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Abstract The configuration of theta characteristics and vanishing thetanulls on a hyperel-
liptic curve is completely understood. We observe in this note that analogous results hold for
the σ -invariant theta characteristics on any curve C with an involution σ . As a consequence
we get examples of non hyperelliptic curves with a high number of vanishing thetanulls.
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1 Introduction

Let C be a smooth projective curve over C. A theta characteristic on C is a line bundle κ such
that κ2 ∼= KC ; it is even or odd according to the parity of h0(κ). An even theta characteristic
κ with h0(κ) > 0 is called a vanishing thetanull.

The terminology comes from the classical theory of theta functions. A theta characteristic
κ corresponds to a symmetric theta divisor �κ on the Jacobian JC , defined by a theta function
θκ ; this function is even or odd according to the parity of κ . Thus the numbers θκ(0) are 0
for κ odd; for κ even they are classical invariants attached to the curve (“thetanullwerte” or
“thetanulls”). The thetanull θκ(0) vanishes if and only if κ is a vanishing thetanull in the
above sense.

When C is hyperelliptic, the configuration of its theta characteristics and vanishing
thetanulls is completely understood (see e.g. [4]). We observe in this note that analogous
results hold for the σ -invariant theta characteristics on any curve C with an involution σ .
As a consequence we obtain examples of non hyperelliptic curves with a high number of
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62 A. Beauville

vanishing thetanulls: for instance approximately one fourth of the even thetanulls vanish for
a bielliptic curve.

2 σ -Invariant line bundles

Throughout the paper we consider a curve C of genus g, with an involution σ . We denote
by π : C → B the quotient map, and by R ⊂ C the fixed locus of σ . For a subset
E = {p1, . . . , pk} of R we will still denote by E the divisor p1 + · · · + pk .

The double covering π determines a line bundle ρ on B such that ρ2 = OB(π∗ R); we
have π∗ρ = OC (R), π∗OC ∼= OB ⊕ ρ−1 and KC = π∗(K B ⊗ ρ).

We consider the map ϕ : Z
R → Pic(C) which maps r ∈ R to the class of OC (r). Its

image lies in the subgroup Pic(C)σ of σ -invariant line bundles.

Lemma 1 ϕ induces a surjective homomorphism ϕ̄ : (Z/2)R → Pic(C)σ /π∗ Pic(B), whose
kernel is Z/2 · (1, . . . , 1).

Proof Let RC and RB be the fields of rational functions of C and B, respectively. Let
〈σ 〉 (∼= Z/2) be the Galois group of the covering π . Consider the exact sequence of
〈σ 〉-modules

1 → R∗
C/C

∗ → Div(C) → Pic(C) → 0 .

Since H1(〈σ 〉, R∗
C ) = 0 by Hilbert Theorem 90 and H2(〈σ 〉, C

∗) = 0, we have
H1(〈σ 〉, R∗

C/C
∗) = 0, hence a diagram of exact sequences:

1 �� R∗
B/C

∗ ��

α

��

Div(B) ��

β

��

Pic(B) ��

γ

��

0

1 �� (R∗
C/C

∗)σ �� Div(C)σ �� Pic(C)σ �� 0

where the vertical arrows are induced by pull back.
If R = ∅, this shows that γ is surjective, hence there is nothing to prove. Assume R �= ∅.

Then γ is injective. Since H1(〈σ 〉, C
∗) = Z/2 and (R∗

C )σ = R∗
B , the cokernel of α is Z/2.

The cokernel of β can be identified with (Z/2)R , so we get an exact sequence

0 → Z/2 −→ (Z/2)R ϕ̄−→ Pic(C)σ /π∗ Pic(B) → 0;
since OC (R) ∼= π∗ρ, the vector (1, . . . , 1) belongs to Ker ϕ̄, and therefore generates this
kernel. �

Proposition 1 Let M be a σ -invariant line bundle on C.

(a) We have M ∼= π∗L(E) for some L ∈ Pic(B) and E ⊂ R. Any pair (L ′, E ′) satisfying
M ∼= π∗L ′(E ′) is equal to (L , E) or (L ⊗ ρ−1 (π∗E), R − E).

(b) There is a natural isomorphism H0(C, M) ∼= H0(B, L) ⊕ H0(B, L ⊗ ρ−1(π∗E)).

Proof Part (a) follows directly from the Lemma. Let us prove (b). We view OC (E) as
the sheaf of rational functions on C with at most simple poles along E . Then σ induces
a homomorphism OC (E) → σ∗OC (E), hence an involution of the rank 2 vector bundle
F := π∗OC (E); thus F admits a decomposition F = F+⊕F− into eigen-subbundles for this
involution. The section 1 of OC (E) provides a section of F+, which generates F+; therefore
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Vanishing thetanulls on curves with involutions 63

F− ∼= det F ∼= ρ−1(π∗E). This gives a canonical decomposition π∗OC (E) ∼= OB ⊕
ρ−1(π∗E). Taking tensor product with L and global sections gives the required isomorphism.

�


3 σ -Invariant theta characteristics: the ramified case

In this section we assume R �= ∅. We denote by b the genus of B and we put r := g−2b+1.
By the Riemann–Hurwitz formula we have deg ρ = r and #R = 2r .

We now specialize Proposition 1 to the case of theta characteristics.

Proposition 2 Let κ be a σ -invariant theta characteristic on C.

(a) We have κ ∼= π∗L(E) for some L ∈ Pic(B) and E ⊂ R with L2 ∼= K B ⊗ ρ (−π∗E). If
another pair (L ′, E ′) satisfies κ ∼= π∗L ′(E ′), we have (L ′, E ′) = (L , E) or (L ′, E ′) =
(K B ⊗ L−1, R − E).

(b) We have h0(κ) = h0(L)+h1(L), and the parity of κ is equal to deg(L)−(b−1) (mod. 2).

Proof (a) By Proposition 1(a) κ can be written π∗L(E), with L ∈ Pic(B) and E ⊂ R.
The condition κ2 = KC translates as π∗(L2(π∗E)) ∼= π∗(K B ⊗ ρ). Since π∗ is injective
(because R �= ∅), this implies L2 ∼= K B ⊗ ρ (−π∗E). The last assertion then follows from
Proposition 1(a).

(b) The value of h0(κ) follows from Proposition 1(b), and its parity from the Riemann–
Roch theorem. �

Lemma 2 The group (Pic(C)[2])σ of σ -invariant line bundles α on C with α2 = OC is a
vector space of dimension 2(g − b) over Z/2.

Proof By Lemma 1 we have an exact sequence

0 → Pic(B) → Pic(C)σ → (Z/2)2r−1 → 0. (1)

For a Z-module M , let M[2] = Hom(Z/2, M) be the kernel of the multiplication by 2 in M .
Note that Ext1(Z/2, M) is naturally isomorphic to M/2M . Applying Hom(Z/2,−) to (1)
gives an exact sequence of (Z/2)-vector spaces

0 → Pic(B)[2]→(Pic(C)[2])σ → (Z/2)2r−1 → Pic(B)/2 Pic(B) → Pic(C)σ /2 Pic(C)σ .

Let p ∈ R. The group Pic(B)/2 Pic(B) is generated by the class of OB(π(p)); since
π∗(π(p)) = 2p, this class goes to 0 in Pic(C)σ /2 Pic(C)σ . Thus the dimension of
(Pic(C)[2])σ over Z/2 is 2b + 2r − 2 = 2(g − b). �

Proposition 3 (a) The σ -invariant theta characteristics form an affine space of dimension

2(g − b) over Z/2; among these, there are 2g−1(2g−2b + 1) even theta characteristics
and 2g−1(2g−2b − 1) odd ones.

(b) C admits (at least) 2g−1
(

2g−2b + 1 − 2−r+1
(2r

r

))
vanishing thetanulls.

Proof The σ -invariant theta characteristics form an affine space under (Pic(C)[2])σ , which
has dimension 2(g − b) by Lemma 2.

According to Proposition 2, a theta characteristic κ is determined by a subset E ⊂ R and a
line bundle L on B such that L2 ∼= K B ⊗ρ (−π∗E). This condition implies #E ≡ r (mod. 2).
Moreover the parity of κ is that of deg(L) − (b − 1) = 1

2 (r − #E).
Once E is fixed we have 22b choices for L . Since E and R � E give the same theta

characteristic, we consider only the subsets E with #E ≤ r , counting only half of those with
#E = r . Thus the number of even σ -invariant theta characteristics is
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22b
[

1

2

(
2r

r

)
+

(
2r

r − 4

)
+· · ·

]

= 22b−3 [
(1+1)2r +(−1)r (1 − 1)2r + (−i)r (1 + i)2r + ir (1 − i)2r ]

= 22b+2r−3 + 22b+r−2 = 2g−1(2g−2b + 1) ,

which gives (a).
By Proposition 2(b) such a theta characteristic will be a vanishing thetanull a soon as

deg L > b − 1, or equivalently #E < r . Thus subtracting the number of theta characteristics
κ = π∗L(E) with #E = r we obtain (b). �

Remark 1) Note that there may be more σ -invariant vanishing thetanulls, namely those of

the form π∗L(E) with deg L = b − 1 but h0(L) > 0. These will not occur for a general
(C, σ ).

2) Let g → ∞ with b fixed. By the Stirling formula
(2r

r

)
is equivalent to 22r/

√
πr , so

2−r+1
(2r

r

)
is negligible compared to 2g−2b = 2r−1. Thus asymptotically we obtain

22g−1−2b vanishing thetanulls.
3) When b = 0 we recover the usual numbers for hyperelliptic curves. For b = 1 we obtain

approximately 22g−3 vanishing thetanulls, that is one fourth of the number of even theta
characteristics.

4 σ -Invariant theta characteristics: the étale case

In this section we assume that σ is fixed point free (R = ∅).

Lemma 3 (Pic(C)[2])σ is a vector space of dimension g + 1 over Z/2.

Proof Apply Hom(Z/2,−) to the exact sequence

0 → Z/2 → J B
π∗→JCσ → 0.

�

Proposition 4 (a) The σ -invariant theta characteristics form an affine space of dimension

g + 1 over Z/2; among these, there are 3.2g−1 even theta characteristics and 2g−1 odd
ones.

(b) C admits a set T of 2g−2 − 2
g−3

2 σ -invariant vanishing thetanulls; it is contained in an
affine subspace of dimension g − 1 consisting of even theta characteristics.

The last property implies that for κ1, κ2, κ3 in T , the theta characteristic κ1 ⊗ κ2 ⊗ κ−1
3 is

even: in classical terms, T is syzygetic. The existence of these vanishing thetanulls appears
already in [2].

Proof The first assertion follows from the previous Lemma. Let κ be a σ -invariant theta
characteristic; we have κ = π∗L for some line bundle L on C with π∗L2 = KC = π∗K B ,
which implies either L2 = K B ⊗ ρ or L2 = K B . In the first case we have

h0(κ) = h0(L) + h0(L ⊗ ρ) = h0(L) + h0(K B ⊗ L−1) ≡ 0 (mod. 2).

Since π∗L ∼= π∗(L ⊗ ρ), we get 22b−1 even theta characteristics of C .
In the second case L is a theta characteristic on B. We recall briefly the theory of theta

characteristics on a curve, as explained for instance in [3]. The group V = Pic(B)[2] is a

123



Vanishing thetanulls on curves with involutions 65

vector space over Z/2, equipped with a symplectic form e, the Weil pairing. A quadratic
form on V associated to e is a function q : V → Z/2 satisfying

q(α + β) = q(α) + q(β) + e(α, β) .

The set Q of such forms is an affine space over V . Now the set of theta characteristics
on B is also an affine space over V , which is in fact canonically isomorphic to Q: the
isomorphism associates to a theta characteristic L the form qL ∈ Q defined by qL(α) =
h0(L ⊗ α) + h0(L) (mod. 2). Moreover the parity of L is given by the Arf invariant
Arf(qL).

Coming back to our situation, let L be a theta characteristic on B, and κ = π∗L; we have

h0(κ) = h0(L) + h0(L ⊗ ρ) ≡ qL(ρ) (mod. 2).

The function q �→ q(ρ) is an affine function on Q, hence it takes equally often the values
0 and 1. Taking into account the isomorphism π∗L ∼= π∗(L ⊗ ρ), we get 22b−2 even theta
characteristics on C and 22b−2 odd ones; summing up we obtain (a).

Suppose κ = π∗L is even, that is, h0(L) ≡ h0(L ⊗ ρ) (mod. 2) ; if we want h0(κ) > 0,
a good way (actually the only one if B is generic) is to choose L odd, that is, Arf(qL) = 1.
Equivalently, we look for forms q ∈ Q with q(ρ) = 0 and Arf(q) = 1.

Let ρ′ be an element of V with e(ρ, ρ′) = 1. ρ and ρ′ span a plane P ⊂ V , such
that V = P ⊕ P⊥. A form q ∈ Q is determined by its restriction to P and P⊥, and
we have Arf(q) = Arf(q|P ) + Arf(q|P⊥). The condition q(ρ) = 0 implies Arf(q|P ) =
q(ρ)q(ρ′) = 0; so q is determined by q(ρ′) ∈ Z/2 and a form q ′ on P⊥ with Arf invariant
1. Since dim P⊥ = 2(b − 1), there are 2b−2(2b−1 − 1) such forms, hence 2b−1(2b−1 − 1)

forms q ∈ Q with q(ρ) = 0 and Arf(q) = 1. Taking again into account the isomor-

phism π∗L ∼= π∗(L ⊗ ρ), we obtain 2b−2(2b−1 − 1) = 2g−2 − 2
g−3

2 vanishing thetanulls
on C .

They are contained in the affine space of theta characteristics κ = π∗L with qL(ρ) = 0,
which has dimension 2b − 2 = g − 1 and consists of even theta characteristics. �


5 Low genus

Let C be a non hyperelliptic curve of genus g. How many vanishing thetanulls can C have?
The answer is well-known up to genus 5. There is no vanishing thetanull in genus 3, and at
most one in genus 4 (which occurs if and only if the unique quadric containing the canonical
curve is singular).

Suppose g = 5. If C is trigonal it admits at most one vanishing thetanull. Otherwise
the canonical curve C ⊂ P

4 is the base locus of a net � of quadrics. The discriminant
curve (locus of the quadrics in � of rank ≤ 4) is a plane quintic with only ordinary nodes;
these nodes correspond to the rank 3 quadrics of �, that is to the vanishing thetanulls of C .
Therefore C can have any number ≤ 10 of vanishing thetanulls; they are syzygetic [1]. The
maximum 10 is attained by the so-called Humbert curves, for which all the quadrics in �

can be simultaneously diagonalized. They have an action of the group (Z/2)4, generated by
5 involutions with elliptic quotient.

Starting with g = 6 very little seems to be known. By Proposition 3(b), if C is bielliptic
(that is, C admits an involution with elliptic quotient), it has 40 vanishing thetanulls. This
can be slightly improved as follows. We take an elliptic curve B, a line bundle α of degree
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66 A. Beauville

2 on B, a point p ∈ B, and disjoint divisors A in |α(p)|, A1, A2, A3 in |α| which do
not contain p. We put ρ = α2(p) and R̄ = A1 + A2 + A3 + A + p, and construct the
double covering π : C → B associated to (ρ, R̄). The curve C has three extra vanishing
thetanulls, namely OC ( Ãi + Ã j + p̃) for i < j , where Ãi and p̃ are the lifts of Ai and p
to C . Thus we get a genus 6 curve with 43 vanishing thetanulls; it is likely that one can do
better.
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