
Journal of Topology 4 (2011) 300–304 C�2011 London Mathematical Society
doi:10.1112/jtopol/jtr002

Antisymplectic involutions of holomorphic symplectic manifolds

Arnaud Beauville

Abstract

Let X be a holomorphic symplectic manifold, of dimension divisible by four, and σ be an
antisymplectic involution of X. The fixed locus F of σ is a Lagrangian submanifold of X; we
show that its Â-genus is one. As an application, we determine all possibilities for the Chern
numbers of F when X is a deformation of the Hilbert square of a K3 surface.

Introduction

Let X be an irreducible holomorphic symplectic manifold admitting an antisymplectic
involution σ (that is, σ changes the sign of the symplectic form). The fixed locus F of σ
is a Lagrangian submanifold of X. The main observation of this note is that when dim(X) is
divisible by four, the Â-genus of F is equal to one. Our proof, given in § 1, rests on a simple
computation based on the holomorphic Lefschetz theorem.

In § 2, we apply this result when X is a symplectic four-fold with b2 = 23 (this holds when X
is the Hilbert square S[2] of a K3 surface). We show that there are exactly eleven possibilities
for the pair of invariants (K2

F , χ(OF )) of the surface F , depending on the number of moduli of
(X,σ). In § 3, we illustrate our results on a few examples, in particular, the double Eisenbud–
Popescu–Walter (EPW) sextics studied by O’Grady [9], which form the only known family of
pairs (X,σ) as above of maximal dimension twenty.

1. The Â-genus of the fixed manifold

1.1. Throughout this note, we consider an irreducible holomorphic symplectic manifold X
(see [2]). This means that X is compact Kähler, simply connected, and admits a symplectic
2-form ϕ ∈ H0(X,Ω2

X), which generates the C-algebra H0(X,Ω∗
X). We denote by σ an

antisymplectic involution of X (so that σ∗ϕ = −ϕ).

Lemma 1. The fixed locus F of σ is a smooth Lagrangian submanifold of X.

Proof. Let x ∈ F . We have a decomposition Tx(X) = T+ ⊕ T− into eigenspaces of σ′(x).
Because of the relation ϕx(σ′(x).u, σ′(x).v) = −ϕx(u, v) for u, v ∈ Tx(X), the two eigenspaces
are isotropic, and therefore Lagrangian. As T+ = Tx(F ), the lemma follows.

1.2. Observe that the existence of the antisymplectic involution σ forces X to be projective:
indeed, let H2(X, Q)+ ⊂ H2(X, R)+ be the (+1)-eigenspaces of σ∗ in H2(X, Q) ⊂ H2(X, R).
The space H2(X, R)+ is contained in H1,1, and contains a Kähler class; as H2(X, Q)+ is dense
in H2(X, R)+, it also contains a Kähler class, which is ample.
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1.3. The Â-genus Â(M) of a compact manifold M is a rational number that can be expressed
as a polynomial in the Pontrjagin classes of M (see [7, § 26]). When M is a complex manifold
of dimension n, we have

Â(M) =
∫
M

Todd(M) e−c1(M)/2,

where
∫

M
: H∗(M, Q) → Q is the evaluation on the fundamental class of M (see [7, Formula

(12), p. 13]). If we extend the Euler–Poincaré characteristic χ as a Q-linear homomorphism
K(M) ⊗ Q → Q, then we have Â(M) = χ( 1

2KM ), where KM is the canonical bundle of M .

Theorem 1. Let X be an irreducible symplectic manifold with 4 | dim(X), σ be an
antisymplectic involution of X and F be its fixed manifold. Then Â(F ) = 1.

Proof. As F is Lagrangian (Lemma 1), the symplectic form of X induces an isomorphism
TF

∼−→ N∗
F/X . We apply the holomorphic Lefschetz formula [1, 4.6]:

∑

i

(−1)i Tr σ∗
|Hi(X,OX) =

∫
F

Todd(F )(ch∧N∗
F/X)−1 =

∫
F

Todd(F )(ch∧TF )−1.

Because X is irreducible symplectic, σ∗ acts as (−1)i on H2i(X,OX); as dim(X) is divisible
by four, this implies that the above expression is equal to one.

As usual, we write the Chern polynomial ct(TF ) =
∏

i(1 + tγi), where the γi live in some
overring of H∗(F ). We have

Todd(F ) =
∏

i

γi

1 − e−γi
and ch(∧TF ) =

∑

i1<...<ik

eγi1+...+γik =
∏

i

(1 + eγi),

hence

Todd(F )(ch∧TF )−1 = 2−n e−c1
∏

i

2γi

1 − e−2γi
, with n = dim(X) and c1 = c1(TF ).

Writing Todd(F ) =
∑

k Todd(F )k, with Todd(F )k ∈ H2k(F, Q), we find∫
F

Todd(F )(ch∧TF )−1 = 2−n
∑

k

∫
F

(−c1)k

k!
2n−k Todd(F )n−k =

∫
F

Todd(F ) e−c1/2,

hence Â(F ) = 1.

Note that the argument applies also when dim(X) ≡ 2 (mod 4) but gives the trivial equality
Â(F ) = 0.

2. Symplectic four-folds

2.1. When dim(X) = 4, the fixed locus F is a surface (not necessarily connected). In that
case Â(F ) is equal to − 1

8 sign(F ), where sign(F ) is the signature of the intersection form on
H2(F, R) (see [7, 1.5, 1.6, and 8.2.2]); we have

sign(F ) = 1
3 (K2

F − 2e(F )) = K2
F − 8χ(OF ),

where e(F ) is the topological Euler characteristic of F , and we put K2
F =

∑
i K2

Fi
if F1, . . . , Fp

are the connected components of F .
Therefore, Theorem 1 gives

sign(F ) = K2
F − 8χ(OF ) = −8 and K2

F − 2e(F ) = −24.



302 ARNAUD BEAUVILLE

We will be able to say more when the action of σ on H2(X) controls the action on H4(X),
that is, when the canonical map Sym2H2(X) → H4(X) is an isomorphism. By [6] this happens
if and only if b2(X) = 23. This is the case for one of the two families of symplectic four-
folds known so far, namely the family of Hilbert schemes S[2] of a K3 surface S (and their
deformations).

Theorem 2. Let X be a symplectic four-fold with b2(X) = 23, σ be an antisymplectic
involution of X and F be its fixed surface. Let t denote the trace of σ∗ acting on H1,1(X).

(a) We have

K2
F = t2 − 1, χ(OF ) = 1

8 (t2 + 7), e(F ) = 1
2 (t2 + 23).

(b) The local deformation space of (X,σ) is smooth of dimension 1
2 (21 − t).

(c) The integer t can take any odd value with −19 � t � 21.

Proof. The classical Lefschetz formula reads

e(F ) =
∑

i

(−1)i Tr σ∗
|Hi(X),

where we put H∗(X) := H∗(X, Q). In the case b2 = 23, the odd degree cohomology vanishes,
and the natural map Sym2H2(X) → H4(X) is an isomorphism [6]. Let a and b be, respectively,
the dimensions of the (+1)- and (−1)-eigenspaces of σ∗ on H2(X). We have a + b = 23 and
a − b = t − 2. Then

Tr σ∗
|H4(X) = 1

2a(a + 1) + 1
2b(b + 1) − ab = 1

2 (t − 2)2 + 23
2

and

e(F ) = 2 + 2Tr σ∗
|H2(X) + Trσ∗

|H4(X) = 2 + 2(t − 2) + 1
2 (t − 2)2 + 23

2 = 1
2 (t2 + 23);

using (2.1) we deduce the other formulas of (a).
We have H2(X,TX) ∼= H2(X,Ω1

X) = 0, hence the versal deformation space DefX of X is
smooth and can be locally identified with H1(X,TX); the involution σ gives rise to an involution
of DefX , which under the above identification corresponds to σ∗ acting on H1(X,TX). Thus,
the deformation space of (X,σ) is identified with the (+1)-eigenspace of σ∗. As σ∗ϕ = −ϕ, this
eigenspace is mapped by the isomorphism

H1(X,TX)
i(ϕ)−→ H1(X,Ω1

X),

to the (−1)-eigenspace of σ∗ in H1(X,Ω1
X). With the previous notation, the dimension of this

eigenspace is b − 2 = 1
2 (21 − t), which proves (b).

Let us prove (c). As σ preserves some Kähler class, we have a = 1
2 (t + 21) � 1, hence t �

−19; as σ∗ϕ = −ϕ, we have b = 1
2 (25 − t) � 2, hence t � 21. We construct in §§ 3.2–3.4 below

examples with all possible values of t.

Corollary 1. The pair (K2
F , χ(OF )) can take any of the values (0, 1), (8, 2), (24, 4), (48, 7),

(80, 11), (120, 16), (168, 22), (224, 29), (288, 37), (360, 46) and (440, 56).

3. Examples

3.1. Let S be a K3 surface and σ be an antisymplectic involution of S; it extends to an
antisymplectic involution σ[2] of the Hilbert scheme X = S[2], which preserves the exceptional
divisor E (the locus of non-reduced subschemes). We have H1,1(X) = H1,1(S) ⊕ C[E], hence
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t = Trσ∗
|H1,1(S) + 1. The fixed locus of σ is a curve Γ on S (not necessarily connected); the

Lefschetz formula for σ gives t = e(Γ) + 1. The list of all possibilities for Γ can be found in [8].
The fixed surface F of σ[2] is the union of the symmetric square Γ(2) and the quotient

surface S/σ.
3.2. Let C be an irreducible plane curve of degree 6, with s ordinary double points (0� s� 10)

and no other singularities. Let π : S′ → P2 be the double covering of P2 branched along C, S
be the minimal resolution of S′ and σ be the involution of S that exchanges the sheets of π.
The fixed locus Γ of σ is the normalization of C; thus, e(Γ) = −18 + 2s and t = −17 + 2s.

3.3. For each integer r with 1 � r � 10, there exists a K3 surface S and an involution of S
whose fixed locus is the disjoint union of r rational curves [8]. Then e(Γ) = 2r and t = 2r + 1.
Together with the previous example, this gives all integers t appearing in Theorem 2(c), except
t = −19.

3.4. The case t = −19 is particularly interesting, because, when it holds, the deformation
space of (X,σ) has maximal dimension twenty (Theorem 2(b)). The space H2(X, Q)+ is one-
dimensional, generated by an ample class (1.2); the deformation space of (X,σ) coincides
locally with the deformation space of X as a polarized variety. We know only one example of
this situation: O’Grady has constructed a twenty-dimensional family of projective symplectic
four-folds, which are double coverings of certain sextic hypersurfaces in P5, called EPW sextics
[9]. The corresponding involution is antisymplectic and must satisfy t = −19 by Theorem 2(b).
The fixed surface F is connected, and from Theorem 2(a) we recover the invariants K2

F = 360,
χ(OF ) = 46 already obtained in [10].

3.5. As explained in [5] (I am indebted to O’Grady for pointing out this paper to me,
thus correcting an inaccurate remark in the first version of this note.), the above pairs (X,σ)
specialize to (S[2], τ), where S is a smooth quartic surface in P3 that contains no line and τ
associates to a length 2 subscheme z ∈ S[2], the residual subscheme in the intersection of S, and
the line spanned by z. The fixed locus becomes the surface B of bitangents to S; this explains
why B has the same invariants K2

B = 360, χ(OB) = 46, as already observed by Welters [11].
3.6. There are many other examples, which give rise to interesting exercises. Here is one: we

start with the involution ι of P5 given by ι(X0, . . . , X5) = (−X0,X1, . . . , X5). Let V ⊂ P5 be a
smooth cubic three-fold invariant under ι: its equation must be of the form X2

0L(X1, . . . , X5) +
G(X1, . . . , X5) = 0, where L is linear and G cubic. The Fano variety X of lines contained in V
is a symplectic four-fold [3], and ι defines an involution σ of X.

The fixed points of ι in P5 are p = (1, 0, . . . , 0) and the hyperplane H given by X0 = 0.
A line 	 ∈ X is preserved by ι if and only if it contains at least two fixed points; this means
that either 	 contains p, or it is contained in H. The lines passing through p are parametrized
by the cubic surface S ⊂ H given by L = G = 0; the lines contained in H form the Fano surface
T of the cubic three-fold G = 0 in H. Thus, the fixed surface F of σ is the disjoint union of S
and T .

Using the canonical isomorphism H1,1(X) ∼−→ H2,2(V ) (see [3]) and Griffiths’ description
of the cohomology of the hypersurface V , one finds easily t = −7. Then Theorem 2(a) gives
K2

F = 48 and χ(OF ) = 7. As K2
S = 3 and χ(OS) = 1, we recover the values K2

T = 45 and
χ(OT ) = 6 (see [4]).
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