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Abstract The configuration of theta characteristics and vanishing thetanulls on a hyperel-
liptic curve is completely understood. We observe in this note that analogous results hold for
the o-invariant theta characteristics on any curve C with an involution o. As a consequence
we get examples of non hyperelliptic curves with a high number of vanishing thetanulls.
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1 Introduction

Let C be a smooth projective curve over C. A theta characteristic on C is a line bundle « such
that k> = K it is even or odd according to the parity of 2%(k). An even theta characteristic
K« with h9(x) > 0 is called a vanishing thetanull.

The terminology comes from the classical theory of theta functions. A theta characteristic
Kk corresponds to a symmetric theta divisor ®, on the Jacobian J C, defined by a theta function
O, ; this function is even or odd according to the parity of «. Thus the numbers 6, (0) are 0
for k odd; for « even they are classical invariants attached to the curve (“thetanullwerte” or
“thetanulls”). The thetanull 6, (0) vanishes if and only if « is a vanishing thetanull in the
above sense.

When C is hyperelliptic, the configuration of its theta characteristics and vanishing
thetanulls is completely understood (see e.g. [4]). We observe in this note that analogous
results hold for the o-invariant theta characteristics on any curve C with an involution o.
As a consequence we obtain examples of non hyperelliptic curves with a high number of
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vanishing thetanulls: for instance approximately one fourth of the even thetanulls vanish for
a bielliptic curve.

2 o-Invariant line bundles

Throughout the paper we consider a curve C of genus g, with an involution o. We denote
by m : C — B the quotient map, and by R C C the fixed locus of o. For a subset
E ={p1, ..., px} of R we will still denote by E the divisor p; + - -+ + pg.

The double covering 7 determines a line bundle p on B such that p> = Op(m4R); we
have 7%p = Oc(R), 1.0c 2 O & p~ ' and Kc = 7*(Kg ® p).

We consider the map ¢ : ZR — Pic(C) which maps r € R to the class of Oc¢(r). Its
image lies in the subgroup Pic(C)? of o-invariant line bundles.

Lemma 1 ¢ induces a surjective homomorphism ¢ : (Z/2)® — Pic(C)® /n* Pic(B), whose
kernelis Z/2 - (1, ..., 1).

Proof Let Rc and Rp be the fields of rational functions of C and B, respectively. Let
(o) (= Z/2) be the Galois group of the covering . Consider the exact sequence of
(o)-modules

1 - R{/C* — Div(C) — Pic(C) —» 0.

Since H'((0), RE) = 0 by Hilbert Theorem 90 and H?((c),C*) = 0, we have
H'((o), R{./C*) = 0, hence a diagram of exact sequences:

| — Rp/C* Div(B) Pic(B) ——0

P k)

| —— (R}/C*)? —— Div(C)° —— Pic(C)° ——=0

where the vertical arrows are induced by pull back.

If R = o, this shows that y is surjective, hence there is nothing to prove. Assume R # &.
Then y is injective. Since H'((o), C*) = Z/2 and (R{)° = R}, the cokernel of o is Z/2.
The cokernel of B can be identified with (Z/2)%, so we get an exact sequence

0— 2/2 — 2/2)F -5 Pic(C)” /x* Pic(B) — 0:

since Oc(R) = m*p, the vector (1,..., 1) belongs to Ker ¢, and therefore generates this
kernel. o

Proposition 1 Let M be a o -invariant line bundle on C.

(a) We have M = w*L(E) for some L € Pic(B) and E C R. Any pair (L', E') satisfying
M = g*L/(E') is equal to (L, E) or (L ® p~' (w+E), R — E).
(b) There is a natural isomorphism HY(C, M)= HYB,L)® H'B,L ® p’l(n*E)).

Proof Part (a) follows directly from the Lemma. Let us prove (b). We view O¢c(E) as
the sheaf of rational functions on C with at most simple poles along E. Then o induces
a homomorphism O¢(E) — 0.Oc(E), hence an involution of the rank 2 vector bundle
F := m,0¢(E);thus F admits adecomposition F = F*@ F~ into eigen-subbundles for this
involution. The section 1 of O¢ (E) provides a section of F' T, which generates F; therefore
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F~ = detF = p~!(n.E). This gives a canonical decomposition m,Oc(E) = Op ®
o~ (7, E). Taking tensor product with L and global sections gives the required isomorphism.
O

3 o-Invariant theta characteristics: the ramified case

In this section we assume R # &. We denote by b the genus of B and we putr := g —2b+1.
By the Riemann—Hurwitz formula we have deg p = r and #R = 2r.
We now specialize Proposition 1 to the case of theta characteristics.

Proposition 2 Let k be a o -invariant theta characteristic on C.

(a) We have k = *L(E) for some L € Pic(B) and E C R with L’ZKp® p(—m.E). If
another pair (L', E') satisfies k = a*L'(E’), we have (L', E') = (L, E) or (L', E") =
(Kg® L™\, R—E).

(b) We have h° (k) = hO(L)+h' (L), and the parity of k is equal to deg(L)— (b—1) (mod. 2).

Proof (a) By Proposition 1(a) « can be written 7*L(E), with L € Pic(B) and E C R.
The condition k2 = K¢ translates as 7*(L* (. E)) = 7n*(Kp ® p). Since * is injective
(because R # @), this implies L? = Kp @ p (—mE). The last assertion then follows from
Proposition 1(a).

(b) The value of h°(x) follows from Proposition 1(b), and its parity from the Riemann—
Roch theorem. m]

Lemma 2 The group (Pic(C)[2])° of o-invariant line bundles o on C with o2 =0cisa
vector space of dimension 2(g — b) over Z/2.

Proof By Lemma 1 we have an exact sequence
0 — Pic(B) — Pic(C)° — (2/2)*~! - 0. 1)

For a Z-module M, let M[2] = Hom(Z/2, M) be the kernel of the multiplication by 2 in M.
Note that Ext!(Z/2, M) is naturally isomorphic to M/2M. Applying Hom(Z/2, —) to (1)
gives an exact sequence of (Z/2)-vector spaces

0 — Pic(B)[2]— (Pic(O)[2])° — (Z/2)* ! — Pic(B)/2Pic(B) — Pic(C)° /2 Pic(C)°.

Let p € R. The group Pic(B)/2Pic(B) is generated by the class of Op(w(p)); since
7*(m(p)) = 2p, this class goes to 0 in Pic(C)? /2Pic(C)?. Thus the dimension of
(Pic(O)[2])° over Z/2is2b + 2r —2 = 2(g — b). m]

Proposition 3 (a) The o-invariant theta characteristics form an affine space of dimension
2(g — b) over 7./2; among these, there are 28~ 1(28 —2b 4 1) even theta characteristics
and 287128720 — 1) odd ones.

(b) C admits (at least) 287! (2g’2h +1 =27t (Zr)) vanishing thetanulls.

r

Proof The o-invariant theta characteristics form an affine space under (Pic(C)[2])?, which
has dimension 2(g — b) by Lemma 2.

According to Proposition 2, a theta characteristic « is determined by a subset E C R and a
line bundle L on B suchthat L2 = K ®p (—m«E). This condition implies #E = r (mod. 2).
Moreover the parity of « is that of deg(L) — (b — 1) = %(r — #E).

Once E is fixed we have 22? choices for L. Since E and R ~ E give the same theta
characteristic, we consider only the subsets E with #E < r, counting only half of those with
#E = r. Thus the number of even o -invariant theta characteristics is
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1 (2r 2r
22b | Z
=223 [A+ DY + (=D (1 = D¥ + (=) 1+ D> +i"(1 - )]
— 22b+2f—3 + 22b+l’—2 — 2g—1(2g—2b + 1)

which gives (a).

By Proposition 2(b) such a theta characteristic will be a vanishing thetanull a soon as
deg L > b — 1, or equivalently #E < r. Thus subtracting the number of theta characteristics
k = n*L(E) with #E = r we obtain (b). O

Remark 1) Note that there may be more o -invariant vanishing thetanulls, namely those of
the form 7*L(E) withdeg L = b — 1 but hO(L) > 0. These will not occur for a general
(C,0).

2) Let g — oo with b fixed. By the Stirling formula (*) is equivalent to 2% //7r, so

K

27+l (Zr’) is negligible compared to 2872 = 2"~! Thus asymptotically we obtain

228=1=2 vanishing thetanulls.

3) When b = 0 we recover the usual numbers for hyperelliptic curves. For b = 1 we obtain
approximately 22273 vanishing thetanulls, that is one fourth of the number of even theta

characteristics.

4 o -Invariant theta characteristics: the étale case

In this section we assume that o is fixed point free (R = @).
Lemma 3 (Pic(C)[2])? is a vector space of dimension g + 1 over Z/2.

Proof Apply Hom(Z/2, —) to the exact sequence

0 7/2 - JBSJIC = 0.
O

Proposition 4 (a) The o-invariant theta characteristics form an affine space of dimension
g + 1 over Z/2; among these, there are 3.28~" even theta characteristics and 28~ odd
ones.

(b) C admits a set T of 2872 — 2%3 o -invariant vanishing thetanulls; it is contained in an
affine subspace of dimension g — 1 consisting of even theta characteristics.

The last property implies that for k1, k2, k3 in 7', the theta characteristic k1 ® k2 ® k5 Lis
even: in classical terms, 7 is syzygetic. The existence of these vanishing thetanulls appears
already in [2].

Proof The first assertion follows from the previous Lemma. Let x be a o-invariant theta
characteristic; we have k = 7*L for some line bundle L on C with 7*L? = K¢ = n*Kp,
which implies either L>’=Kp® p or L? = Kp. In the first case we have

W) =h°(L)y +h° (L @ p) =h°L) +h° (K L™") =0 (mod. 2).

Since 7*L = 7*(L ® p), we get 22°~1 even theta characteristics of C.
In the second case L is a theta characteristic on B. We recall briefly the theory of theta
characteristics on a curve, as explained for instance in [3]. The group V = Pic(B)[2] is a
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vector space over Z/2, equipped with a symplectic form e, the Weil pairing. A quadratic
form on V associated to e is a function ¢ : V — Z/2 satisfying

q(a+p) =qa) +q(B) +e(a p).

The set Q of such forms is an affine space over V. Now the set of theta characteristics
on B is also an affine space over V, which is in fact canonically isomorphic to Q: the
isomorphism associates to a theta characteristic L the form g7 € Q defined by g1 (¢) =
KoL ® o) + h%(L) (mod. 2). Moreover the parity of L is given by the Arf invariant
Arf(qr).

Coming back to our situation, let L be a theta characteristic on B, and x = 7*L; we have

hO(kc) = hO(L) + k%L ® p) = q1(p) (mod. 2).

The function ¢ — ¢(p) is an affine function on Q, hence it takes equally often the values
0 and 1. Taking into account the isomorphism 7*L = 7*(L ® p), we get 222 even theta
characteristics on C and 22°~2 odd ones; summing up we obtain (a).

Suppose k = 7*L is even, that is, h°(L) = h°(L ® p) (mod. 2) ; if we want 2% (k) > 0,
a good way (actually the only one if B is generic) is to choose L odd, that is, Arf(g;) = 1.
Equivalently, we look for forms g € Q with g(p) = 0 and Arf(g) = 1.

Let p’ be an element of V with e(p, p') = 1. p and p’ span a plane P C V, such
that V. = P @ P*. A form g € Q is determined by its restriction to P and P, and
we have Arf(q) = Arf(qjp) + Arf(g p1). The condition g(p) = 0 implies Arf(gp) =
q(p)g(p") = 0; so q is determined by ¢ (p’) € Z/2 and a form ¢’ on P with Arf invariant
1. Since dim P+ = 2(b — 1), there are 2°=2(2b=! — 1) such forms, hence 221 (2= — 1)
forms g € Q with g(p) = 0 and Arf(q) = 1. Taking again into account the isomor-

phism 7*L = 7*(L ® p), we obtain 207220~ — 1) = 2872 — 25 vanishing thetanulls
onC.

They are contained in the affine space of theta characteristics x = 7*L with g7, (p) = 0,
which has dimension 2b — 2 = g — 1 and consists of even theta characteristics. O

5 Low genus

Let C be a non hyperelliptic curve of genus g. How many vanishing thetanulls can C have?
The answer is well-known up to genus 5. There is no vanishing thetanull in genus 3, and at
most one in genus 4 (which occurs if and only if the unique quadric containing the canonical
curve is singular).

Suppose g = 5. If C is trigonal it admits at most one vanishing thetanull. Otherwise
the canonical curve C C P* is the base locus of a net IT of quadrics. The discriminant
curve (locus of the quadrics in IT of rank < 4) is a plane quintic with only ordinary nodes;
these nodes correspond to the rank 3 quadrics of I1, that is to the vanishing thetanulls of C.
Therefore C can have any number < 10 of vanishing thetanulls; they are syzygetic [1]. The
maximum 10 is attained by the so-called Humbert curves, for which all the quadrics in IT
can be simultaneously diagonalized. They have an action of the group (Z/2)*, generated by
5 involutions with elliptic quotient.

Starting with g = 6 very little seems to be known. By Proposition 3(b), if C is bielliptic
(that is, C admits an involution with elliptic quotient), it has 40 vanishing thetanulls. This
can be slightly improved as follows. We take an elliptic curve B, a line bundle « of degree
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2 on B, a point p € B, and disjoint divisors A in |e(p)|, A1, A2, A3 in || which do
not contain p. We put p = a?(p)and R = A; + Ay + A3 + A + p, and construct the
double covering 7 : C — B associated to (p, R). The curve C has three extra vanishing
thetanulls, namely O¢ (Aj + A j + p)fori < j, where A; and p are the lifts of A; and p
to C. Thus we get a genus 6 curve with 43 vanishing thetanulls; it is likely that one can do
better.
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