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Abstract Let X be a topological space, G D !1.X/ and D D .G;G/. We express
the second quotient D=.D;G/ of the lower central series of G in terms of the
homology and cohomology of X . As an example, we recover the isomorphism
D=.D;G/ Š Z=2 (due to Collino) when X is the Fano surface parametrizing lines
in a cubic threefold.

1 Introduction

Let X be a connected topological space. The group G WD !1.X/ admits a lower
central series

G " D WD .G;G/ " .D;G/ " : : :

The first quotient G=D is the homology group H1.X;Z/. We consider in this note
the second quotient D=.D;G/. In particular when H1.X;Z/ is torsion free, we
obtain a description of D=.D;G/ in terms of the homology and cohomology of
X (see Corollary 2 below).

As an example, we recover in the last section the isomorphismD=.D;G/ Š Z=2
(due to Collino) for the Fano surface parametrizing the lines contained in a cubic
threefold.
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2 The Main Result

Proposition 1. Let X be a connected space homotopic to a CW-complex, with
H1.X;Z/ finitely generated. Let G D !1.X/,D D .G;G/ its derived subgroup, QD
the subgroup of elements of G which are torsion in G=D. The group D=. QD;G/ is
canonically isomorphic to the cokernel of the map

" W H2.X;Z/! Alt2.H1.X;Z// given by ".#/.˛; ˇ/ D # _ .˛ ^ ˇ/ ;

where Alt2.H1.X;Z// is the group of skew-symmetric integral bilinear forms on
H1.X;Z/.

Proof. Let H be the quotient of H1.X;Z/ by its torsion subgroup; we put V WD
H !Z R and T WD V=H . The quotient map ! W V ! T is the universal covering of
the real torus T .

Consider the surjective homomorphism ˛ W !1.X/! H . Since T is a K.H; 1/,
there is a continuous map a W X ! T , well defined up to homotopy, inducing ˛
on the fundamental groups. Let $ W X 0 ! X be the pull back by a of the étale
covering ! W V ! T , so that X 0 WD X #T V and $ is the covering associated to the
homomorphism ˛.

Our key ingredient will be the map f W X # V ! T defined by f .x; v/ D
a.x/$ !.v/. It is a locally trivial fibration, with fibers isomorphic to X 0. Indeed the
diagram

where g..x; v/;w/ D .x; v $ w/, is cartesian.
It follows from this diagram that the monodromy action of !1.T / D H on

H1.X
0;Z/ is induced by the action of H on X 0; it is deduced from the action of

!1.X/ on !1.X 0/ by conjugation in the exact sequence

1! !1.X
0/

$!$! !1.X/! H ! 1 : (1)

The homology spectral sequence of the fibration f (see for instance [5]) gives
rise in low degree to a five terms exact sequence

H2.X;Z/
a!$! H2.T;Z/ $! H1.X

0;Z/H
$!$! H1.X;Z/ $! H1.T;Z/ $! 0 ;

(2)

whereH1.X
0;Z/H denote the coinvariants of H1.X

0;Z/ under the action of H .
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The exact sequence (1) identifies !1.X
0/ with QD, hence H1.X

0;Z/ with
QD=. QD; QD/, the action of H being deduced from the action of G by conjugation.

The group of coinvariants is the largest quotient of this group on which G acts
trivially, that is, the quotient QD=. QD;G/.

The exact sequence (2) gives an isomorphism Ker $!
"$! Coker a!. The map

$! W H1.X
0;Z/H ! H1.X;Z/ is identified with the natural map QD=. QD;G/ !

G=D deduced from the inclusions QD % G and . QD;G/ % D. Therefore its kernel is
D=. QD;G/. On the other hand since T is a torus we have canonical isomorphisms

H2.T;Z/ "$! Hom.H2.T;Z/;Z/ "$! Alt2.H1.T;Z// "$! Alt2.H1.X;Z// ;

through which a! corresponds to ", hence the Proposition. ut
Corollary 1. 1. There is a canonical surjective map D=.D;G/ ! Coker" with

finite kernel.
2. There are canonical exact sequences

H2.X;Q/
"Q$! Alt2.H1.X;Q// $! D=.D;G/ ! Q! 0

0! Hom.D=.D;G/;Q/ $! ^2H1.X;Q/
cQ$! H2.X;Q/ ;

where cQ is the cup-product map.

Proof. (2) follows from (1), and from the fact that the transpose of "Q is cQ.
Therefore in view of the Proposition, it suffices to prove that the kernel of the
natural map D=.D;G/ ! D=. QD;G/, that is, . QD;G/=.D;G/, is finite. Consider
the surjective homomorphism

G=D !G=D ! D=.D;G/

deduced from .x; y/ 7! xyx#1y#1. It maps QD=D ! G=D onto . QD;G/=.D;G/;
since QD=D is finite and G=D finitely generated, the result follows. ut
Corollary 2. Assume thatH1.X;Z/ is torsion free.

1. The second quotient D=.D;G/ of the lower central series of G is canonically
isomorphic to Coker".

2. For every ringR the group Hom.D=.D;G/;R/ is canonically isomorphic to the
kernel of the cup-product map cR W ^2H1.X;R/! H2.X;R/.

Proof. We have QD D D in that case, so (1) follows immediately from the Propo-
sition. Since H1.X;Z/ is torsion free, the universal coefficient theorem provides
an isomorphismH2.X;R/ "$! Hom.H2.X;Z/; R/, hence applying Hom.$; R/ to
the exact sequence

H2.X;Z/! Alt2.H1.X;Z//! D=.D;G/! 0

gives (2). ut
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Remark 1. The Proposition and its Corollaries hold (with the same proofs) under
weaker assumptions on X , for instance for a connected space X which is paracom-
pact, admits a universal cover and is such that H1.X;Z/ is finitely generated. We
leave the details to the reader.

Remark 2. For compact Kähler manifolds, the isomorphism Hom.D=.D;G/;Q/ Š
Ker cQ (Corollary 1) is usually deduced from Sullivan’s theory of minimal models
(see [1], ch. 3); it can be used to prove that certain manifolds, for instance
Lagrangian submanifolds of an abelian variety, have a non-abelian fundamental
group.

3 Example: The Fano Surface

Let V % P4 be a smooth cubic threefold. The Fano surface F of V parametrizes the
lines contained in V . It is a smooth connected surface, which has been thoroughly
studied in [2]. Its Albanese variety A is canonically isomorphic to the intermediate
Jacobian JV of V , and the Albanese map a W F ! A is an embedding. Recall that
A D JV carries a principal polarization % 2 H2.A;Z/; for each integer k the class
%k

kŠ
belongs toH2k.A;Z/. The class of F inH6.A;Z/ is

%3

3Š
([2], Proposition 13.1).

Proposition 2. The maps a! W H2.A;Z/ ! H2.F;Z/ and a! W H2.F;Z/ !
H2.A;Z/ are injective and their images have index 2.

Proof. We first recall that if u W M ! N is a homomorphism between two free
Z-modules of the same rank, the integer j det uj is well-defined: it is equal to the
absolute value of the determinant of the matrix of u for any choice of bases for M
and N . If it is nonzero, it is equal to the index of Im u in N .

Poincaré duality identifies a! with the Gysin map a! W H2.F;Z/ ! H8.A;Z/,
and also to the transpose of a!. The composition

f W H2.A;Z/ a!
$! H2.F;Z/ a!$! H8.A;Z/

is the cup-product with the class ŒF ' D %3

3Š
&We have j deta!j D j deta!j ¤ 0 ([2],

10.14), so it suffices to show that j detf j D 4.
The principal polarization defines a unimodular skew-symmetric form on

H1.A;Z/; we choose a symplectic basis ."i ; ıj / of H1.A;Z/. Then

% D
X

i

"i ^ ıi and
%3

3Š
D

X

i<j<k

."i ^ ıi / ^ ."j ^ ıj / ^ ."k ^ ık/ :

If we identify by Poincaré duality H8.A;Z/ with the dual of H2.A;Z/, and
H10.A;Z/ with Z, f is the homomorphism associated to the bilinear symmetric
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form b W .˛; ˇ/ 7! ˛^ˇ^ %
3

3Š
, hence j detf j is the absolute value of the discriminant

of b. Let us writeH2.A;Z/ D M "N , whereM is spanned by the vectors "i ^ "j ,
ıi ^ ıj and "i ^ ıj for i ¤ j , and N by the vectors "i ^ ıi . The decomposition is
orthogonal with respect to b; the restriction of b to M is unimodular, because the
dual basis of ."i ^ "j ; ıi ^ ıj ; "i ^ ıj / is .$ıi ^ ıj ;$"i ^ "j ;$"j ^ ıi /. On N the
matrix of b with respect to the basis ."i ^ ıi / is E$ I , whereE is the 5-by-5 matrix
with all entries equal to 1. Since E has rank 1 we have ^kE D 0 for k ' 2, hence

det.E $ I / D $ det.I $ E/ D $I C TrE D 4 I

hence j detf j D 4. ut
Corollary 3. Set G D !1.F / and D D .G;G/. The group D=.D;G/ is cyclic of
order 2.

IndeedH1.F;Z/ is torsion free [3], hence the result follows from Corollary 2. ut
Remark 3. The deeper topological study of [3] gives actually the stronger result that
D is generated as a normal subgroup by an element # of order 2 (see [3], and the
correction in [4], Remark 4.1). Since every conjugate of # is equivalent to # modulo
.D;G/, this implies Corollary 3.

Remark 4. Choose a line ` 2 F , and let C % F be the curve of lines incident to
`. Let d W H2.F;Z/ ! Z=2 be the homomorphism given by d.˛/ D .˛ & ŒC '/
.mod: 2/. We claim that the image of a! W H2.A;Z/! H2.F;Z/ is Kerd . Indeed
we have .C 2/ D 5 (the number of lines incident to two given skew lines on a
cubic surface), hence d.ŒC '/ D 1, so that Kerd has index 2; thus it suffices to prove
d ıa! D 0. For ˛ 2 H2.A;Z/, we have d.a!˛/ D .a!˛ &ŒC '/ D .˛ &a!ŒC '/mod: 2;

this is 0 because the class a!ŒC ' 2 H8.A;Z/ is equal to 2
%4

4Š
([2], Lemma 11.5),

hence is divisible by 2.
We can identify a! with the cup-product map c; thus we have an exact sequence

0! ^2H1.F;Z/ c$! H2.F;Z/ d$! Z=2! 0 with d.˛/ D .˛ & ŒC '/ .mod: 2/ :
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