A tale of two surfaces

Arnaud Beauville

Abstract.

We point out a link between two surfaces which have appeared recently in the literature: the surface of cuboids and the Schoen surface. Both give rise to a surface with q = 4, whose canonical map is 2-to-1 onto a complete intersection of 4 quadrics in \mathbb{P}^6 with 48 nodes.

Dedicated to Yujiro Kawamata on his 60th birthday

§1. Introduction

The aim of this note is to point out a link between two surfaces which have appeared recently in the literature: the *surface of cuboids* [ST, vL] and the surface (actually a family of surfaces) discovered by Schoen [S]. We will show that both surfaces give rise to a surface Xwith q = 4, whose canonical map is 2-to-1 onto a complete intersection of 4 quadrics $\Sigma \subset \mathbb{P}^6$ with 48 nodes. In the first case (§2) X is a quotient $(C \times C')/(\mathbb{Z}/2)^2$, where C and C' are genus 5 curves with a free action of $(\mathbb{Z}/2)^2$. In the second case (§3), X is a double étale cover of the Schoen surface.

When the canonical map of a surface X of general type has degree > 1 onto a surface, that surface either has $p_g = 0$ or is itself canonically embedded [B1, Th. 3.1]. Our surfaces X provide one more example of the latter case, which is rather exceptional (see [CPT] for a list of the examples known so far).

²⁰¹⁰ Mathematics Subject Classification. 14D25.

Key words and phrases. surface of cuboids, canonical map, Schoen surface.

$\S 2$. The surface of cuboids and its deformations

In \mathbb{P}^4 , with coordinates (x, y; u, v, w), we consider the curve C given by

(1)
$$u^2 = a(x,y)$$
 , $v^2 = b(x,y)$, $w^2 = c(x,y)$

where a, b, c are quadratic forms in x, y. We assume that the zeros of a, b, c form a set $Z \subset \mathbb{P}^1$ of 6 distinct points. Then C is a smooth curve of genus 5, canonically embedded. It is preserved by the group $\Gamma_0 \cong (\mathbb{Z}/2)^3$ which acts on \mathbb{P}^4 by changing the signs of u, v, w. Let $\Gamma \subset \Gamma_0$ be the subgroup (isomorphic to $(\mathbb{Z}/2)^2$) which changes an even number of signs. It acts freely on C, so the quotient curve $D := C/\Gamma$ has genus 2. The subring of Γ -invariant elements in $\oplus H^0(C, K_C^n)$ is generated by x, y and z := uvw, with the relation $z^2 = abc$; thus D is the double cover of \mathbb{P}^1 branched along Z.

Let JD_2 be the group of 2-torsion line bundles on D (isomorphic to $(\mathbb{Z}/2)^4$). The Γ -covering $\pi: C \to D$ corresponds to a subgroup of JD_2 isomorphic to $(\mathbb{Z}/2)^2$, namely the kernel of $\pi^*: JD \to JC$. Let $p'_a, p''_a; p'_b, p''_b; p'_c, p''_c$ be the Weierstrass points of D lying over the zeros of a, b and c respectively. Since the divisor $\pi^*(p'_a + p''_a)$ is cut out on Cby the canonical divisor u = 0, we have $\pi^*(p'_a - p''_a) \sim 0$, and similarly for b and c; thus Ker $\pi^* = \{0, p'_a - p''_a, p'_b - p''_b, p'_c - p''_c\}$. This is a *Lagrangian* subgroup of JD_2 for the Weil pairing [M2]; conversely, any Lagrangian subgroup of JD_2 is of that form. Thus the curves C we are considering are exactly the $(\mathbb{Z}/2)^2$ -étale covers of a curve D of genus 2 associated to a Lagrangian subgroup of JD_2 . In particular they form a 3-dimensional family.

The group $\Gamma_0/\Gamma \cong \mathbb{Z}/2$ acts on $D = C/\Gamma$ through the hyperelliptic involution, so C/Γ_0 is isomorphic to \mathbb{P}^1 .

Proposition 1. Let C, C' be two genus 5 curves of type (1), and let X be the quotient of $C \times C'$ by the diagonal action of $\Gamma \cong (\mathbb{Z}/2)^2$.

1) X is a minimal surface of general type with q = 4, $p_g = 7$, $K^2 = 32$.

2) The involution i_X of X defined by the action of $\Gamma_0/\Gamma \cong \mathbb{Z}/2$ has 48 fixed points. The canonical map $\varphi_X : X \to \mathbb{P}^6$ factors through i_X , and induces an isomorphism of X/i_X onto a complete intersection of 4 quadrics in \mathbb{P}^6 with 48 nodes. Proof: The computation of the numerical invariants of X is straightforward.

Let us denote by (x', y'; u', v', w') the coordinates on $C' \subset \mathbb{P}^4$, and by a', b', c' the corresponding quadratic forms. A basis of the space $H^0(X, K_X) = (H^0(C, K_C) \otimes H^0(C', K_{C'}))^{\Gamma}$ is given by the elements

$$\begin{aligned} X &= x \otimes x' \quad Y = x \otimes y' \quad Z = y \otimes x' \quad T = y \otimes y' \\ U &= u \otimes u' \quad V = v \otimes v' \quad W = w \otimes w' \;. \end{aligned}$$

They satisfy the relations XT - YZ = 0 and

$$U^2 = A(X, Y, Z, T) , V^2 = B(X, Y, Z, T) , W^2 = C(X, Y, Z, T) ,$$

where A, B, C are quadratic forms satisfying $A(X, Y, Z, T) = a(x, y) \otimes a(x', y')$, and the analogous relations for B and C.

Let Σ be the surface defined by these four quadratic forms, and let $\varphi : X \to \Sigma$ be the induced map. We have $\varphi \circ i_X = \varphi$, so φ induces a map $\bar{\varphi}$ from $X/i_X = (C \times C')/\Gamma_0$ into Σ . We consider the commutative diagram

where $p: (C \times C')/\Gamma_0 \to (C/\Gamma_0) \times (C'/\Gamma_0)$ is the quotient map by Γ_0 , and q the projection $(X, Y, Z, T; U, V, W) \mapsto (X, Y, Z, T)$. The group $(\mathbb{Z}/2)^3$ acts on Σ by changing the signs of (U, V, W); then $\bar{\varphi}$ is an equivariant map of $(\mathbb{Z}/2)^3$ -coverings, hence an isomorphism.

It remains to show that i_X has 48 fixed points. These fixed points are the images (mod. Γ) of the points of $C \times C'$ fixed by one of the elements of $\Gamma_0 \smallsetminus \Gamma$. Such an element changes the sign of one of the coordinates $\ell = u, v$ or w, hence fixes the 64 points (m, m') of $C \times C'$ with $\ell(m) = \ell(m') = 0$. This gives $(3 \times 64)/4 = 48$ fixed points in X. Q.E.D.

Example. Let us take for C and C' the curve C_0 defined by

 $u^2 = xy$, $v^2 = x^2 - y^2$, $w^2 = x^2 + y^2$.

The set of zeros of a, b, c is $\{0, \infty, \pm 1, \pm i\}$, so the genus 2 curve D is given by $z^2 = x(x^4 - 1)$.

We get for Σ the following equations :

$$XT = YZ = U^2$$
, $V^2 = X^2 - Y^2 - Z^2 + T^2$, $W^2 = X^2 + Y^2 + Z^2 + T^2$;

or, after the linear change of variables X = x + t, T = t - x, Y = y + iz, Z = y - iz, U = u, V = 2v, W = 2w:

$$t^2 = x^2 + y^2 + z^2 \quad , \quad u^2 = y^2 + z^2 \quad , \quad v^2 = x^2 + z^2 \qquad w^2 = x^2 + y^2 \; .$$

These are the equations of the *surface of cuboids*, studied in [ST, vL]. It encodes the relations in a cuboid (= rectangular box) between the sides x, y, z, the face diagonals u, v, w, and the space diagonal t. Thus the surface of cuboids belongs to a 6-dimensional family of intersection of 4 quadrics in \mathbb{P}^6 with 48 nodes.

The curve C_0 is isomorphic to the modular curve X(8), and the map $C_0 \times C_0 \to \Sigma$ can be described in terms of theta functions [FS].

Remark 1. In [B3] we show that the surface $X = (C_0 \times C_0)/\Gamma$ has maximum Picard number $\rho = h^{1,1}$, by analyzing the action of Γ on JC_0 ; it follows that the desingularization $\tilde{\Sigma}$ of the surface of cuboids Σ has the same property – a result obtained in [ST] via a computer calculation.

Remark 2. Our surfaces X fit into a tower of $(\mathbb{Z}/2)^2$ -étale coverings:

$$C \times C' \longrightarrow X \xrightarrow{r} D \times D'$$

The abelian covering r is the pull back of a $(\mathbb{Z}/2)^2$ -étale covering of $JD \times JD'$:

$$\begin{array}{cccc} X & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & \\ D \times D' & & & & JD \times JD' \end{array}$$

The abelian variety A is the Albanese variety of X, and α is the Albanese map. Since the quotient X/i_X is regular, i_X acts as (-1) on the space $H^0(X, \Omega^1_X)$; therefore if we choose α so that it maps a fixed point of i_X to 0, i_X is induced by (-1_A) .

4

\S **3.** The Schoen surface

The Schoen surfaces S have been defined in [S], and studied in [CMR]. A Schoen surface S is contained in its Albanese variety A; it has the following properties:

a) $K_S^2 = 16$, $p_g = 5$, q = 4 (hence $\chi(\mathcal{O}_S) = 2$);

b) The canonical map $\varphi_S : S \to \mathbb{P}^4$ factors through an involution i_S with 40 fixed points, and induces an isomorphism of S/i_S onto the complete intersection of a quadric and a quartic in \mathbb{P}^4 with 40 nodes [CMR].

Since S/i_S is a regular surface, i_S acts as (-1) on the space $H^0(S, \Omega^1_S)$. Therefore if we choose the Albanese embedding $S \hookrightarrow A$ so that it maps a fixed point of i_S to 0, i_S is induced by the involution (-1_A) .

Let ℓ be a line bundle of order 2 on A; we denote by $\pi : B \to A$ the corresponding étale double cover, and put $X := \pi^{-1}(S)$. The restriction of ℓ to S, which we will still denote by ℓ , is nontrivial (because the restriction map $\operatorname{Pic}^{\circ}(A) \to \operatorname{Pic}^{\circ}(S)$ is an isomorphism), hence X is connected.

Proposition 2. X is a minimal surface of general type with q = 4, $p_g = 7$, $K_X^2 = 32$.

Proof : The formulas $K_X^2 = 32$ and $\chi(\mathcal{O}_X) = 4$ are immediate; we must prove q(X) = 4, that is, $H^1(S, \ell) = 0$.

By construction [S] a Schoen surface fits into a flat family over the unit disk $\Delta\colon$

where:

• \mathcal{A}/Δ is a smooth family of abelian varieties;

• at a point $z \neq 0$ of Δ , S_z is a Schoen surface, and $S_z \hookrightarrow \mathcal{A}_z$ is the Albanese embedding;

• $\mathcal{A}_0 = JC \times JC$ for a genus 2 curve C; \mathcal{S}_0 is the union of JCembedded diagonally in $JC \times JC$, and of $C \times C \subset JC \times JC$ (we choose

an Abel-Jacobi embedding $C \subset JC$). These two components intersect transversally along the diagonal $C \subset C \times C$.

The line bundle ℓ extends to a line bundle \mathcal{L} of order 2 on \mathcal{A} . Let ℓ_0 be the restriction of \mathcal{L} to S_0 ; we want to compute $H^1(S_0, \ell_0)$. We have an exact sequence

(2)
$$0 \to \ell_0 \longrightarrow \ell_0|_{JC} \oplus \ell_0|_{C \times C} \longrightarrow \ell_0|_C \to 0$$

The line bundle \mathcal{L}_0 on $JC \times JC$ can be written $\alpha \boxtimes \beta$, where α and β are 2-torsion line bundles on JC, not both trivial; we use the same letters to denote their restriction to C. The cohomology exact sequence associated to (2) gives

$$\begin{split} H^0(JC,\alpha\otimes\beta) \oplus H^0(C\times C,\alpha\boxtimes\beta) &\longrightarrow H^0(C,\alpha\otimes\beta) \longrightarrow H^1(\mathbb{S}_0,\ell_0) \stackrel{u}{\longrightarrow} \\ H^1(JC,\alpha\otimes\beta) \oplus H^1(C\times C,\alpha\boxtimes\beta) \longrightarrow H^1(C,\alpha\otimes\beta) \;. \end{split}$$

The restriction map $H^0(JC, \alpha \otimes \beta) \to H^0(C, \alpha \otimes \beta)$ is surjective, so *u* is injective. If α and β are nontrivial, $H^1(C \times C, \alpha \boxtimes \beta)$ is zero, and the restriction map $H^1(JC, \alpha \otimes \beta) \to H^1(C, \alpha \otimes \beta)$ is injective, so $H^1(\mathfrak{S}_0, \ell_0) = 0$. If, say, β is trivial, $H^1(JC, \alpha)$ is zero and the map $H^1(C \times C, \operatorname{pr}_1^*\alpha) \to H^1(C, \alpha)$ is bijective, hence $H^1(\mathfrak{S}_0, \ell_0) = 0$ again.

By semi-continuity this implies $H^1(S_z, \mathcal{L}_z) = 0$ for z general in Δ , or equivalently $q(\tilde{S}_z) = q(S_z) = 4$, where $\tilde{S} \to S$ is the étale double covering defined by \mathcal{L} . But q is a topological invariant, so this holds for all $z \neq 0$ in Δ , hence $H^1(S, \ell) = 0$. Q.E.D.

The surface X has a natural action of $(\mathbb{Z}/2)^2$, given by the involution i_X induced by (-1_B) and the involution τ associated to the double covering $X \to S$, which is induced by a translation of B. We want to determine how these involutions act on $H^0(X, K_X)$. The decomposition of $H^0(X, K_X)$ into eigenspaces for τ is

$$H^0(X, K_X) \cong H^0(S, K_S) \oplus H^0(S, K_S \otimes \ell)$$
.

By property b) above, i_S acts trivially on $H^0(S, K_S)$. It remains to study how it acts on $H^0(S, K_S \otimes \ell)$, or equivalently on $H^2(S, \ell)$. To define this action we choose the isomorphism $u: (-1_A)^*\ell \longrightarrow \ell$ over Asuch that u(0) = 1, and we consider the involutions

$$H^p(i_S, u) : H^p(S, \ell) \xrightarrow{i_S^*} H^p(S, i_S^* \ell) \xrightarrow{u_{|S|}} H^p(S, \ell) .$$

A tale of two surfaces

Proposition 3. There exist line bundles ℓ of order 2 on A for which i_S acts trivially on $H^2(S, \ell)$. In that case i_X has 48 fixed points. *Proof*: We will denote by A_2 and \hat{A}_2 the 2-torsion subgroups of A and its dual abelian variety \hat{A} , and similarly for B. The fixed point set of i_S is $A_2 \cap S$, and that of i_X is $B_2 \cap X$.

We apply the holomorphic Lefschetz formula to the automorphism i_S of S and the i_S -linearization $u_{|S}: i_S^* \ell \to \ell$:

$$\sum_{p} (-1)^{p} \operatorname{Tr} H^{p}(i_{S}, u) = \frac{1}{4} \sum_{a \in A_{2} \cap S} u(a) .$$

(At a point a of A_2 , $u(a) : \ell_a \to \ell_a$ is the multiplication by a scalar, which we still denote u(a).)

Let $a \in A_2$. By [M1], property iv) p. 304, we have $u(a) = (-1)^{\langle a, \ell \rangle}$, where $\langle , \rangle : A_2 \times \hat{A}_2 \to \mathbb{Z}/2$ is the canonical pairing. Thus the right hand side of the Lefschetz formula is $\frac{1}{4}(f_0 - f_1)$, where f_i , for $i \in \mathbb{Z}/2$, is the number of points $a \in A_2 \cap S$ with $\langle a, \ell \rangle = i$.

We have $H^0(S, \ell) = H^1(S, \ell) = 0$ (Proposition 2), hence dim $H^2(S, \ell) = \chi(\mathcal{O}_S) = 2$. Thus the left hand side is $\operatorname{Tr} H^2(i_S, u) \in \{2, 0, -2\}$. Since $f_0 + f_1 = 40$ this gives $f_i \in \{16, 20, 24\}$, and we want to find ℓ such that $H^2(i_S, u) = \operatorname{Id}$, that is $f_0 = 24$.

Put $F := A_2 \cap S$. Consider the homomorphism $j : \hat{A}_2 \to (\mathbb{Z}/2)^F$ given by $j(\ell) = (\langle a, \ell \rangle)_{a \in F}$. For $\ell \neq 0$, the weight of the element $j(\ell)$ of $(\mathbb{Z}/2)^F$ (that is, the number of its nonzero coordinates) is f_1 , which belongs to $\{16, 20, 24\}$. Therefore j is injective; its image is a 8dimensional vector subspace of $(\mathbb{Z}/2)^F$, that is, a linear code, such that the weight of any nonzero vector belongs to $\{16, 20, 24\}$. A simple linear algebra lemma [B2, lemme 1] shows that a code in $(\mathbb{Z}/2)^{40}$ of dimension ≥ 7 contains elements of weight < 20; thus there exist elements ℓ in \hat{A}_2 with $f_1 = 16$, hence $f_0 = 24$.

It remains to compute the number of fixed points of i_X in that case. The fixed locus of i_X is $B_2 \cap X = \pi^{-1}(\pi(B_2) \cap S)$. Dualizing the exact sequence of $(\mathbb{Z}/2)$ -vector spaces

$$0 \to (\mathbb{Z}/2)\ell \to \hat{A}_2 \xrightarrow{\hat{\pi}} \hat{B}_2$$

and using the canonical pairings we get an exact sequence

$$B_2 \xrightarrow{\pi} A_2 \xrightarrow{\langle , \ell \rangle} \mathbb{Z}/2 \to 0$$
.

Thus the points a of $A_2 \cap S$ which belong to $\pi(B_2)$ are those with $\langle a, \ell \rangle = 0$. There are $f_0 = 24$ such points, hence 48 fixed points of i_X . Q.E.D.

Remark 3. There exist line bundles ℓ in \hat{A}_2 with $f_0 = f_1 = 20$. Indeed otherwise $j(\hat{A}_2)$ would be an 8-dimensional linear code in $(\mathbb{Z}/2)^{40}$ with weights 16 and 24, projective in the sense of [CK]; this is impossible since equation (3.10) of [CK] does not hold. Thus in the next Proposition the hypothesis on ℓ is necessary.

Proposition 4. Choose ℓ as in Proposition 3. Then the canonical map $\varphi_X : X \to \mathbb{P}^6$ factors through i_X , and induces an isomorphism of X/i_X onto a complete intersection of 4 quadrics in \mathbb{P}^6 with 48 nodes.

Proof : Since i_X acts trivially on $H^0(X, K_X)$, we have a commutative diagram

where φ_X and φ_S are the canonical maps, Σ and Ξ their images, p the projection corresponding to the injection $H^0(S, K_S) \to H^0(X, K_X)$, p_{Σ} its restriction to Σ .

The map $\varphi_S \circ \pi : X \to \Xi$ gives the quotient of X by the action of $(\mathbb{Z}/2)^2$. Since τ acts non-trivially on $H^0(X, K_X)$, φ_X identifies Σ with the quotient X/i_X . Thus all the maps in the left hand square of the above diagram are double coverings, étale outside finitely many points. In particular, since $K_X^2 = 32$, we have deg $\Sigma = 16$.

We choose bases (x_0, \ldots, x_4) and (u, v) of the (+1) and (-1)eigenspaces in $H^0(X, K_X)$ with respect to τ . The elements u^2, uv, v^2 of $H^0(X, K_X^{\otimes 2})$ are invariant under τ and i_X , therefore they are pullback of i_S -invariant forms in $H^0(S, K_S^{\otimes 2})$. Such a form comes from an element of $H^0(\Xi, \mathcal{O}_{\Xi}(2))$, hence from an element of $H^0(\mathbb{P}^4, \mathcal{O}_{\mathbb{P}}(2))$. Thus we have

$$u^{2} = a(x)$$
 $uv = b(x)$ $v^{2} = c(x)$

where a, b, c are quadratic forms in x_0, \ldots, x_4 . Moreover the irreducible quadric Q containing Ξ is defined by a quadratic form q(x) which vanishes on Σ .

Thus Σ is contained in the subvariety V of \mathbb{P}^6 defined by these 4 quadratic forms. If V is a surface, it has degree 16 and therefore is equal to Σ . Thus it suffices to prove that the morphism $p_V : V \to Q$ induced by the projection p is not surjective.

Assume that $p_{V}\,$ is surjective; it has degree 2, and we have a cartesian diagram

$$\begin{array}{cccc} \Sigma & & & V \\ & & & & \\ & & & \\ p_{\Sigma} & & & \\ \Xi & & & Q \end{array} .$$

The variety V is irreducible: otherwise Σ is contained in one of its component, which maps birationally to Q, and p_{Σ} has degree 1, a contradiction. Since $Q \setminus \text{Sing}(Q)$ is simply connected, p_V is branched along a surface $R \subset Q$. Since Ξ is an ample divisor in Q (cut out by a quartic equation), it meets R along a curve, and p_{Σ} is branched along that curve, a contradiction. Q.E.D.

Remark 4. It follows that $\Xi = p(\Sigma)$ is defined by the equations $q(x) = b(x)^2 - a(x)c(x) = 0$. The 40 nodes of Ξ break into two sets: the 16 points in \mathbb{P}^4 defined by a(x) = b(x) = c(x) = q(x) = 0 are the images by p_{Σ} of smooth points of Σ fixed by the involution induced by τ ; p_{Σ} is étale over the other 24 nodes of Ξ , giving rise to the 48 nodes of Σ .

Remark 5. The two families of surfaces X that we have constructed in §2 and §3 are different; in fact, a surface X_1 of the first family is not even homeomorphic to a surface X_2 of the second one. Indeed X_1 admits an irrational genus 2 pencil $X \to D$, and this is a topological property [C]. But for a general member X_2 of the second family, the Albanese variety of the corresponding Schoen surface is simple [S], so its double cover Alb (X_2) is also simple; therefore X_2 cannot have an irrational pencil of genus 2.

It follows that the corresponding surfaces Σ belong to two different connected components of the moduli space of complete intersections of 4 quadrics in \mathbb{P}^6 with an even set of 48 nodes.

References

- [B1] A. Beauville: L'application canonique pour les surfaces de type général. Invent. math. 55 (1979), 121-140.
- [B2] A. Beauville: Sur le nombre maximum de points doubles d'une surface dans P³ (μ(5) = 31). Journées de Géométrie algébrique d'Angers, 207-215; Sijthoff & Noordhoff (1981).
- [B3] A. Beauville: Some surfaces with maximal Picard number. Journal de l'École Polytechnique 1 (2014), 101-116.
- [CK] R. Calderbank, W. Kantor: The geometry of two-weight codes. Bull. London Math. Soc. 18 (1986), 97-122.
- [C] F. Catanese: Moduli and classification of irregular Kaehler manifolds (and algebraic varieties) with Albanese general type fibrations. Invent. Math. 104 (1991), no. 2, 263-289.
- [CMR] C. Ciliberto, M. Mendes Lopes, X. Roulleau: On Schoen surfaces. Comment. Math. Helv. 90 (2015), no. 1, 59-74.
- [CPT] C. Ciliberto, R. Pardini, F. Tovena: Regular canonical covers. Math. Nachr. 251 (2003), 19-27.
- [FS] E. Freitag, R. Salvati-Manni: Parametrization of the box variety by theta functions. Preprint arXiv:1303.6495. Osaka J. Math., to appear.
- [vL] R. van Luijk: On perfect cuboids. Undergraduate thesis, Universiteit Utrecht (2000).
- [M1] D. Mumford: On the equations defining abelian varieties I. Invent. Math. 1 (1966), 287-354.
- [M2] D. Mumford: Tata lectures on theta, II. Progress in Mathematics, 43. Birkhäuser Boston, Inc., Boston, MA, 1984.
- [S] C. Schoen: A family of surfaces constructed from genus 2 curves. Internat. J. Math. 18 (2007), no. 5, 585-612.
- [ST] M. Stoll, D. Testa: The surface parametrizing cuboids. Preprint arXiv:1009.0388.

Laboratoire J.-A. Dieudonné UMR 7351 du CNRS Université de Nice Parc Valrose F-06108 Nice cedex 2, France E-mail address: arnaud.beauville@unice.fr