

Journal de l'École polytechnique Mathématiques

Arnaud Beauville

Some surfaces with maximal Picard number

Tome i (2014), p. 101-116.

http://jep.cedram.org/item?id=JEP_2014__1_101_0

© Les auteurs, 2014. Certains droits réservés.

Cet article est mis à disposition selon les termes de la licence CREATIVE COMMONS ATTRIBUTION – PAS DE MODIFICATION 3.0 FRANCE. http://creativecommons.org/licenses/by-nd/3.0/fr/

L'accès aux articles de la revue « Journal de l'École polytechnique — Mathématiques » (http://jep.cedram.org/), implique l'accord avec les conditions générales d'utilisation (http://jep.cedram.org/legal/).

Publié avec le soutien du Centre National de la Recherche Scientifique

cedram

Article mis en ligne dans le cadre du Centre de diffusion des revues académiques de mathématiques http://www.cedram.org/ Tome 1, 2014, p. 101–116 DDI: 10.5802/jep.5

SOME SURFACES WITH MAXIMAL PICARD NUMBER

BY ARNAUD BEAUVILLE

ABSTRACT. — For a smooth complex projective variety, the rank ρ of the Néron-Severi group is bounded by the Hodge number $h^{1,1}$. Varieties with $\rho = h^{1,1}$ have interesting properties, but are rather sparse, particularly in dimension 2. We discuss in this note a number of examples, in particular those constructed from curves with special Jacobians.

Résumé (Quelques surfaces dont le nombre de Picard est maximal). — Le rang ρ du groupe de Néron-Severi d'une variété projective lisse complexe est borné par le nombre de Hodge $h^{1,1}$. Les variétés satisfaisant à $\rho=h^{1,1}$ ont des propriétés intéressantes, mais sont assez rares, particulièrement en dimension 2. Dans cette note nous analysons un certain nombre d'exemples, notamment ceux construits à partir de courbes à jacobienne spéciale.

Contents

1. Introduction	
2. Generalities	102
3. Abelian varieties	103
4. Products of curves	104
5. Quotients of self-products of curves	109
6. Other examples	
7. The complex torus associated to a ρ -maximal variety	112
8. Higher codimension cycles	114
References	115

1. Introduction

The *Picard number* of a smooth projective variety X is the rank ρ of the Néron-Severi group – that is, the group of classes of divisors in $H^2(X,\mathbb{Z})$. It is bounded by the Hodge number $h^{1,1} := \dim H^1(X,\Omega^1_X)$. We are interested here in varieties with maximal Picard number $\rho = h^{1,1}$. As we will see in §2, there are many examples of such varieties in dimension ≥ 3 , so we will focus on the case of surfaces.

Mathematical subject classification (2010). — 14J05, 14C22, 14C25.

 ${\tt Keywords.} - {\tt Algebraic surfaces, Picard group, Picard number, curve correspondences, Jacobians.}$

IO2 A. BEAUVILLE

Apart from the well understood case of K3 and abelian surfaces, the quantity of known examples is remarkably small. In [Per82] Persson showed that some families of double coverings of rational surfaces contain surfaces with maximal Picard number (see Section 6.4 below); some scattered examples have appeared since then. We will review them in this note and examine in particular when the product of two curves has maximal Picard number – this provides some examples, unfortunately also quite sparse.

2. Generalities

Let X be a smooth projective variety over \mathbb{C} . The Néron-Severi group $\mathrm{NS}(X)$ is the subgroup of algebraic classes in $H^2(X,\mathbb{Z})$; its rank ρ is the *Picard number* of X. The natural map $\mathrm{NS}(X)\otimes\mathbb{C}\to H^2(X,\mathbb{C})$ is injective and its image is contained in $H^{1,1}$, hence $\rho\leqslant h^{1,1}$.

Proposition 1. — The following conditions are equivalent:

- (i) $\rho = h^{1,1}$;
- (ii) The map $NS(X) \otimes \mathbb{C} \to H^{1,1}$ is bijective;
- (iii) The subspace $H^{1,1}$ of $H^2(X,\mathbb{C})$ is defined over \mathbb{Q} .
- (iv) The subspace $H^{2,0} \oplus H^{0,2}$ of $H^2(X,\mathbb{C})$ is defined over \mathbb{Q} .

Proof. — The equivalence of (iii) and (iv) follows from the fact that $H^{2,0} \oplus H^{0,2}$ is the orthogonal of $H^{1,1}$ for the scalar product on $H^2(X,\mathbb{C})$ associated to an ample class. The rest is clear.

When X satisfies these equivalent properties we will say for short that X is ρ -maximal (one finds the terms singular, exceptional or extremal in the literature).

Remarks

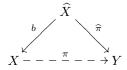
- (1) A variety with $H^{2,0}=0$ is ρ -maximal. We will implicitly exclude this trivial case in the discussion below.
- (2) Let X, Y be two ρ -maximal varieties, with $H^1(Y,\mathbb{C}) = 0$. Then $X \times Y$ is ρ -maximal. For instance $X \times \mathbb{P}^n$ is ρ -maximal, and $Y \times C$ is ρ -maximal for any curve C.
- (3) Let Y be a submanifold of X; if X is ρ -maximal and the restriction map $H^2(X,\mathbb{C}) \to H^2(Y,\mathbb{C})$ is bijective, Y is ρ -maximal. By the Lefschetz theorem, the latter condition is realized if Y is a complete intersection of smooth ample divisors in X, of dimension ≥ 3 . Together with Remark 2, this gives many examples of ρ -maximal varieties of dimension ≥ 3 ; thus we will focus on finding ρ -maximal surfaces.

Proposition 2. — Let $\pi: X \dashrightarrow Y$ be a rational map of smooth projective varieties.

- (a) If $\pi^*: H^{2,0}(Y) \to H^{2,0}(X)$ is injective (in particular if π is dominant), and X is ρ -maximal, so is Y.
 - (b) If $\pi^*: H^{2,0}(Y) \to H^{2,0}(X)$ is surjective and Y is ρ -maximal, so is X.

Note that since π is defined on an open subset $U \subset X$ with $\operatorname{codim}(X \setminus U) \geq 2$, the pull back map $\pi^* : H^2(Y,\mathbb{C}) \to H^2(U,\mathbb{C}) \cong H^2(X,\mathbb{C})$ is well defined.

Proof. — Hironaka's theorem provides a diagram



where $\widehat{\pi}$ is a morphism, and b is a composition of blowing-ups with smooth centers. Then $b^*: H^{2,0}(X) \to H^{2,0}(\widehat{X})$ is bijective, and \widehat{X} is ρ -maximal if and only if X is ρ -maximal; so replacing π by $\widehat{\pi}$ we may assume that π is a morphism.

(a) Let
$$V := (\pi^*)^{-1}(\mathrm{NS}(X) \otimes \mathbb{Q})$$
. We have

$$V \otimes_{\mathbb{O}} \mathbb{C} = (\pi^*)^{-1}(\mathrm{NS}(X) \otimes \mathbb{C}) = (\pi^*)^{-1}(H^{1,1}(X)) = H^{1,1}(Y)$$

(the last equality holds because π^* is injective on $H^{2,0}(Y)$ and $H^{0,2}(Y)$), hence Y is ρ -maximal.

(b) Let W be the \mathbb{Q} -vector subspace of $H^2(Y,\mathbb{Q})$ such that

$$W \otimes_{\mathbb{Q}} \mathbb{C} = H^{2,0}(Y) \oplus H^{0,2}(Y).$$

Then π^*W is a \mathbb{Q} -vector subspace of $H^2(X,\mathbb{Q})$, and

$$(\pi^*W)\otimes\mathbb{C}=\pi^*(W\otimes\mathbb{C})=\pi^*H^{2,0}(Y)\oplus\pi^*H^{0,2}(Y)=H^{2,0}(X)\oplus H^{0,2}(X),$$
 so X is ρ -maximal.

3. Abelian varieties

There is a nice characterization of ρ -maximal abelian varieties ([Kat75], [Lan75]):

Proposition 3. — Let A be an abelian variety of dimension g. We have

$$\operatorname{rk}_{\mathbb{Z}}\operatorname{End}(A) \leqslant 2q^2$$
.

The following conditions are equivalent:

- (i) A is ρ -maximal;
- (ii) $\operatorname{rk}_{\mathbb{Z}} \operatorname{End}(A) = 2g^2$;
- (iii) A is isogenous to E^g , where E is an elliptic curve with complex multiplication.
- (iv) A is isomorphic to a product of mutually isogenous elliptic curves with complex multiplication.

(The equivalence of (i), (ii) and (iii) follows easily from Lemma 1 below; the only delicate point is (iii) \Rightarrow (iv), which we will not use.)

Coming back to the surface case, suppose that our abelian variety A contains a surface S such that the restriction map $H^{2,0}(A) \to H^{2,0}(S)$ is surjective. Then S is ρ -maximal if A is ρ -maximal (Proposition 2(b)). Unfortunately this situation seems to be rather rare. We will discuss below (Proposition 6) the case of $\operatorname{Sym}^2 C$ for a curve C. Another interesting example is the Fano surface F_X parametrizing the lines

contained in a smooth cubic threefold X, embedded in the intermediate Jacobian JX [CG72]. There are some cases in which JX is known to be ρ -maximal:

Proposition 4

(a) For $\lambda \in \mathbb{C}$, $\lambda^3 \neq 1$, let X_{λ} (resp. E_{λ}) be the cubic in \mathbb{P}^4 (resp. \mathbb{P}^2) defined by $X_{\lambda}: X^3 + Y^3 + Z^3 - 3\lambda XYZ + T^3 + U^3 = 0$. $E_{\lambda}: X^3 + Y^3 + Z^3 - 3\lambda XYZ = 0$.

If E_{λ} is isogenous to E_0 , JX_{λ} and $F_{X_{\lambda}}$ are ρ -maximal. The set of $\lambda \in \mathbb{C}$ for which this happens is countably infinite.

(b) Let $X \subset \mathbb{P}^4$ be the Klein cubic threefold $\sum_{i \in \mathbb{Z}/5} X_i^2 X_{i+1} = 0$. Then JX and F_X are ρ -maximal.

Proof. — Part (a) is due to Roulleau [Rou11], who proves that JX_{λ} (for any λ) is isogenous to $E_0^3 \times E_{\lambda}^2$. Since the family $(E_{\lambda})_{\lambda \in \mathbb{C}}$ is not constant, there is a countably infinite set of $\lambda \in \mathbb{C}$ for which E_{λ} is isogenous to E_0 , hence JX_{λ} and therefore $F_{X_{\lambda}}$ are ρ -maximal.

Part (b) follows from a result of Adler [Adl81], who proves that JX is isogenous (actually isomorphic) to E^5 , where E is the elliptic curve whose endomorphism ring is the ring of integers of $\mathbb{Q}(\sqrt{-11})$ (see also [Rou09] for a precise description of the group NS(X)).

4. Products of curves

Proposition 5. — Let C, C' be two smooth projective curves, of genus g and g' respectively. The following conditions are equivalent:

- (i) The surface $C \times C'$ is ρ -maximal;
- (ii) There exists an elliptic curve E with complex multiplication such that JC is isogenous to E^g and JC' to $E^{g'}$.

Proof. — Let p, p' be the projections from $C \times C'$ to C and C'. We have

$$\begin{split} H^{1,1}(C\times C') &= p^*H^2(C,\mathbb{C}) \oplus p'^*H^2(C',\mathbb{C}) \oplus \left(p^*H^{1,0}(C) \otimes p'^*H^{0,1}(C')\right) \\ &\quad \oplus \left(p^*H^{0,1}(C) \otimes p'^*H^{1,0}(C')\right), \end{split}$$

hence $h^{1,1}(C \times C') = 2gg' + 2$. On the other hand we have

$$NS(C \times C') = p^* NS(C) \oplus p'^* NS(C') \oplus Hom(JC, JC')$$

([LB92], Th. 11.5.1), hence $C \times C'$ is ρ -maximal if and only if rk Hom(JC, JC') = 2gg'. Thus the Proposition follows from the following (well-known) lemma:

Lemma 1. — Let A and B be two abelian varieties, of dimension a and b respectively. The \mathbb{Z} -module $\operatorname{Hom}(A,B)$ has $\operatorname{rank} \leqslant 2ab$; equality holds if and only if there exists an elliptic curve E with complex multiplication such that A is isogenous to E^a and B to E^b .

Proof. — There exist simple abelian varieties A_1, \ldots, A_s , with distinct isogeny classes, and nonnegative integers $p_1, \ldots, p_s, q_1, \ldots, q_s$ such that A is isogenous to $A_1^{p_1} \times \cdots \times A_s^{p_s}$ and B to $A_1^{q_1} \times \cdots \times A_s^{q_s}$. Then

$$\operatorname{Hom}(A,B) \otimes_{\mathbb{Z}} \mathbb{Q} \cong M_{p_1,q_1}(K_1) \times \cdots \times M_{p_s,q_s}(K_s),$$

where K_i is the (possibly skew) field $\operatorname{End}(A_i) \otimes_{\mathbb{Z}} \mathbb{Q}$. Put $a_i := \dim A_i$. Since K_i acts on $H^1(A_i, \mathbb{Q})$ we have $\dim_{\mathbb{Q}} K_i \leq b_1(A_i) = 2a_i$, hence

$$\operatorname{rk}\operatorname{Hom}(A,B)\leqslant \sum_{i}2p_{i}q_{i}a_{i}\leqslant 2\Big(\sum p_{i}a_{i}\Big)\Big(\sum q_{i}a_{i}\Big)=2ab.$$

The last inequality is strict unless $s = a_1 = 1$, in which case the first one is strict unless $\dim_{\mathbb{Q}} K_1 = 2$. The lemma, and therefore the Proposition, follow.

The most interesting case occurs when C = C'. Then:

Proposition 6. — Let C be a smooth projective curve. The following conditions are equivalent:

- (i) The Jacobian JC is ρ -maximal;
- (ii) The surface $C \times C$ is ρ -maximal;
- (iii) The symmetric square Sym^2C is ρ -maximal.

Proof. — The equivalence of (i) and (ii) follows from Proposition 5. The Abel-Jacobi map $\operatorname{Sym}^2 C \to JC$ induces an isomorphism

$$H^{2,0}(JC) \cong \wedge^2 H^0(C, K_C) \xrightarrow{\sim} H^{2,0}(\operatorname{Sym}^2 C),$$

thus (i) and (iii) are equivalent by Proposition 2.

When the equivalent conditions of Proposition 6 hold, we will say that C has maximal correspondences (the group $\operatorname{End}(JC)$ is often called the group of divisorial correspondences of C).

By Proposition 3 the Jacobian JC is then isomorphic to a product of isogenous elliptic curves with complex multiplication. Though we know very few examples of such curves, we will give below some examples with g = 4 or 10.

For g=2 or 3, there is a countably infinite set of curves with maximal correspondences ([HN65], [Hof91]). The point is that any indecomposable principally polarized abelian variety of dimension 2 or 3 is a Jacobian; thus it suffices to construct an indecomposable principal polarization on E^g , where E is an elliptic curve with complex multiplication, and this is easily translated into a problem about hermitian forms of rank g on certain rings of quadratic integers.

This approach works only for g=2 or 3; moreover it does not give an explicit description of the curves. Another method is by using automorphism groups, with the help of the following easy lemma:

Lemma 2. — Let G be a finite group of automorphisms of C, and let $H^0(C, K_C) = \bigoplus_{i \in I} V_i$ be a decomposition of the G-module $H^0(C, K_C)$ into irreducible representations. Assume that there exists an elliptic curve E and for each $i \in I$, a nontrivial map $\pi_i : C \to E$ such that $\pi_i^* H^0(E, K_E) \subset V_i$. Then JC is isogenous to E^g .

In particular if $H^0(C, K_C)$ is an irreducible G-module and C admits a map onto an elliptic curve E, then JC is isogenous to E^g .

Proof. — Let η be a generator of $H^0(E, K_E)$. Let $i \in I$; the forms $g^*\pi_i^*\eta$ for $g \in G$ generate V_i , hence there exists a subset A_i of G such that the forms $g^*\pi_i^*\eta$ for $g \in A_i$ form a basis of V_i .

Put $\Pi_i = (g \circ \pi_i)_{g \in A_i} : C \to E^{A_i}$, and $\Pi = (\Pi_i)_{i \in I} : C \to E^g$. By construction $\Pi^* : H^0(E^g, \Omega^1_{E^g}) \to H^0(C, K_C)$ is an isomorphism. Therefore the map $JC \to E^g$ deduced from Π is an isogeny.

In the examples which follow, and in the rest of the paper, we put $\omega := e^{2\pi i/3}$.

Example 1. — We consider the family (C_t) of genus 2 curves given by $y^2 = x^6 + tx^3 + 1$, for $t \in \mathbb{C} \setminus \{\pm 2\}$. It admits the automorphisms

$$\tau:(x,y)\longmapsto\left(rac{1}{x},rac{y}{x^3}
ight) \quad ext{and} \quad \psi:(x,y)\longmapsto(\omega x,y).$$

The forms dx/y and xdx/y are eigenvectors for ψ and are exchanged (up to sign) by τ ; it follows that the action of the group generated by ψ and τ on $H^0(C_t, K_{C_t})$ is irreducible.

Let E_t be the elliptic curve defined by $v^2 = (u+2)(u^3-3u+t)$; the curve C_t maps onto E_t by

$$(x,y) \longmapsto \left(x + \frac{1}{x}, \frac{y(x+1)}{x^2}\right).$$

By Lemma 2 JC_t is isogenous to E_t^2 . Since the j-invariant of E_t is a non-constant function of t, there is a countably infinite set of $t \in \mathbb{C}$ for which E_t has complex multiplication, hence C_t has maximal correspondences.

Example 2. — Let C be the genus 2 curve $y^2 = x(x^4 - 1)$; its automorphism group is a central extension of \mathfrak{S}_4 by the hyperelliptic involution σ ([LB92], 11.7); its action on $H^0(C, K_C)$ is irreducible.

Let E be the elliptic curve $E: v^2 = u(u+1)(u-2\alpha)$, with $\alpha = 1 - \sqrt{2}$. The curve C maps to E by

$$(x,y)\longmapsto \Big(\frac{x^2+1}{x-1},\frac{y(x-\alpha)}{(x-1)^2}\Big).$$

The j-invariant of E is 8000, so E is the elliptic curve $\mathbb{C}/\mathbb{Z}[\sqrt{-2}]$ ([Sil94], Prop. 2.3.1).

Example 3 (The \mathfrak{S}_4 -invariant quartic curves). — Consider the standard representation of \mathfrak{S}_4 on \mathbb{C}^3 . It is convenient to view \mathfrak{S}_4 as the semi-direct product $(\mathbb{Z}/2)^2 \rtimes \mathfrak{S}_3$,

with \mathfrak{S}_3 (resp. $(\mathbb{Z}/2)^2$) acting on \mathbb{C}^3 by permutation (resp. change of sign) of the basis vectors. The quartic forms invariant under this representation form the pencil

$$(C_t)_{t\in\mathbb{P}^1}: x^4 + y^4 + z^4 + t(x^2y^2 + y^2z^2 + z^2x^2) = 0.$$

According to [DK93], this pencil was known to Ciani. It contains the Fermat quartic (t=0) and the Klein quartic $(t=\frac{3}{2}(1\pm i\sqrt{7}))$.

Let us take $t \notin \{2, -1, -2, \infty\}$; then C_t is smooth. The action of \mathfrak{S}_4 on $H^0(C_t, K)$, given by the standard representation, is irreducible. Moreover the involution $x \mapsto -x$ has 4 fixed points, hence the quotient curve E_t has genus 1. It is given by the degree 4 equation

$$u^{2} + tu(y^{2} + z^{2}) + y^{4} + z^{4} + ty^{2}z^{2} = 0$$

in the weighted projective space $\mathbb{P}(2,1,1)$. Thus E_t is a double covering of \mathbb{P}^1 branched along the zeroes of the polynomial $(t+2)(y^4+z^4)+2ty^2z^2$. The cross-ratio of these zeroes is -(t+1), so E_t is the elliptic curve $y^2=x(x-1)(x+t+1)$. By Lemma 2 JC_t is isogenous to E_t^3 . For a countably infinite set of t the curve E_t has complex multiplication, thus C_t has maximal correspondences. For t=0 we recover the well known fact that the Jacobian of the Fermat quartic curve is isogenous to $(\mathbb{C}/\mathbb{Z}[i])^3$.

Example 4. — Consider the genus 3 hyperelliptic curve $H\colon y^2=x(x^6+1)$. The space $H^0(H,K_H)$ is spanned by $dx/y,\,xdx/y,\,x^2dx/y$. This is a basis of eigenvectors for the automorphism $\tau:(x,y)\mapsto (\omega x,\omega^2 y)$. On the other hand the involution $\sigma:(x,y)\mapsto (1/x,-y/x^4)$ exchanges dx/y and x^2dx/y , hence the summands of the decomposition

$$H^0(H, K_H) = \left\langle \frac{dx}{y}, x^2 \frac{dx}{y} \right\rangle \oplus \left\langle x \frac{dx}{y} \right\rangle$$

are irreducible under the group \mathfrak{S}_3 generated by σ and τ .

Let E_i be the elliptic curve $v^2 = u^3 + u$, with endomorphism ring $\mathbb{Z}[i]$. Consider the maps f and g from H to E_i given by

$$f(x,y) = (x^2, xy)$$
 $g(x,y) = \left(\lambda^2 \left(x + \frac{1}{x}\right), \frac{\lambda^3 y}{x^2}\right)$ with $\lambda^{-4} = -3$.

We have

$$f^* \frac{du}{v} = \frac{2xdx}{v}$$
 and $g^* \frac{du}{v} = \lambda^{-1}(x^2 - 1)\frac{dx}{v}$.

Thus we can apply Lemma 2, and we find that JH is isogenous to E_i^3 .

Thus JH is isogenous to the Jacobian of the Fermat quartic F_4 (Example 3). In particular we see that the surface $H \times F_4$ is ρ -maximal.

We now arrive to our main example in higher genus. Recall that we put $\omega = e^{2\pi i/3}$.

Proposition 7. — The Fermat sextic curve C_6 : $X^6 + Y^6 + Z^6 = 0$ has maximal correspondences. Its Jacobian JC_6 is isogenous to E_{ω}^{10} , where E_{ω} is the elliptic curve $\mathbb{C}/\mathbb{Z}[\omega]$.

The first part can be deduced from the general recipe given by Shioda to compute the Picard number of $C_d \times C_d$ for any d [Shi81]. Let us give an elementary proof. Let $G := T \rtimes \mathfrak{S}_3$, where \mathfrak{S}_3 acts on \mathbb{C}^3 by permutation of the coordinates and T is the group of diagonal matrices t with $t^6 = 1$.

Let
$$\Omega = \frac{XdY - YdX}{Z^5} = \frac{YdZ - ZdY}{X^5} = \frac{ZdX - XdZ}{Y^5} \in H^0(C, K_C(-3)).$$

A basis of eigenvectors for the action of T on $H^0(C_6, K)$ is given by the forms $X^aY^bZ^c\Omega$, with a+b+c=3; using the action of \mathfrak{S}_3 we get a decomposition into irreducible components:

$$H^0(C_6,K) = V_{3,0,0} \oplus V_{2,1,0} \oplus V_{1,1,1},$$

where $V_{\alpha,\beta,\gamma}$ is spanned by the forms $X^aY^bZ^c\Omega$ with $\{a,b,c\}=\{\alpha,\beta,\gamma\}$.

Let us use affine coordinates x = X/Z, y = Y/Z on C_6 . We consider the following maps from C_6 onto E_{ω} : $v^2 = u^3 - 1$:

$$f(x,y) = (-x^2, y^3),$$
 $g(x,y) = (2^{-2/3}x^{-2}y^4, \frac{1}{2}(x^3 - x^{-3}));$

and, using for E_{ω} the equation $\xi^3 + \eta^3 + 1 = 0$, $h(x,y) = (x^2, y^2)$.

We have

$$\begin{split} f^* \frac{du}{v} &= -\frac{2xdx}{y^3} = -2XY^2 \, \Omega \in V_{2,1,0}, \\ g^* \frac{du}{v} &= -2^{4/3}Y^3 \, \Omega \in V_{3,0,0}, \\ h^* \frac{d\xi}{\eta^2} &= 2XYZ \, \Omega \in V_{1,1,1}, \end{split}$$

so the Proposition follows from Lemma 2.

By Proposition 2 every quotient of C_6 has again maximal correspondences. There are four such quotient which have genus 4:

• The quotient by an involution $\alpha \in T$, which we may take to be $\alpha : (X, Y, Z) \mapsto (X, Y, -Z)$. The canonical model of C_6/α is the image of C_6 by the map

$$(X, Y, Z) \longmapsto (X^2, XY, Y^2, Z^2);$$

its equations in \mathbb{P}^3 are $xz-y^2=x^3+z^3+t^3=0$. Projecting onto the conic $xz-y^2=0$ realizes C_6/α as the cyclic triple covering $v^3=u^6+1$ of \mathbb{P}^1 .

• The quotient by an involution $\beta \in \mathfrak{S}_3$, say $\beta : (X, Y, Z) \mapsto (Y, X, Z)$. The canonical model of C_6/β is the image of C_6 by the map

$$(X, Y, Z) \longmapsto ((X + Y)^2, Z(X + Y), Z^2, XY);$$

its equations are $xz - y^2 = x(x - 3t)^2 + z^3 - 2t^3 = 0$.

Since the quadric containing their canonical model is singular, the two genus 4 curves C_6/α and C_6/β have a unique g_3^1 . The associated triple covering $C_6/\alpha \to \mathbb{P}^1$ is cyclic, while the corresponding covering $C_6/\beta \to \mathbb{P}^1$ is not. Therefore the two curves are not isomorphic.

• The quotient by an element of order 3 of T acting freely, say $\gamma:(X,Y,Z)\mapsto (X,\omega Y,\omega^2 Z)$. The canonical model of C_6/γ is the image of C_6 by the map

$$(X,Y,Z) \mapsto (X^3,Y^3,Z^3,XYZ)$$
;

its equations are $x^2+y^2+z^2=t^3-xyz=0$. Projecting onto the conic $x^2+y^2+z^2=0$ realizes C_6/γ as the cyclic triple covering $v^3=u(u^4-1)$ of \mathbb{P}^1 ; thus C_6/γ is not isomorphic to C_6/α or C_6/β .

• The quotient by an element of order 3 of \mathfrak{S}_3 acting freely, say $\delta:(X,Y,Z)\mapsto (Y,Z,X)$. The canonical model of C_6/δ is the image of C_6 by the map

$$(X, Y, Z) \mapsto (X^3 + Y^3 + Z^3, XYZ, X^2Y + Y^2Z + Z^2X, XY^2 + YZ^2 + ZX^2).$$

It is contained in the smooth quadric $(x+y)^2+5y^2-2zt=0$, so C_6/δ is not isomorphic to any of the 3 previous curves.

Thus we have found four non-isomorphic curves of genus 4 with Jacobian isogenous to E^4_{ω} . The product of any two of these curves is a ρ -maximal surface.

Corollary 1. — The Fermat sextic surface $S_6: X^6 + Y^6 + Z^6 + T^6 = 0$ is ρ -maximal.

Proof. — This follows from Propositions 7, 2 and Shioda's trick: there exists a rational dominant map $\pi: C_6 \times C_6 \dashrightarrow S_6$, given by

$$\pi((X,Y,Z),(X',Y',Z')) = (XZ',YZ',iX'Z,iY'Z).$$

Remark 4. — Since the Fermat plane quartic has maximal correspondences (Example 2), the same argument gives the classical fact that the Fermat quartic surface is ρ -maximal. It follows from the explicit formula for $\rho(S_d)$ given in [Aok83] that S_d is ρ -maximal (for $d \ge 4$) only for d = 4 and 6.

Again every quotient of the Fermat sextic is ρ -maximal. For instance, the quotient of S_6 by the automorphism $(X, Y, Z, T) \mapsto (X, Y, Z, \omega T)$ is the double covering of \mathbb{P}^2 branched along C_6 : it is a ρ -maximal K3 surface. The quotient of S_6 by the involution $(X, Y, Z, T) \mapsto (X, Y, -Z, -T)$ is given in \mathbb{P}^5 by the equations

$$y^{2} - xz = v^{2} - uw = x^{3} + z^{3} + u^{3} + w^{3} = 0;$$

it is a complete intersection of degrees (2,2,3), with 12 ordinary nodes. Other quotients have p_q equal to 2, 3, 4 or 6.

5. Quotients of self-products of curves

The method of the previous section may sometimes allow to prove that certain quotients of a product $C \times C$ have maximal Picard number. Since we have very few examples we will refrain from giving a general statement and contend ourselves with one significant example.

Let C be the curve in \mathbb{P}^4 defined by

$$u^2 = xy$$
, $v^2 = x^2 - y^2$, $w^2 = x^2 + y^2$.

IIO A. BEAUVILLE

It is isomorphic to the modular curve X(8) [FSM13]. Let $\Gamma \subset \operatorname{PGL}(5,\mathbb{C})$ be the subgroup of diagonal elements changing an even number of signs of u, v, w; Γ is isomorphic to $(\mathbb{Z}/2)^2$ and acts freely on C.

Proposition 8

- (a) JC is isogenous to $E_i^3 \times E_{\sqrt{-2}}^2$, where $E_{\alpha} = \mathbb{C}/\mathbb{Z}[\alpha]$ for $\alpha = i$ or $\sqrt{-2}$.
- (b) The surface $(C \times C)/\Gamma$ is ρ -maximal.

Proof

(a) The form $\Omega := (xdy - ydx)/uvw$ generates $H^0(C, K_C(-1))$, and is Γ -invariant; thus multiplication by Ω induces a Γ -equivariant isomorphism

$$H^0(\mathbb{P}^4, \mathcal{O}_{\mathbb{P}^4}(1)) \xrightarrow{\sim} H^0(C, K_C).$$

Let V and L be the subspaces of $H^0(C, K_C)$ corresponding to $\langle u, v, w \rangle$ and $\langle x, y \rangle$. The projection $(u, v, w, x, y) \mapsto (u, v, w)$ maps C onto the quartic curve $F: 4u^4 + v^4 - w^4 = 0$; the induced map $f: C \to F$ identifies F with the quotient of C by the involution $(u, v, w, x, y) \mapsto (u, v, w, -x, -y)$, and we have $f^*H^0(F, K_F) = V$.

The quotient curve $H := C/\Gamma$ is the genus 2 curve $z^2 = t(t^4 - 1)$ [Bea13]. The pull-back of $H^0(H, K_H)$ is the subspace invariant under Γ , that is L. Thus JC is isogenous to $JF \times JH$. From examples 1 and 2 of §4 we conclude that JC is isogenous to $E_i^3 \times E_{\sqrt{-2}}^2$.

(b) We have Γ -equivariant isomorphisms

$$\begin{split} H^{1,1}(C\times C) &= H^2(C,\mathbb{C}) \oplus H^2(C,\mathbb{C}) \oplus (H^{1,0}\boxtimes H^{0,1}) \oplus (H^{0,1}\boxtimes H^{1,0}) \\ &= \mathbb{C}^2 \oplus \operatorname{End}(H^0(C,K_C))^{\oplus 2} \end{split}$$

(where Γ acts trivially on \mathbb{C}^2), hence

$$H^{1,1}((C \times C)/\Gamma) = \mathbb{C}^2 \oplus \operatorname{End}_{\Gamma}(H^0(C, K_C))^{\oplus 2}$$

As a Γ -module we have $H^0(C, K_C) = L \oplus V$, where Γ acts trivially on L and V is the sum of the 3 nontrivial one-dimensional representations of Γ . Thus

$$\operatorname{End}_{\Gamma}(H^0(C,K_C)) = \mathbb{M}_2(\mathbb{C}) \times \mathbb{C}^3.$$

Similarly we have $NS((C \times C)/\Gamma) \otimes \mathbb{Q} = \mathbb{Q}^2 \oplus (End_{\Gamma}(JC) \otimes \mathbb{Q})$ and

$$\operatorname{End}_{\Gamma}(JC) \otimes \mathbb{Q} = (\operatorname{End}(JH) \otimes \mathbb{Q}) \times (\operatorname{End}_{\Gamma}(JF) \otimes \mathbb{Q})^{3} = \mathbb{M}_{2}(\mathbb{Q}(\sqrt{-2})) \times \mathbb{Q}(i)^{3},$$

hence the result.
$$\Box$$

Corollary 2 ([ST10]). — Let $\Sigma \subset \mathbb{P}^6$ be the surface of cuboids, defined by

$$t^2 = x^2 + y^2 + z^2$$
, $u^2 = y^2 + z^2$, $v^2 = x^2 + z^2$, $w^2 = x^2 + y^2$.

 Σ has 48 ordinary nodes; its minimal desingularization S is ρ -maximal.

Indeed
$$\Sigma$$
 is a quotient of $(C \times C)/\Gamma$ [Bea13].

(The result has been obtained first in [ST10] with a very different method.)

6. Other examples

6.1. Elliptic modular surfaces. — Let Γ be a finite index subgroup of $\mathrm{SL}_2(\mathbb{Z})$ such that $-I \notin \Gamma$. The group $\mathrm{SL}_2(\mathbb{Z})$ acts on the Poincaré upper half-plane \mathbb{H} ; let Δ_{Γ} be the compactification of the Riemann surface \mathbb{H}/Γ . The universal elliptic curve over \mathbb{H} descends to \mathbb{H}/Γ , and extends to a smooth projective surface B_{Γ} over Δ_{Γ} , the *elliptic modular surface* attached to Γ . In [Shi69] Shioda proves that B_{Γ} is ρ -maximal.⁽¹⁾

Now take $\Gamma = \Gamma(5)$, the kernel of the reduction map $\operatorname{SL}_2(\mathbb{Z}) \to \operatorname{SL}_2(\mathbb{Z}/5)$. In [Liv81] Livne constructed a $\mathbb{Z}/5$ -covering $X \to B_{\Gamma(5)}$, branched along the sum of the 25 5-torsion sections of $B_{\Gamma(5)}$. The surface X satisfies $c_1^2 = 3c_2$ (= 225), hence it is a ball quotient and therefore rigid. By analyzing the action of $\mathbb{Z}/5$ on $H^{1,1}(X)$ Livne shows that $H^{1,1}(X)$ is not defined over \mathbb{Q} , hence X is not ρ -maximal. This seems to be the only known example of a surface which cannot be deformed to a ρ -maximal surface.

6.2. Surfaces with $p_g = K^2 = 1$. — The minimal surfaces with $p_g = K^2 = 1$ have been studied by Catanese [Cat79] and Todorov [Tod80]. Their canonical model is a complete intersection of type (6,6) in the weighted projective space $\mathbb{P}(1,2,2,3,3)$. The moduli space \mathcal{M} is smooth of dimension 18.

Proposition 9. — The ρ -maximal surfaces are dense in \mathcal{M} .

Proof. — We can replace \mathcal{M} by the Zariski open subset \mathcal{M}_a parametrizing surfaces with ample canonical bundle. Let $S \in \mathcal{M}_a$, and let $f: \mathcal{S} \to (B, o)$ be a local versal deformation of S, so that $S \cong \mathcal{S}_o$. Let L be the lattice $H^2(S, \mathbb{Z})$, and $k \in L$ the class of K_S . We may assume that B is simply connected and fix an isomorphism of local systems $R^2f_*(\mathbb{Z}) \xrightarrow{\sim} L_B$, compatible with the cup-product and mapping the canonical class $[K_{\mathcal{S}/B}]$ onto k. This induces for each $k \in B$ an isometry $k \in H^2(\mathcal{S}_b, \mathbb{C}) \xrightarrow{\sim} L_{\mathbb{C}}$, which maps $k \in H^2(\mathcal{S}_b)$ onto a line in $k \in H^2(\mathcal{S}_b)$ is the period of $k \in H^2(\mathcal{S}_b)$. It belongs to the complex manifold

$$\Omega := \{ [x] \in \mathbb{P}(L_{\mathbb{C}}) \mid x^2 = 0, \ x \cdot k = 0, \ x \cdot \overline{x} > 0 \}.$$

Associating to $x \in \Omega$ the real 2-plane $P_x := \langle \operatorname{Re}(x), \operatorname{Im}(x) \rangle \subset L_{\mathbb{R}}$ defines an isomorphism of Ω onto the Grassmannian of positive oriented 2-planes in $L_{\mathbb{R}}$.

The key point is that the image of the *period map* $\wp : B \to \Omega$ is open [Cat79]. Thus we can find b arbitrarily close to o such that the 2-plane P_b is defined over \mathbb{Q} , hence $H^{2,0}(\mathcal{S}_b) \oplus H^{0,2}(\mathcal{S}_b) = P_b \otimes_{\mathbb{R}} \mathbb{C}$ is defined over \mathbb{Q} .

Remark 5. — The proof applies to all surfaces with $p_g = 1$ for which the image of the period map is open (for instance to K3 surfaces); unfortunately this seems to be a rather exceptional situation.

⁽¹⁾I am indebted to I. Dolgachev and B. Totaro for pointing out this reference.

II2 A. Beauville

6.3. Todorov surfaces. — In [Tod81] Todorov constructed a series of regular surfaces with $p_g = 1, \ 2 \le K^2 \le 8$, which provide counter-examples to the Torelli theorem. The construction is as follows: let $K \subset \mathbb{P}^3$ be a Kummer surface. We choose k double points of K in general position (this can be done with $0 \le k \le 6$), and a general quadric $Q \subset \mathbb{P}^3$ passing through these k points. The Todorov surface S is the double covering of K branched along $K \cap Q$ and the remaining 16 - k double points. It is a minimal surface of general type with $p_g = 1, K^2 = 8 - k, q = 0$. If moreover we choose K ρ -maximal (that is, $K = E^2/\{\pm 1\}$, where E is an elliptic curve with complex multiplication), then S is ρ -maximal by Proposition 2(b).

Note that by varying the quadric Q we get a continuous, non-constant family of ρ -maximal surfaces.

- 6.4. Double covers. In [Per82] Persson constructs ρ -maximal double covers of certain rational surfaces by allowing the branch curve to acquire some simple singularities (see also [BE87]). He applies this method to find ρ -maximal surfaces in the following families:
- Horikawa surfaces, that is, surfaces on the "Noether line" $K^2 = 2p_g 4$, for $p_g \not\equiv -1 \pmod{6}$;
 - Regular elliptic surfaces;
 - Double coverings of \mathbb{P}^2 .

In the latter case the double plane admits (many) rational singularities; it is unknown whether there exists a ρ -maximal surface S which is a double covering of \mathbb{P}^2 branched along a smooth curve of even degree ≥ 8 .

- 6.5. Hypersurfaces and complete intersections. Probably the most natural families to look at are smooth surfaces in \mathbb{P}^3 , or more generally complete intersections. Here we may ask for a smooth surface S, or for the minimal resolution of a surface with rational double points (or even any surface deformation equivalent to a complete intersection of given type). Here are the examples that we know of:
- The quintic surface $x^3yz + y^3zt + z^3tx + t^3xy = 0$ has four A_9 singularities; its minimal resolution is ρ -maximal [Sch11]. It is not yet known whether there exists a smooth ρ -maximal quintic surface.
 - The Fermat sextic is ρ -maximal (§4, Corollary 1).
- The complete intersection $y^2 xz = v^2 uw = x^3 + z^3 + u^3 + w^3 = 0$ of type (2,2,3) in \mathbb{P}^5 has 12 nodes; its minimal desingularization is ρ -maximal (end of §4).
- The surface of cuboids is a complete intersection of type (2, 2, 2, 2) in \mathbb{P}^6 with 48 nodes; its minimal desingularization is ρ -maximal (§5, Corollary 2).

7. The complex torus associated to a ρ -maximal variety

For a ρ -maximal variety X, let T_X be the \mathbb{Z} -module $H^2(X,\mathbb{Z})/\operatorname{NS}(X)$. We have a decomposition

$$T_X \otimes \mathbb{C} = H^{2,0} \oplus H^{0,2}$$

defining a weight 1 Hodge structure on T_X , hence a complex torus $\mathcal{T} := H^{0,2}/p_2(T_X)$, where $p_2 : T_X \otimes \mathbb{C} \to H^{2,0}$ is the second projection. Via the isomorphism $H^{0,2} = H^2(X, \mathcal{O}_X)$, \mathcal{T}_X is identified with the cokernel of the natural map $H^2(X, \mathbb{Z}) \to H^2(X, \mathcal{O}_X)$.

The exponential exact sequence gives rise to an exact sequence

$$0 \longrightarrow \mathrm{NS}(X) \longrightarrow H^2(X,\mathbb{Z}) \longrightarrow H^2(X,\mathcal{O}_X) \longrightarrow H^2(X,\mathcal{O}_X^*) \stackrel{\partial}{\longrightarrow} H^3(X,\mathbb{Z}),$$

hence to a short exact sequence

$$0 \longrightarrow \mathcal{T}_X \longrightarrow H^2(X, \mathcal{O}_X^*) \stackrel{\partial}{\longrightarrow} H^3(X, \mathbb{Z}),$$

so that \mathcal{T}_X appears as the "continuous part" of the group $H^2(X, \mathcal{O}_X^*)$.

Example 5. — Consider the elliptic modular surface B_{Γ} of Section 6.1. The space $H^0(B_{\Gamma}, K_{B_{\Gamma}})$ can be identified with the space of cusp forms of weight 3 for Γ ; then the torus $\mathcal{T}_{B_{\Gamma}}$ is the complex torus associated to this space by Shimura (see [Shi69]).

Example 6. — Let $X = C \times C'$, with JC isogenous to E^g and JC' to $E^{g'}$ (Proposition 5). The torus \mathcal{T}_X is the cokernel of the map

$$i \otimes i' : H^1(C, \mathbb{Z}) \otimes H^1(C', \mathbb{Z}) \longrightarrow H^1(C, \mathcal{O}_C) \otimes H^1(C', \mathcal{O}_{C'}),$$

where i and i' are the embeddings

$$H^1(C,\mathbb{Z}) \hookrightarrow H^1(C,\mathcal{O}_C)$$
 and $H^1(C',\mathbb{Z}) \hookrightarrow H^1(C',\mathcal{O}_{C'})$.

We want to compute \mathcal{T}_X up to isogeny, so we may replace the left hand side by a finite index sublattice. Thus, writing $E = \mathbb{C}/\Gamma$, we may identify i with the diagonal embedding $\Gamma^g \hookrightarrow \mathbb{C}^g$, and similarly for i'; therefore $i \otimes i'$ is the diagonal embedding of $(\Gamma \otimes \Gamma)^{gg'}$ in $\mathbb{C}^{gg'}$. Put $\Gamma = \mathbb{Z} + \mathbb{Z}\tau$; the image Γ' of $\Gamma \otimes \Gamma$ in \mathbb{C} is spanned by $1, \tau, \tau^2$; since E has complex multiplication, τ is a quadratic number, hence Γ has finite index in Γ' . Finally we obtain that \mathcal{T}_X is isogenous to $E^{gg'}$.

For the surface $X = (C \times C)/\Gamma$ studied in §5 an analogous argument shows that \mathcal{T}_X is isogenous to $A = E_i^4 \times E_{\sqrt{-2}}^3$. This is still an abelian variety of type CM, in the sense that $\operatorname{End}(A) \otimes \mathbb{Q}$ contains an étale \mathbb{Q} -algebra of maximal dimension $2\dim(A)$. There seems to be no reason why this should hold in general. However it is true in the special case $h^{2,0} = 1$ (e.g. for holomorphic symplectic manifolds):

Proposition 10. — If $h^{2,0}(X) = 1$, the torus \mathcal{T}_X is an elliptic curve with complex multiplication.

Proof. — Let T_X' be the pull back of $H^{2,0} + H^{0,2}$ in $H^2(X,\mathbb{Z})$; then $p_2(T_X')$ is a sublattice of finite index in $p_2(T_X)$. Choosing an ample class $h \in H^2(X,\mathbb{Z})$ defines a quadratic form on $H^2(X,\mathbb{Z})$ which is positive definite on T_X' . Replacing again T_X' by a finite index sublattice we may assume that it admits an orthogonal basis (e,f) with $e^2 = a$, $f^2 = b$. Then $H^{2,0}$ and $H^{0,2}$ are the two isotropic lines of $T_X' \otimes \mathbb{C}$; they are spanned by the vectors $\omega = e + \tau f$ and $\overline{\omega} = e - \tau f$, with $\tau^2 = -a/b$. We have $e = \frac{1}{2}(\omega + \overline{\omega})$ and $f = \frac{1}{2\tau}(\omega - \overline{\omega})$; therefore multiplication by $\frac{1}{2\tau}\overline{\omega}$ induces an

isomorphism of $\mathbb{C}/(\mathbb{Z} + \mathbb{Z}\tau)$ onto $H^{0,2}/p_2(T_X')$, hence \mathcal{T}_X is isogenous to $\mathbb{C}/(\mathbb{Z} + \mathbb{Z}\tau)$ and

$$\operatorname{End}(\mathcal{T}_X) \otimes \mathbb{Q} = \mathbb{Q}(\tau) = \mathbb{Q}\left(\sqrt{-\operatorname{disc}(T_X')}\right).$$

8. Higher codimension cycles

A natural generalization of the question considered here is to look for varieties X for which the group $H^{2p}(X,\mathbb{Z})_{alg}$ of algebraic classes in $H^{2p}(X,\mathbb{Z})$ has maximal rank $h^{p,p}$. Very few nontrivial cases seem to be known. The following is essentially due to Shioda:

Proposition 11. — Let F_d^n be the Fermat hypersurface of degree d and even dimension $n = 2\nu$. For d = 3, 4, the group $H^n(F_d^n, \mathbb{Z})_{alg}$ has maximal rank $h^{\nu,\nu}$.

Proof. — According to [Shi79] we have

$$\operatorname{rk} H^n(F_3^n, \mathbb{Z})_{\operatorname{alg}} = 1 + \frac{n!}{(\nu)!^2} \quad \text{and} \quad \operatorname{rk} H^n(F_4^n, \mathbb{Z})_{\operatorname{alg}} = \sum_{k=0}^{k=\nu+1} \frac{(n+2)!}{(k!)^2(n+2-2k)!} \cdot \frac{(n+2)!}{(k!)^2(n+2-2k)!} \cdot \frac{(n+2)!}{(n+2-2k)!} \cdot \frac{(n+2)!}{$$

On the other hand, let $R_d^n := \mathbb{C}[X_0,\ldots,X_{n+1}]/(X_0^{d-1},\ldots,X_{n+1}^{d-1})$ be the Jacobian ring of F_d^n ; Griffiths theory [Gri69] provides an isomorphism of the primitive cohomology $H^{\nu,\nu}(F_d^n)_o$ with the component of degree $(\nu+1)(d-2)$ of R_d^n . Since this ring is the tensor product of (n+2) copies of $\mathbb{C}[T]/(T^{d-1})$, its Poincaré series $\sum_k \dim(R_d^n)_k T^k$ is $(1+T+\cdots+T^{d-2})^{n+2}$. Then an elementary computation gives the result.

In the particular case of cubic fourfolds we have more examples:

Proposition 12. — Let F be a cubic form in 3 variables, such that the curve F(x,y,z)=0 in \mathbb{P}^2 is an elliptic curve with complex multiplication; let X be the cubic fourfold defined by F(x,y,z)+F(u,v,w)=0 in \mathbb{P}^5 . The group $H^4(X,\mathbb{Z})_{alg}$ has maximal rank $h^{2,2}(X)$.

Proof. — Let u be the automorphism of X defined by

$$u(x, y, z; u, v, w) = (x, y, z; \omega u, \omega v, \omega w).$$

We observe that u acts trivially on the (one-dimensional) space $H^{3,1}(X)$. Indeed Griffiths theory [Gri69] provides a canonical isomorphism

Res:
$$H^0(\mathbb{P}^5, K_{\mathbb{P}^5}(2X)) \xrightarrow{\sim} H^{3,1}(X)$$
;

the space $H^0(\mathbb{P}^5, K_{\mathbb{P}^5}(2X))$ is generated by the meromorphic form Ω/G^2 , with

$$\Omega = xdy \wedge dz \wedge du \wedge dv \wedge dw - ydx \wedge dz \wedge du \wedge dv \wedge dw + \cdots,$$

$$G = F(x, y, z) + F(u, v, w).$$

The automorphism u acts trivially on this form, and therefore on $H^{3,1}(X)$.

Let F be the variety of lines contained in X. We recall from [BD85] that F is a holomorphic symplectic fourfold, and that there is a natural isomorphism of Hodge structures $\alpha: H^4(X,\mathbb{Z}) \xrightarrow{\sim} H^2(F,\mathbb{Z})$. Therefore the automorphism u_F of F induced by u is symplectic. Let us describe its fixed locus.

The fixed locus of u in X is the union of the plane cubics E given by x = y = z = 0 and E' given by u = v = w = 0. A line in X preserved by u must have (at least) two fixed points, hence must meet both E and E'; conversely, any line joining a point of E to a point of E' is contained in X, and preserved by u. This identifies the fixed locus E of E to the abelian surface $E \times E'$. Since E is symplectic E is a symplectic submanifold, that is, the restriction map E is E in E in E is an isomorphism. By our hypothesis E is E in E in

References

- [Adl81] A. Adler "Some integral representations of $PSL_2(\mathbb{F}_p)$ and their applications", J. Algebra 72 (1981), no. 1, p. 115–145.
- [Aok83] N. Aoki "On some arithmetic problems related to the Hodge cycles on the Fermat varieties", Math. Ann. **266** (1983), no. 1, p. 23–54, Erratum: *ibid.* **267** (1984) no. 4, p. 572.
- [Bea13] A. Beauville "A tale of two surfaces", arXiv:1303.1910, to appear in the ASPM volume in honor of Y. Kawamata, 2013.
- [BD85] A. Beauville & R. Donagi "La variété des droites d'une hypersurface cubique de dimension 4", C. R. Acad. Sci. Paris Sér. I Math. 301 (1985), no. 14, p. 703–706.
- [BE87] J. Bertin & G. Elencwajg "Configurations de coniques et surfaces avec un nombre de Picard maximum", Math. Z. 194 (1987), no. 2, p. 245–258.
- [Cat79] F. Catanese "Surfaces with $K^2 = p_g = 1$ and their period mapping", in Algebraic geometry (Copenhagen, 1978), Lect. Notes in Math., vol. 732, Springer, Berlin, 1979, p. 1–29.
- [CG72] H. C. Clemens & P. A. Griffiths "The intermediate Jacobian of the cubic threefold", Ann. of Math. (2) 95 (1972), p. 281–356.
- [DK93] I. Dolgachev & V. Kanev "Polar covariants of plane cubics and quartics", Advances in Math. 98 (1993), no. 2, p. 216–301.
- [FSM13] E. Freitag & R. Salvati Manni "Parametrization of the box variety by theta functions", arXiv:1303.6495, 2013.
- [Gri69] P. A. Griffiths "On the periods of certain rational integrals. I, II", Ann. of Math. (2) 90 (1969), p. 460–495 & 496–541.
- [HN65] T. Hayashida & M. Nishi "Existence of curves of genus two on a product of two elliptic curves", J. Math. Soc. Japan 17 (1965), p. 1–16.
- [Hof91] D. W. Hoffmann "On positive definite Hermitian forms", Manuscripta Math. 71 (1991), no. 4, p. 399–429.
- [Kat75] T. Katsura "On the structure of singular abelian varieties", Proc. Japan Acad. 51 (1975), no. 4, p. 224–228.
- [Lan75] H. Lange "Produkte elliptischer Kurven", Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. II (1975), no. 8, p. 95–108.
- [LB92] H. Lange & C. Birkenhake Complex abelian varieties, Grundlehren der Mathematischen Wissenschaften, vol. 302, Springer-Verlag, Berlin, 1992.
- [Liv81] R. A. Livne "On certain covers of the universal elliptic curve", Ph.D. Thesis, Harvard University, 1981, ProQuest LLC, Ann Arbor, MI.
- [Per82] U. Persson "Horikawa surfaces with maximal Picard numbers", Math. Ann. 259 (1982), no. 3, p. 287–312.
- [Rou09] X. Roulleau "The Fano surface of the Klein cubic threefold", J. Math. Kyoto Univ. 49 (2009), no. 1, p. 113–129.
- [Rou11] _____, "Fano surfaces with 12 or 30 elliptic curves", $Michigan\ Math.\ J.\ {\bf 60}\ (2011),\ no.\ 2,$ p. 313–329.
- [Sch11] M. Schütt "Quintic surfaces with maximum and other Picard numbers", J. Math. Soc. Japan 63 (2011), no. 4, p. 1187–1201.
- [Shi69] T. Shioda "Elliptic modular surfaces. I", Proc. Japan Acad. 45 (1969), p. 786–790.

- $[Shi79] \quad \underline{\qquad}, \text{``The Hodge conjecture for Fermat varieties''}, \textit{Math. Ann. } \textbf{245} \text{ (1979)}, \text{ no. 2, p. 175-184}.$
- [Shi81] ______, "On the Picard number of a Fermat surface", J. Fac. Sci. Univ. Tokyo Sect. IA Math. 28 (1981), no. 3, p. 725–734 (1982).
- [Sil94] J. H. Silverman Advanced topics in the arithmetic of elliptic curves, Graduate Texts in Math., vol. 151, Springer-Verlag, New York, 1994.
- $[ST10] \\ M. Stoll \& D. Testa-"The surface parametrizing cuboids", \verb"arXiv:1009.0388", 2010.$
- [Tod80] A. N. Todorov "Surfaces of general type with $p_g = 1$ and (K, K) = 1. I", Ann. Sci. École Norm. Sup. (4) 13 (1980), no. 1, p. 1–21.
- [Tod81] _____, "A construction of surfaces with $p_g = 1$, q = 0 and $2 \le (K^2) \le 8$. Counterexamples of the global Torelli theorem", *Invent. Math.* **63** (1981), no. 2, p. 287–304.

Manuscript received January 2, 2014 accepted May 16, 2014

Arnaud Beauville, Laboratoire J.-A. Dieudonné, UMR 7351 du CNRS, Université de Nice

Parc Valrose, F-06108 Nice cedex 2, France

E-mail: arnaud.beauville@unice.fr
Url: http://math1.unice.fr/~beauvill/