathbb{Z})$; for each integer k the class $\frac{\theta^k}{k!}$ belongs to $H^{2k}(A, \mathbb{Z})$. The class of F in $H^6(A, \mathbb{Z})$ is $\frac{\theta^3}{3!}$ ([2], Proposition 13.1).

Proposition 2. The maps $a^* : H^2(A, \mathbb{Z}) \to H^2(F, \mathbb{Z})$ and $a_* : H_2(F, \mathbb{Z}) \to H_2(A, \mathbb{Z})$ are injective and their images have index 2.

Proof. We first recall that if $u : M \to N$ is a homomorphism between two free \mathbb{Z} -modules of the same rank, the integer $|\det u|$ is well-defined: it is equal to the absolute value of the determinant of the matrix of u for any choice of bases for M and N. If it is nonzero, it is equal to the index of Im u in N.

Poincaré duality identifies a_* with the Gysin map $a_* : H^2(F, \mathbb{Z}) \to H^8(A, \mathbb{Z})$, and also to the transpose of a^* . The composition

$$f: H^2(A, \mathbb{Z}) \xrightarrow{a^*} H^2(F, \mathbb{Z}) \xrightarrow{a_*} H^8(A, \mathbb{Z})$$

is the cup-product with the class $[F] = \frac{\theta^3}{3!}$. We have $|\det a^*| = |\det a_*| \neq 0$ ([2], 10.14), so it suffices to show that $|\det f| = 4$.

The principal polarization defines a unimodular skew-symmetric form on $H^1(A, \mathbb{Z})$; we choose a symplectic basis $(\varepsilon_i, \delta_j)$ of $H^1(A, \mathbb{Z})$. Then

$$\theta = \sum_{i} \varepsilon_{i} \wedge \delta_{i} \quad \text{and} \quad \frac{\theta^{3}}{3!} = \sum_{i < j < k} (\varepsilon_{i} \wedge \delta_{i}) \wedge (\varepsilon_{j} \wedge \delta_{j}) \wedge (\varepsilon_{k} \wedge \delta_{k})$$

If we identify by Poincaré duality $H^8(A, \mathbb{Z})$ with the dual of $H^2(A, \mathbb{Z})$, and $H^{10}(A, \mathbb{Z})$ with \mathbb{Z} , f is the homomorphism associated to the bilinear symmetric

form $b: (\alpha, \beta) \mapsto \alpha \land \beta \land \frac{\theta^3}{3!}$, hence $|\det f|$ is the absolute value of the discriminant of *b*. Let us write $H^2(A, \mathbb{Z}) = M \oplus N$, where *M* is spanned by the vectors $\varepsilon_i \land \varepsilon_j$, $\delta_i \land \delta_j$ and $\varepsilon_i \land \delta_j$ for $i \neq j$, and *N* by the vectors $\varepsilon_i \land \delta_i$. The decomposition is orthogonal with respect to *b*; the restriction of *b* to *M* is unimodular, because the dual basis of $(\varepsilon_i \land \varepsilon_j, \delta_i \land \delta_j, \varepsilon_i \land \delta_j)$ is $(-\delta_i \land \delta_j, -\varepsilon_i \land \varepsilon_j, -\varepsilon_j \land \delta_i)$. On *N* the matrix of *b* with respect to the basis $(\varepsilon_i \land \delta_i)$ is E - I, where *E* is the 5-by-5 matrix with all entries equal to 1. Since *E* has rank 1 we have $\land^k E = 0$ for $k \geq 2$, hence

$$\det(E - I) = -\det(I - E) = -I + \operatorname{Tr} E = 4;$$

hence $|\det f| = 4$.

Corollary 3. Set $G = \pi_1(F)$ and D = (G, G). The group D/(D, G) is cyclic of order 2.

Indeed $H_1(F, \mathbb{Z})$ is torsion free [3], hence the result follows from Corollary 2. \Box

Remark 3. The deeper topological study of [3] gives actually the stronger result that D is generated as a normal subgroup by an element σ of order 2 (see [3], and the correction in [4], Remark 4.1). Since every conjugate of σ is equivalent to σ modulo (D, G), this implies Corollary 3.

Remark 4. Choose a line $\ell \in F$, and let $C \subset F$ be the curve of lines incident to ℓ . Let $d : H^2(F, \mathbb{Z}) \to \mathbb{Z}/2$ be the homomorphism given by $d(\alpha) = (\alpha \cdot [C])$ (mod. 2). We claim that the image of $a^* : H^2(A, \mathbb{Z}) \to H^2(F, \mathbb{Z})$ is Ker d. Indeed we have $(C^2) = 5$ (the number of lines incident to two given skew lines on a cubic surface), hence d([C]) = 1, so that Ker d has index 2; thus it suffices to prove $d \circ a^* = 0$. For $\alpha \in H^2(A, \mathbb{Z})$, we have $d(a^*\alpha) = (a^*\alpha \cdot [C]) = (\alpha \cdot a_*[C]) \mod 2$; this is 0 because the class $a_*[C] \in H^8(A, \mathbb{Z})$ is equal to $2 \frac{\theta^4}{4!}$ ([2], Lemma 11.5), hence is divisible by 2.

We can identify a^* with the cup-product map c; thus we have an exact sequence

$$0 \to \wedge^2 H^1(F,\mathbb{Z}) \xrightarrow{c} H^2(F,\mathbb{Z}) \xrightarrow{d} \mathbb{Z}/2 \to 0 \quad \text{with } d(\alpha) = (\alpha \cdot [C]) \text{ (mod. 2)}.$$

References

- 1. J. Amorós, M. Burger, K. Corlette, D. Kotschick, D. Toledo, *Fundamental Groups of Compact Kähler Manifolds*. Mathematical Surveys and Monographs, vol. 44 (AMS, Providence, 1996)
- 2. H. Clemens, P. Griffiths, The intermediate Jacobian of the cubic threefold. Ann. Math. **95**(2), 281–356 (1972)
- 3. A. Collino, The fundamental group of the Fano surface I, II, in *Algebraic Threefolds (Varenna, 1981)*. Lecture Notes in Mathematics, vol. 947 (Springer, Berlin/New York, 1982), pp. 209–220
- 4. A. Collino, Remarks on the topology of the Fano surface. Preprint arXiv:1211.2621
- 5. S.-T. Hu, Homotopy Theory (Academic, New York/London, 1959)