A tale of two surfaces

Arnaud Beauville

Abstract

. We point out a link between two surfaces which have appeared recently in the literature: the surface of cuboids and the Schoen surface. Both give rise to a surface with $q=4$, whose canonical map is 2-to-1 onto a complete intersection of 4 quadrics in \mathbb{P}^{6} with 48 nodes.

Dedicated to Yujiro Kawamata on his 60th birthday

§1. Introduction

The aim of this note is to point out a link between two surfaces which have appeared recently in the literature: the surface of cuboids [ST, vL] and the surface (actually a family of surfaces) discovered by Schoen $[\mathrm{S}]$. We will show that both surfaces give rise to a surface X with $q=4$, whose canonical map is 2 -to- 1 onto a complete intersection of 4 quadrics $\Sigma \subset \mathbb{P}^{6}$ with 48 nodes. In the first case (§2) X is a quotient $\left(C \times C^{\prime}\right) /(\mathbb{Z} / 2)^{2}$, where C and C^{\prime} are genus 5 curves with a free action of $(\mathbb{Z} / 2)^{2}$. In the second case ($\left.\S 3\right), X$ is a double étale cover of the Schoen surface.

When the canonical map of a surface X of general type has degree >1 onto a surface, that surface either has $p_{g}=0$ or is itself canonically embedded [B1, Th. 3.1]. Our surfaces X provide one more example of the latter case, which is rather exceptional (see [CPT] for a list of the examples known so far).

Key words and phrases. surface of cuboids, canonical map, Schoen surface.

§2. The surface of cuboids and its deformations

In \mathbb{P}^{4}, with coordinates $(x, y ; u, v, w)$, we consider the curve C given by

$$
\begin{equation*}
u^{2}=a(x, y) \quad, \quad v^{2}=b(x, y) \quad, \quad w^{2}=c(x, y) \tag{1}
\end{equation*}
$$

where a, b, c are quadratic forms in x, y. We assume that the zeros of a, b, c form a set $Z \subset \mathbb{P}^{1}$ of 6 distinct points. Then C is a smooth curve of genus 5 , canonically embedded. It is preserved by the group $\Gamma_{0} \cong(\mathbb{Z} / 2)^{3}$ which acts on \mathbb{P}^{4} by changing the signs of u, v, w. Let $\Gamma \subset \Gamma_{0}$ be the subgroup (isomorphic to $(\mathbb{Z} / 2)^{2}$) which changes an even number of signs. It acts freely on C, so the quotient curve $D:=C / \Gamma$ has genus 2. The subring of Γ-invariant elements in $\oplus H^{0}\left(C, K_{C}^{n}\right)$ is generated by x, y and $z:=u v w$, with the relation $z^{2}=a b c$; thus D is the double cover of \mathbb{P}^{1} branched along Z.

Let $J D_{2}$ be the group of 2-torsion line bundles on D (isomorphic to $\left.(\mathbb{Z} / 2)^{4}\right)$. The Γ-covering $\pi: C \rightarrow D$ corresponds to a subgroup of $J D_{2}$ isomorphic to $(\mathbb{Z} / 2)^{2}$, namely the kernel of $\pi^{*}: J D \rightarrow J C$. Let $p_{a}^{\prime}, p_{a}^{\prime \prime} ; p_{b}^{\prime}, p_{b}^{\prime \prime} ; p_{c}^{\prime}, p_{c}^{\prime \prime}$ be the Weierstrass points of D lying over the zeros of a, b and c respectively. Since the divisor $\pi^{*}\left(p_{a}^{\prime}+p_{a}^{\prime \prime}\right)$ is cut out on C by the canonical divisor $u=0$, we have $\pi^{*}\left(p_{a}^{\prime}-p_{a}^{\prime \prime}\right) \sim 0$, and similarly for b and c; thus $\operatorname{Ker} \pi^{*}=\left\{0, p_{a}^{\prime}-p_{a}^{\prime \prime}, p_{b}^{\prime}-p_{b}^{\prime \prime}, p_{c}^{\prime}-p_{c}^{\prime \prime}\right\}$. This is a Lagrangian subgroup of $J D_{2}$ for the Weil pairing [M2]; conversely, any Lagrangian subgroup of $J D_{2}$ is of that form. Thus the curves C we are considering are exactly the $(\mathbb{Z} / 2)^{2}$-étale covers of a curve D of genus 2 associated to a Lagrangian subgroup of $J D_{2}$. In particular they form a 3-dimensional family.

The group $\Gamma_{0} / \Gamma \cong \mathbb{Z} / 2$ acts on $D=C / \Gamma$ through the hyperelliptic involution, so C / Γ_{0} is isomorphic to \mathbb{P}^{1}.

Proposition 1. Let C, C^{\prime} be two genus 5 curves of type (1), and let X be the quotient of $C \times C^{\prime}$ by the diagonal action of $\Gamma \cong(\mathbb{Z} / 2)^{2}$.

1) X is a minimal surface of general type with $q=4, p_{g}=7$, $K^{2}=32$.
2) The involution i_{X} of X defined by the action of $\Gamma_{0} / \Gamma \cong \mathbb{Z} / 2$ has 48 fixed points. The canonical map $\varphi_{X}: X \rightarrow \mathbb{P}^{6}$ factors through i_{X}, and induces an isomorphism of X / i_{X} onto a complete intersection of 4 quadrics in \mathbb{P}^{6} with 48 nodes.

Proof : The computation of the numerical invariants of X is straightforward.

Let us denote by ($\left.x^{\prime}, y^{\prime} ; u^{\prime}, v^{\prime}, w^{\prime}\right)$ the coordinates on $C^{\prime} \subset \mathbb{P}^{4}$, and by $a^{\prime}, b^{\prime}, c^{\prime}$ the corresponding quadratic forms. A basis of the space $H^{0}\left(X, K_{X}\right)=\left(H^{0}\left(C, K_{C}\right) \otimes H^{0}\left(C^{\prime}, K_{C^{\prime}}\right)\right)^{\Gamma}$ is given by the elements

$$
\begin{gathered}
X=x \otimes x^{\prime} \quad Y=x \otimes y^{\prime} \quad Z=y \otimes x^{\prime} \quad T=y \otimes y^{\prime} \\
U=u \otimes u^{\prime} \quad V=v \otimes v^{\prime} \quad W=w \otimes w^{\prime}
\end{gathered}
$$

They satisfy the relations $X T-Y Z=0$ and

$$
U^{2}=A(X, Y, Z, T), V^{2}=B(X, Y, Z, T), W^{2}=C(X, Y, Z, T)
$$

where A, B, C are quadratic forms satisfying $A(X, Y, Z, T)=$ $a(x, y) \otimes a\left(x^{\prime}, y^{\prime}\right)$, and the analogous relations for B and C.

Let Σ be the surface defined by these four quadratic forms, and let $\varphi: X \rightarrow \Sigma$ be the induced map. We have $\varphi \circ i_{X}=\varphi$, so φ induces a $\operatorname{map} \bar{\varphi}$ from $X / i_{X}=\left(C \times C^{\prime}\right) / \Gamma_{0}$ into Σ. We consider the commutative diagram

where $p:\left(C \times C^{\prime}\right) / \Gamma_{0} \rightarrow\left(C / \Gamma_{0}\right) \times\left(C^{\prime} / \Gamma_{0}\right)$ is the quotient map by Γ_{0}, and q the projection $(X, Y, Z, T ; U, V, W) \mapsto(X, Y, Z, T)$. The group $(\mathbb{Z} / 2)^{3}$ acts on Σ by changing the signs of (U, V, W); then $\bar{\varphi}$ is an equivariant map of $(\mathbb{Z} / 2)^{3}$-coverings, hence an isomorphism.

It remains to show that i_{X} has 48 fixed points. These fixed points are the images $(\bmod . \Gamma)$ of the points of $C \times C^{\prime}$ fixed by one of the elements of $\Gamma_{0} \backslash \Gamma$. Such an element changes the sign of one of the coordinates $\ell=u, v$ or w, hence fixes the 64 points $\left(m, m^{\prime}\right)$ of $C \times C^{\prime}$ with $\ell(m)=\ell\left(m^{\prime}\right)=0$. This gives $(3 \times 64) / 4=48$ fixed points in X.
Q.E.D.

Example. Let us take for C and C^{\prime} the curve C_{0} defined by

$$
u^{2}=x y \quad, \quad v^{2}=x^{2}-y^{2} \quad, \quad w^{2}=x^{2}+y^{2}
$$

The set of zeros of a, b, c is $\{0, \infty, \pm 1, \pm i\}$, so the genus 2 curve D is given by $z^{2}=x\left(x^{4}-1\right)$.

We get for Σ the following equations :
$X T=Y Z=U^{2}, V^{2}=X^{2}-Y^{2}-Z^{2}+T^{2}, W^{2}=X^{2}+Y^{2}+Z^{2}+T^{2} ;$
or, after the linear change of variables $X=\mathrm{x}+\mathrm{t}, T=\mathrm{t}-\mathrm{x}, Y=\mathrm{y}+\mathrm{iz}$, $Z=\mathrm{y}-\mathrm{iz}, U=\mathrm{u}, V=2 \mathrm{v}, W=2 \mathrm{w}$:

$$
t^{2}=x^{2}+y^{2}+z^{2} \quad, \quad u^{2}=y^{2}+z^{2} \quad, \quad v^{2}=x^{2}+z^{2} \quad w^{2}=x^{2}+y^{2}
$$

These are the equations of the surface of cuboids, studied in [ST, vL]. It encodes the relations in a cuboid (= rectangular box) between the sides x, y, z, the face diagonals u, v, w, and the space diagonal t. Thus the surface of cuboids belongs to a 6 -dimensional family of intersection of 4 quadrics in \mathbb{P}^{6} with 48 nodes.

The curve C_{0} is isomorphic to the modular curve $X(8)$, and the map $C_{0} \times C_{0} \rightarrow \Sigma$ can be described in terms of theta functions [FS].

Remark 1. In [B3] we show that the surface $X=\left(C_{0} \times C_{0}\right) / \Gamma$ has maximum Picard number $\rho=h^{1,1}$, by analyzing the action of Γ on $J C_{0}$; it follows that the desingularization $\tilde{\Sigma}$ of the surface of cuboids Σ has the same property - a result obtained in [ST] via a computer calculation.

Remark 2. Our surfaces X fit into a tower of $(\mathbb{Z} / 2)^{2}$-étale coverings:

$$
C \times C^{\prime} \longrightarrow X \xrightarrow{r} D \times D^{\prime} .
$$

The abelian covering r is the pull back of a $(\mathbb{Z} / 2)^{2}$-étale covering of $J D \times J D^{\prime}$:

The abelian variety A is the Albanese variety of X, and α is the Albanese map. Since the quotient X / i_{X} is regular, i_{X} acts as (-1) on the space $H^{0}\left(X, \Omega_{X}^{1}\right)$; therefore if we choose α so that it maps a fixed point of i_{X} to $0, i_{X}$ is induced by $\left(-1_{A}\right)$.

§3. The Schoen surface

The Schoen surfaces S have been defined in [S], and studied in [CMR]. A Schoen surface S is contained in its Albanese variety A; it has the following properties:
a) $K_{S}^{2}=16, p_{g}=5, q=4$ (hence $\chi\left(\mathcal{O}_{S}\right)=2$);
b) The canonical map $\varphi_{S}: S \rightarrow \mathbb{P}^{4}$ factors through an involution i_{S} with 40 fixed points, and induces an isomorphism of S / i_{S} onto the complete intersection of a quadric and a quartic in \mathbb{P}^{4} with 40 nodes [CMR].

Since S / i_{S} is a regular surface, i_{S} acts as (-1) on the space $H^{0}\left(S, \Omega_{S}^{1}\right)$. Therefore if we choose the Albanese embedding $S \hookrightarrow A$ so that it maps a fixed point of i_{S} to $0, i_{S}$ is induced by the involution $\left(-1_{A}\right)$.

Let ℓ be a line bundle of order 2 on A; we denote by $\pi: B \rightarrow A$ the corresponding étale double cover, and put $X:=\pi^{-1}(S)$. The restriction of ℓ to S, which we will still denote by ℓ, is nontrivial (because the restriction map $\operatorname{Pic}^{\circ}(A) \rightarrow \operatorname{Pic}^{\circ}(S)$ is an isomorphism), hence X is connected.

Proposition 2. X is a minimal surface of general type with $q=4$, $p_{g}=7, K_{X}^{2}=32$.
Proof: The formulas $K_{X}^{2}=32$ and $\chi\left(\mathcal{O}_{X}\right)=4$ are immediate; we must prove $q(X)=4$, that is, $H^{1}(S, \ell)=0$.

By construction [S] a Schoen surface fits into a flat family over the unit disk Δ :

where:

- \mathcal{A} / Δ is a smooth family of abelian varieties;
- at a point $z \neq 0$ of Δ, \mathcal{S}_{z} is a Schoen surface, and $\mathcal{S}_{z} \hookrightarrow \mathcal{A}_{z}$ is the Albanese embedding;
- $\mathcal{A}_{0}=J C \times J C$ for a genus 2 curve $C ; \mathcal{S}_{0}$ is the union of $J C$ embedded diagonally in $J C \times J C$, and of $C \times C \subset J C \times J C$ (we choose
an Abel-Jacobi embedding $C \subset J C)$. These two components intersect transversally along the diagonal $C \subset C \times C$.

The line bundle ℓ extends to a line bundle \mathcal{L} of order 2 on \mathcal{A}. Let ℓ_{0} be the restriction of \mathcal{L} to \mathcal{S}_{0}; we want to compute $H^{1}\left(\mathcal{S}_{0}, \ell_{0}\right)$. We have an exact sequence

$$
\begin{equation*}
0 \rightarrow \ell_{0} \longrightarrow \ell_{0 \mid J C} \oplus \ell_{0 \mid C \times C} \longrightarrow \ell_{0 \mid C} \rightarrow 0 \tag{2}
\end{equation*}
$$

The line bundle \mathcal{L}_{0} on $J C \times J C$ can be written $\alpha \boxtimes \beta$, where α and β are 2 -torsion line bundles on $J C$, not both trivial; we use the same letters to denote their restriction to C. The cohomology exact sequence associated to (2) gives

$$
\begin{gathered}
H^{0}(J C, \alpha \otimes \beta) \oplus H^{0}(C \times C, \alpha \boxtimes \beta) \longrightarrow H^{0}(C, \alpha \otimes \beta) \longrightarrow H^{1}\left(\mathcal{S}_{0}, \ell_{0}\right) \xrightarrow{u} \\
H^{1}(J C, \alpha \otimes \beta) \oplus H^{1}(C \times C, \alpha \boxtimes \beta) \longrightarrow H^{1}(C, \alpha \otimes \beta)
\end{gathered}
$$

The restriction map $H^{0}(J C, \alpha \otimes \beta) \rightarrow H^{0}(C, \alpha \otimes \beta)$ is surjective, so u is injective. If α and β are nontrivial, $H^{1}(C \times C, \alpha \boxtimes \beta)$ is zero, and the restriction map $H^{1}(J C, \alpha \otimes \beta) \rightarrow H^{1}(C, \alpha \otimes \beta)$ is injective, so $H^{1}\left(\mathcal{S}_{0}, \ell_{0}\right)=0$. If, say, β is trivial, $H^{1}(J C, \alpha)$ is zero and the map $H^{1}\left(C \times C, \operatorname{pr}_{1}^{*} \alpha\right) \rightarrow H^{1}(C, \alpha)$ is bijective, hence $H^{1}\left(\mathcal{S}_{0}, \ell_{0}\right)=0$ again.

By semi-continuity this implies $H^{1}\left(\mathcal{S}_{z}, \mathcal{L}_{z}\right)=0$ for z general in Δ, or equivalently $q\left(\widetilde{\mathcal{S}}_{z}\right)=q\left(\mathcal{S}_{z}\right)=4$, where $\widetilde{\mathcal{S}} \rightarrow \mathcal{S}$ is the étale double covering defined by \mathcal{L}. But q is a topological invariant, so this holds for all $z \neq 0$ in Δ, hence $H^{1}(S, \ell)=0$.
Q.E.D.

The surface X has a natural action of $(\mathbb{Z} / 2)^{2}$, given by the involution i_{X} induced by $\left(-1_{B}\right)$ and the involution τ associated to the double covering $X \rightarrow S$, which is induced by a translation of B. We want to determine how these involutions act on $H^{0}\left(X, K_{X}\right)$. The decomposition of $H^{0}\left(X, K_{X}\right)$ into eigenspaces for τ is

$$
H^{0}\left(X, K_{X}\right) \cong H^{0}\left(S, K_{S}\right) \oplus H^{0}\left(S, K_{S} \otimes \ell\right)
$$

By property b) above, i_{S} acts trivially on $H^{0}\left(S, K_{S}\right)$. It remains to study how it acts on $H^{0}\left(S, K_{S} \otimes \ell\right)$, or equivalently on $H^{2}(S, \ell)$. To define this action we choose the isomorphism $u:\left(-1_{A}\right)^{*} \ell \xrightarrow{\sim} \ell$ over A such that $u(0)=1$, and we consider the involutions

$$
H^{p}\left(i_{S}, u\right): H^{p}(S, \ell) \xrightarrow{i_{S}^{*}} H^{p}\left(S, i_{S}^{*} \ell\right) \xrightarrow{u_{\mid S}} H^{p}(S, \ell)
$$

Proposition 3. There exist line bundles ℓ of order 2 on A for which i_{S} acts trivially on $H^{2}(S, \ell)$. In that case i_{X} has 48 fixed points.
Proof: We will denote by A_{2} and \hat{A}_{2} the 2-torsion subgroups of A and its dual abelian variety \hat{A}, and similarly for B. The fixed point set of i_{S} is $A_{2} \cap S$, and that of i_{X} is $B_{2} \cap X$.

We apply the holomorphic Lefschetz formula to the automorphism i_{S} of S and the i_{S}-linearization $u_{\mid S}: i_{S}^{*} \ell \rightarrow \ell:$

$$
\sum_{p}(-1)^{p} \operatorname{Tr} H^{p}\left(i_{S}, u\right)=\frac{1}{4} \sum_{a \in A_{2} \cap S} u(a)
$$

(At a point a of $A_{2}, u(a): \ell_{a} \rightarrow \ell_{a}$ is the multiplication by a scalar, which we still denote $u(a)$.)

Let $a \in A_{2}$. By [M1], property iv) p. 304, we have $u(a)=(-1)^{\langle a, \ell\rangle}$, where $\langle\rangle:, A_{2} \times \hat{A}_{2} \rightarrow \mathbb{Z} / 2$ is the canonical pairing. Thus the right hand side of the Lefschetz formula is $\frac{1}{4}\left(f_{0}-f_{1}\right)$, where f_{i}, for $i \in \mathbb{Z} / 2$, is the number of points $a \in A_{2} \cap S$ with $\langle a, \ell\rangle=i$.

We have $H^{0}(S, \ell)=H^{1}(S, \ell)=0$ (Proposition 2), hence $\operatorname{dim} H^{2}(S, \ell)=\chi\left(\mathcal{O}_{S}\right)=2$. Thus the left hand side is $\operatorname{Tr} H^{2}\left(i_{S}, u\right) \in$ $\{2,0,-2\}$. Since $f_{0}+f_{1}=40$ this gives $f_{i} \in\{16,20,24\}$, and we want to find ℓ such that $H^{2}\left(i_{S}, u\right)=\mathrm{Id}$, that is $f_{0}=24$.

Put $F:=A_{2} \cap S$. Consider the homomorphism $j: \hat{A}_{2} \rightarrow(\mathbb{Z} / 2)^{F}$ given by $j(\ell)=(\langle a, \ell\rangle)_{a \in F}$. For $\ell \neq 0$, the weight of the element $j(\ell)$ of $(\mathbb{Z} / 2)^{F}$ (that is, the number of its nonzero coordinates) is f_{1}, which belongs to $\{16,20,24\}$. Therefore j is injective; its image is a 8 dimensional vector subspace of $(\mathbb{Z} / 2)^{F}$, that is, a linear code, such that the weight of any nonzero vector belongs to $\{16,20,24\}$. A simple linear algebra lemma [B2, lemme 1] shows that a code in $(\mathbb{Z} / 2)^{40}$ of dimension ≥ 7 contains elements of weight <20; thus there exist elements ℓ in \hat{A}_{2} with $f_{1}=16$, hence $f_{0}=24$.

It remains to compute the number of fixed points of i_{X} in that case. The fixed locus of i_{X} is $B_{2} \cap X=\pi^{-1}\left(\pi\left(B_{2}\right) \cap S\right)$. Dualizing the exact sequence of $(\mathbb{Z} / 2)$-vector spaces

$$
0 \rightarrow(\mathbb{Z} / 2) \ell \rightarrow \hat{A}_{2} \xrightarrow{\hat{\pi}} \hat{B}_{2}
$$

and using the canonical pairings we get an exact sequence

$$
B_{2} \xrightarrow{\pi} A_{2} \xrightarrow{\langle, \ell\rangle} \mathbb{Z} / 2 \rightarrow 0
$$

Thus the points a of $A_{2} \cap S$ which belong to $\pi\left(B_{2}\right)$ are those with $\langle a, \ell\rangle=0$. There are $f_{0}=24$ such points, hence 48 fixed points of i_{X}.
Q.E.D.

Remark 3. There exist line bundles ℓ in \hat{A}_{2} with $f_{0}=f_{1}=20$. Indeed otherwise $j\left(\hat{A}_{2}\right)$ would be an 8 -dimensional linear code in $(\mathbb{Z} / 2)^{40}$ with weights 16 and 24 , projective in the sense of $[\mathrm{CK}]$; this is impossible since equation (3.10) of [CK] does not hold. Thus in the next Proposition the hypothesis on ℓ is necessary.

Proposition 4. Choose ℓ as in Proposition 3. Then the canonical map $\varphi_{X}: X \rightarrow \mathbb{P}^{6}$ factors through i_{X}, and induces an isomorphism of X / i_{X} onto a complete intersection of 4 quadrics in \mathbb{P}^{6} with 48 nodes.

Proof : Since i_{X} acts trivially on $H^{0}\left(X, K_{X}\right)$, we have a commutative diagram

where φ_{X} and φ_{S} are the canonical maps, Σ and Ξ their images, p the projection corresponding to the injection $H^{0}\left(S, K_{S}\right) \rightarrow H^{0}\left(X, K_{X}\right), p_{\Sigma}$ its restriction to Σ.

The map $\varphi_{S} \circ \pi: X \rightarrow \Xi$ gives the quotient of X by the action of $(\mathbb{Z} / 2)^{2}$. Since τ acts non-trivially on $H^{0}\left(X, K_{X}\right), \varphi_{X}$ identifies Σ with the quotient X / i_{X}. Thus all the maps in the left hand square of the above diagram are double coverings, étale outside finitely many points. In particular, since $K_{X}^{2}=32$, we have $\operatorname{deg} \Sigma=16$.

We choose bases $\left(x_{0}, \ldots, x_{4}\right)$ and (u, v) of the $(+1)$ and (-1) eigenspaces in $H^{0}\left(X, K_{X}\right)$ with respect to τ. The elements $u^{2}, u v, v^{2}$ of $H^{0}\left(X, K_{X}^{\otimes 2}\right)$ are invariant under τ and i_{X}, therefore they are pullback of i_{S}-invariant forms in $H^{0}\left(S, K_{S}^{\otimes 2}\right)$. Such a form comes from an element of $H^{0}\left(\Xi, \mathcal{O}_{\Xi}(2)\right)$, hence from an element of $H^{0}\left(\mathbb{P}^{4}, \mathcal{O}_{\mathbb{P}}(2)\right)$. Thus we have

$$
u^{2}=a(x) \quad u v=b(x) \quad v^{2}=c(x)
$$

where a, b, c are quadratic forms in x_{0}, \ldots, x_{4}. Moreover the irreducible quadric Q containing Ξ is defined by a quadratic form $q(x)$ which vanishes on Σ.

Thus Σ is contained in the subvariety V of \mathbb{P}^{6} defined by these 4 quadratic forms. If V is a surface, it has degree 16 and therefore is equal to Σ. Thus it suffices to prove that the morphism $p_{V}: V \rightarrow Q$ induced by the projection p is not surjective.

Assume that p_{V} is surjective; it has degree 2, and we have a cartesian diagram

The variety V is irreducible: otherwise Σ is contained in one of its component, which maps birationally to Q, and p_{Σ} has degree 1 , a contradiction. Since $Q \backslash \operatorname{Sing}(Q)$ is simply connected, p_{V} is branched along a surface $R \subset Q$. Since Ξ is an ample divisor in Q (cut out by a quartic equation), it meets R along a curve, and p_{Σ} is branched along that curve, a contradiction.
Q.E.D.

Remark 4. It follows that $\Xi=p(\Sigma)$ is defined by the equations $q(x)=b(x)^{2}-a(x) c(x)=0$. The 40 nodes of Ξ break into two sets: the 16 points in \mathbb{P}^{4} defined by $a(x)=b(x)=c(x)=q(x)=0$ are the images by p_{Σ} of smooth points of Σ fixed by the involution induced by $\tau ; p_{\Sigma}$ is étale over the other 24 nodes of Ξ, giving rise to the 48 nodes of Σ.

Remark 5. The two families of surfaces X that we have constructed in $\S 2$ and $\S 3$ are different; in fact, a surface X_{1} of the first family is not even homeomorphic to a surface X_{2} of the second one. Indeed X_{1} admits an irrational genus 2 pencil $X \rightarrow D$, and this is a topological property [C]. But for a general member X_{2} of the second family, the Albanese variety of the corresponding Schoen surface is simple [S], so its double cover $\operatorname{Alb}\left(X_{2}\right)$ is also simple; therefore X_{2} cannot have an irrational pencil of genus 2 .

It follows that the corresponding surfaces Σ belong to two different connected components of the moduli space of complete intersections of 4 quadrics in \mathbb{P}^{6} with an even set of 48 nodes.

References

[B1] A. Beauville: L'application canonique pour les surfaces de type général. Invent. math. 55 (1979), 121-140.
[B2] A. Beauville : Sur le nombre maximum de points doubles d'une surface dans $\mathbb{P}^{3}(\mu(5)=31)$. Journées de Géométrie algébrique d'Angers, 207-215; Sijthoff \& Noordhoff (1981).
[B3] A. Beauville: Some surfaces with maximal Picard number. Journal de l'École Polytechnique 1 (2014), 101-116.
[CK] R. Calderbank, W. Kantor: The geometry of two-weight codes. Bull. London Math. Soc. 18 (1986), 97-122.
[C] F. Catanese: Moduli and classification of irregular Kaehler manifolds (and algebraic varieties) with Albanese general type fibrations. Invent. Math. 104 (1991), no. 2, 263-289.
[CMR] C. Ciliberto, M. Mendes Lopes, X. Roulleau: On Schoen surfaces. Comment. Math. Helv. 90 (2015), no. 1, 59-74.
[CPT] C. Ciliberto, R. Pardini, F. Tovena: Regular canonical covers. Math. Nachr. 251 (2003), 19-27.
[FS] E. Freitag, R. Salvati-Manni: Parametrization of the box variety by theta functions. Preprint arXiv:1303.6495. Osaka J. Math., to appear.
[vL] R. van Luijk: On perfect cuboids. Undergraduate thesis, Universiteit Utrecht (2000).
[M1] D. Mumford: On the equations defining abelian varieties I. Invent. Math. 1 (1966), 287-354.
[M2] D. Mumford: Tata lectures on theta, II. Progress in Mathematics, 43. Birkhäuser Boston, Inc., Boston, MA, 1984.
[S] C. Schoen: A family of surfaces constructed from genus 2 curves. Internat. J. Math. 18 (2007), no. 5, 585-612.
[ST] M. Stoll, D. Testa: The surface parametrizing cuboids. Preprint arXiv:1009.0388.

Laboratoire J.-A. Dieudonné
UMR 7351 du CNRS
Université de Nice
Parc Valrose
F-06108 Nice cedex 2, France
E-mail address: arnaud.beauville@unice.fr

