On the stability of the direct image of a generic vector bundle

Arnaud BEAUVILLE

Introduction

We discuss in this note the following conjecture:

Conjecture. — Let $\pi : X' \to X$ be a finite morphism between smooth projective curves, and L a generic vector bundle on X'. The vector bundle π_*L is stable if $g(X) \ge 2$, semi-stable if g(X) = 1.

I do not have a strong motivation towards the conjecture, except that it is a rather natural statement. As we will see below, the crucial case is when L is a line bundle; the (easy) case when π is a double covering was used in [B] to control the theta divisor on the moduli space of rank 2 vector bundles on X. One may hope that a proof of the conjecture would lead to a better understanding of the theta linear system in arbitrary rank.

We have only partial results in the direction of the conjecture: we will show that stability holds with respect to sub-bundles of small degree (§ 1), for small values of $\chi(L)$ (§ 2), or when π is étale (§ 3).

1. General remarks

(1.1) It is of course sufficient to prove the conjecture for *one* vector bundle with the same rank and degree as L. Let $\pi' : X'' \to X'$ be an étale covering of degree rk L, and M a general line bundle on X'' of degree deg L. Then π'_*M has same rank and degree as L; so our conjecture holds if it holds for line bundles on X'' w.r.t. the covering $\pi \circ \pi'$. Therefore it is enough to prove the conjecture in the case L is a line bundle.

(1.2) From now on we suppose that L is a line bundle. We denote by r the degree of the covering π , so that π_*L is a rank r vector bundle; we denote by g the genus of X and by g' the genus of X'.

The assertion depends only of course on the degree of L, and actually on the degree of L (mod. r), where r is the degree of the covering π : this is because the (semi-) stability of π_*L is equivalent to that of $\pi_*(L \otimes \pi^*M)$ for any line bundle M on X. Moreover, the duality isomorphism $\pi_*(K_{X'} \otimes L^{-1}) \cong K_X \otimes (\pi_*L)^*$ implies that the conjecture is true for $\chi(L) = n$ if and only if it is true for $\chi(L) = -n$.

(1.3) The weaker conclusion of the Conjecture in the case g = 1 is due to the fact that there are no stable bundles of rank r and degree d on an elliptic curve if

r and d are not coprime. In the case $X = P^1$ the analogous statement would be false for the same reason; the best one can hope for is the following:

For a generic vector bundle L on X', π_*L is "almost stable", that is of the form $\mathcal{O}_{\mathbf{P}^1}(a-1)^{\oplus p} \oplus \mathcal{O}_{\mathbf{P}^1}(a)^{\oplus q}$ for some integers a, p, q.

This is actually quite easy: by (1.1) we may assume that L is a line bundle. Put $\mathcal{O}_{X'}(1) = \pi^* \mathcal{O}_{\mathbf{P}^1}(1)$. Let *a* be the integral part of $(\deg L - g(X'))/r$. We have $\deg L(-a-1) < g(X') \le \deg L(-a)$, hence for L general enough $\mathrm{H}^0(X', \mathrm{L}(-a-1)) =$ $\mathrm{H}^1(X, \mathrm{L}(-a)) = 0$. Therefore $\mathrm{H}^0(\mathbf{P}^1, \pi_* \mathrm{L}(-a-1)) = \mathrm{H}^1(\mathbf{P}^1, \pi_* \mathrm{L}(-a)) = 0$, which is equivalent to our assertion.

2. Sub- and quotient line bundles

Proposition 2.1. – If L is general, any sub-line bundle (resp. quotient bundle) M of π_*L satisfies

$$\mu(\mathbf{M}) \le \mu(\pi_* \mathbf{L}) - (1 - \frac{1}{r})(g - 1)$$

(resp. $\mu(\mathbf{M}) \ge \mu(\pi_* \mathbf{L}) + (1 - \frac{1}{r})(g - 1)$).

An interesting feature of this result is that it is the best possible: by [L] or [H], any vector bundle E of rank r contains a sub-line bundle of degree $\leq [\mu(E) - (1 - \frac{1}{r})(g - 1)]$, where [x] denotes the integral part of x. So π_*L is "as stable as possible" with respect to sub- and quotient line bundles.

Proof: Let M be a sub-line bundle of π_*L ; put deg(M) = m and deg(L) = d. The condition $M \subset \pi_*L$ means that L can be written as $\pi^*M(D)$, where D is an effective divisor, of degree d - rm. The locus of these line bundles has dimension $\leq g + d - rm$; if L is generic we have $g + d - rm \geq g'$, that is $rm \leq g - 1 + \chi(L)$ or $\mu(M) \leq \mu(\pi_*L) - (1 - \frac{1}{r})(g - 1)$. The case of quotient line bundles follows by duality (1.2).

Corollary 2.2. – Let F be a sub-bundle of π_*L , of rank p. Then:

a)
$$[\mu(\mathbf{F}) + \frac{g-1}{p}] \le \mu(\pi_* \mathbf{L}) + \frac{g-1}{r};$$

b)
$$\mu(F) < \mu(E) + 1;$$

c)
$$\qquad \qquad If \quad p \leq \frac{gr}{g+r} \quad or \quad p \geq \frac{r^2}{g+r} \ , \quad then \quad \mu(\mathbf{F}) < \mu(\mathbf{E}) \ .$$

Proof: By the above remark, the vector bundle F contains a sub-line bundle M of degree $[\mu(F) - (1 - \frac{1}{p})(g - 1)]$. Applying 2.1 we get:

$$[\mu(\mathbf{F}) - (1 - \frac{1}{p})(g - 1)] \le \mu(\pi_* \mathbf{L}) - (1 - \frac{1}{r})(g - 1) ,$$

which gives a).

For $x \in \frac{1}{p}\mathbf{Z}$ we have $[x] \ge x - 1 + \frac{1}{p}$; thus

$$\mu(\mathbf{F}) - \mu(\pi_* \mathbf{L}) < 1 - g \frac{r - p}{rp}$$
,

from which one deduces b) and the first case of c). The second case of c) follows by duality (1.2). \blacksquare

3. The case $|\chi(L)|$ small

(3.1) Let E be a vector bundle on a curve C, with $\chi(E) \leq 0$; let W_E be the closed subset of JC consisting of line bundles α such that $H^0(E \otimes \alpha) \neq 0$. We claim that if W_E is not empty, its codimension in JC is $\leq 1 - \chi(E)$. Let us recall briefly the proof: we denote by \mathcal{P} be the Poincaré line bundle on $C \times JC$, and by p, q the projections of $C \times JC$ onto C and JC respectively. The cohomology $Rq_*(p^*E \otimes \mathcal{P})$ can be represented locally (and even globally) in the derived category D(JC) by a complex $L_0 \xrightarrow{u} L_1$; we have $rk(L_0) - rk(L_1) = \chi(E)$. Then W_E is the locus where u is not injective, or equivalently is not of maximal rank. By standard matrix theory this locus is of codimension $\leq 1 - \chi(E)$. Moreover it is non-empty if $1 - \chi(E) \leq \dim JC$ ([L]).

Proposition 3.2. – For a generic line bundle L on X' with $|\chi(L)| \le g + \frac{g^2}{r}$, the vector bundle π_*L is semi-stable, and stable unless g = 1.

Proof: We treat the case $\chi(L) \leq 0$; the case $\chi(L) \geq 0$ will follow by duality (1.2). We first assume $-g \leq \chi(L) \leq 0$.

Let $F \subset \pi_*L$ be a subbundle of π_*L , of rank p. We claim that $\chi(F) \leq \chi(L)$. If $W_F = \emptyset$ we have $1 - \chi(F) > g$, hence $\chi(F) \leq -g \leq \chi(L)$. Assume that W_F is not empty; it has codimension $\leq 1 - \chi(F)$ (3.1). The variety W_{π_*L} contains W_F , and therefore has also codimension $\leq 1 - \chi(F)$. On the other hand we have set-theoretically

$$W_{\pi_*L} = \{ \alpha \in JX \, | \, H^0(X, L \otimes \pi^* \alpha) \neq 0 \} = (\pi^*)^{-1}(W_L) \, .$$

The locus W_L parameterizes line bundles in JX' of the form $L^{-1}(E)$, where E is any effective divisor on X' of degree $g' - 1 + \chi(L)$; it has codimension $1 - \chi(L)$. Thus for generic L the pull-back $(\pi^*)^{-1}(W_L)$ has also codimension $1 - \chi(L)$; we conclude that $\chi(F) \leq \chi(L) = \chi(\pi_*L)$.

Now we have $\chi(\pi_* L) \leq \frac{p}{r} \chi(\pi_* L)$ (since $\chi(L) \leq 0$), hence $\mu(F) \leq \mu(\pi_* L)$. The inequality is strict unless $\chi(L) = 0$, in which case we can only conclude that $\pi_* L$ is semi-stable. Suppose that we have an extension $0 \to F \to \pi_* L \to G \to 0$, with $\chi(F) = \chi(G) = 0$. We then have $W_{\pi_* L} = W_F + W_G$ in the divisor group of JX. On the other hand the equality $W_{\pi_* L} = (\pi^*)^{-1}(W_L)$ holds as an equality of divisors; so when $g \geq 2$ we obtain a contradiction from Lemma 3.3 below.

If $\chi(L) \leq -g$, the above argument still gives the inequality $\chi(F) \leq -g$. By 2.2 c) we may assume $p < \frac{r^2}{g+r}$. This implies

$$\frac{\chi(\mathbf{F})}{p} \le -\frac{g}{p} < -\frac{g(g+r)}{r^2} \le \frac{\chi(\mathbf{L})}{r} ,$$

hence $\mu(\mathbf{F}) < \mu(\pi_*\mathbf{L})$.

Lemma 3.3. – Let A, B be abelian varieties of dimension ≥ 2 , $\varphi : B \to A$ be a homomorphism with finite kernel, and W an ample, integral divisor on A. The pull back by φ of a generic translate of W is integral.

Proof: Let $\Phi : B \times A \to A$ be the homomorphism defined by $\Phi(b, a) = \varphi(b) - a$. It is smooth and surjective, so $\Phi^{-1}(W)$ is an integral divisor of $B \times A$. Therefore the fibre of the second projection $\Phi^{-1}(W) \to A$ at a general point a of A is locally integral. But this fibre can be identified with the divisor $\varphi^*(W + a)$; since this divisor is ample, it is also connected, hence integral. ■

Corollary 3.4. – The conjecture holds for a covering $X' \to X$ of degree smaller than $g(1 + \sqrt{3}) - 1$.

 $\begin{aligned} Proof: \text{The conjecture will hold if any number is congruent (mod. r) to some number} \\ \chi \text{ satisfying } |\chi| ≤ g + \frac{g^2}{r}. \text{ This is ensured by the inequality } r < 2(g + \frac{g^2}{r}) - 1, \\ \text{which holds if } r < g(1 + \sqrt{3}) - 1 \text{ (exercise!). ■} \end{aligned}$

Remarque 3.5. – Since $[g + \frac{g^2}{r}] \ge g$ the conjecture holds also for $r \le 2g + 1$; this is slightly better than the Corollary when g = 1 or 2.

(3.6) It is tempting to improve the result of 3.2 by applying the same method to the vector bundle $F \otimes \pi_* L$, for some appropriate vector bundle F on X: the (semi-) stability of $F \otimes \pi_* L$ implies that of F, and we can choose F so that for instance $\chi(F \otimes \pi_* L) = 0$. We have $W_{F \otimes \pi_* L} = (\pi^*)^{-1}(W_{\pi^* F \otimes L})$. Inspection of the proof of 3.2 shows that we need the following:

(3.6 a) $W_{\pi^*F \otimes L}$ has codimension *exactly* $1 - \chi(\pi^*F \otimes L)$.

This gives the stability of $F \otimes \pi_* L$ if $1 - g \leq \chi(F \otimes \pi_* L) < 0$, and the semistability when $\chi(F \otimes \pi_* L) = 0$; to get the stability in the latter case we need moreover:

(3.6 b) The divisor $W_{\pi^*F \otimes L}$ is integral.

Unfortunately (3.6 a) seems rather difficult to check: though we are free to choose F general enough, its pull back π^*F will be rather special, and we do not see any way of proving (3.6 a) unless we know that *all* stable bundles with the same degree and rank satisfy it. Here is one case where this works:

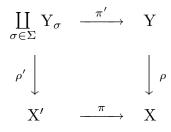
Proposition 3.7. – If r is even and L general of degree $\equiv \frac{r}{2} \pmod{r}$, π_*L is semi-stable.

Proof: The hypothesis means $\mu(\pi_*L) \in \frac{1}{2} + \mathbb{Z}$, so we can choose a rank 2 bundle F so that $\chi(F \otimes \pi_*L) = 0$. Condition (3.6 a) means that the bundle $\pi^*F \otimes L$ has a theta divisor, that is that H⁰(X', $\pi^*F \otimes L \otimes \alpha) = 0$ for α general in JX'; by [R] this is the case if π^*F is semi-stable. But the semi-stability of π^*F is equivalent to that of F [?]. ■

4. The case of an étale covering

Proposition 4.1. – The conjecture holds if π is étale.

Proof: Let $\rho: Y \to X$ be the étale Galois covering associated to π , and Σ the set of X-morphisms $Y \to X'$; we put $Y_{\sigma} = Y$ for each $\sigma \in \Sigma$. We have a cartesian diagram



where π' is the identity on each Y_{σ} , while $\rho'_{|Y_{\sigma}} = \sigma$.

It follows that for any coherent sheaf L on X' we have a canonical isomorphism

$$\rho^* \pi_* \mathcal{L} \xrightarrow{\sim} \pi'_* \rho'^* \mathcal{L} \cong_{\sigma \in \Sigma} \sigma^* \mathcal{L}$$
.

Take for L a line bundle. The line bundles σ^*L , for $\sigma \in \Sigma$, have all the same slope δ . Therefore $\rho^*\pi_*L$ is semi-stable, hence π_*L is semi-stable for *every* line bundle L on X'.

Assume now g > 1. Suppose that $\pi_* L$ contains a non-trivial sub-bundle F with $\mu(F) = \mu(\pi_* L)$. Then $\rho^* F$ is a sub-bundle of $\bigoplus_{\sigma \in \Sigma} \sigma^* L$, with slope δ . The category of semi-stable vector bundles on Y with slope δ is an abelian category, whose simple objects are the stable bundles. By general nonsense it follows that any subbundle of $\bigoplus_{\sigma \in \Sigma} \sigma^* L$ with slope δ is isomorphic to a direct sum $\bigoplus_{\sigma \in \Sigma'} \sigma^* L$ for some subset Σ' of Σ .

The Galois group G of ρ acts transitively on Σ , by the formula $g \cdot \sigma = \sigma \circ g^{-1}$ for $g \in G$, $\sigma \in \Sigma$. Our bundle $\rho^* F$ is G-invariant. We will show that for generic L the line bundles $\sigma^* L$, for $\sigma \in \Sigma$, are pairwise non-isomorphic; this implies that Σ' must be invariant under G, that is $\Sigma' = \Sigma$ and $F = \pi_* L$, which proves the stability of $\pi_* L$.

To prove the above claim, we choose a particular element σ of Σ , and let H be its stabilizer. We consider the component J^LX' of Pic(X') containing L. Then $\sigma^*(J^LX')$ is a subvariety of Pic(Y), invariant under H, of dimension g'. Suppose that it is invariant under a sub-group H' of G containing H; since it is connected, it must actually lie in the pull-back of Pic(Y/H'). But the Riemann-Hurwitz formula shows that the genus of Y/H' is strictly smaller than that of X' = Y/H unless H' = H. So for L general enough σ^*L cannot be fixed by any element of G - H, which proves our claim.

REFERENCES

- [B] A. BEAUVILLE: Fibrés de rang 2 sur les courbes, fibré déterminant et fonctions thêta. Bull. Soc. math. France **116**, 431-448 (1988)
- [H] A. HIRSCHOWITZ: Problèmes de Brill-Noether en rang supérieur. C. R. Acad. Sci. Paris **307**, 153-156 (1988).
- [L] H. LANGE: Zur Klassification von Regelmannigfaltigkeiten. Math. Annalen 262, 447-459 (1983).
- [R] M. RAYNAUD: Sections des fibrés vectoriels sur une courbe. Bull. Soc. math. France **110**, 103-125 (1982).

Arnaud BEAUVILLE DMA – École Normale Supérieure (UMR 8553 du CNRS) 45 rue d'Ulm F-75230 PARIS Cedex 05