ORTHOGONAL BUNDLES ON CURVES AND THETA FUNCTIONS

by Arnaud BEAUVILLE

Abstract

Let \mathcal{M} be the moduli space of principal SO_{r}-bundles on a curve C, and \mathcal{L} the determinant bundle on \mathcal{M}. We define an isomorphism of $H^{0}(\mathcal{M}, \mathcal{L})$ onto the dual of the space of r-th order theta functions on the Jacobian of C. This isomorphism identifies the rational map $\mathcal{M} \rightarrow|\mathcal{L}|^{*}$ defined by the linear system $|\mathcal{L}|$ with the map $\mathcal{M} \rightarrow|r \Theta|$ which associates to a quadratic bundle (E, q) the theta divisor Θ_{E}. The two components \mathcal{M}^{+}and \mathcal{M}^{-}of \mathcal{M} are mapped into the subspaces of even and odd theta functions respectively. Finally we discuss the analogous question for $\mathrm{Sp}_{2 r}$-bundles.

Résumé. - Soient \mathcal{M} l'espace des modules des fibrés SO_{r}-principaux sur une courbe C, et \mathcal{L} le fibré déterminant sur \mathcal{M}. Nous définissons un isomorphisme de $H^{0}(\mathcal{M}, \mathcal{L})$ sur le dual de l'espace des fonctions thêta du r-ième ordre sur la Jacobienne de C. Cet isomorphisme identifie l'application rationnelle $\mathcal{M} \rightarrow|\mathcal{L}|^{*}$ définie par le système linéaire $|\mathcal{L}|$ avec l'application $\mathcal{M} \rightarrow|r \Theta|$ qui associe à un fibré quadratique (E, q) le diviseur thêta Θ_{E}. Les deux composantes \mathcal{M}^{+}et \mathcal{M}^{-}de \mathcal{M} sont envoyées sur les sous-espaces de fonctions paires et impaires respectivement. Finalement nous discutons le problème analogue pour les fibrés symplectiques.

Introduction

Let C be a curve of genus $g \geqslant 2, G$ an almost simple complex Lie group, and \mathcal{M}_{G} the moduli space of semi-stable G-bundles on C. For each component $\mathcal{M}_{G}^{\bullet}$ of \mathcal{M}_{G}, the Picard group is infinite cyclic; its positive generator $\mathcal{L}_{G}^{\bullet}$ can be described explicitely as a determinant bundle. Then a natural question, which we will address in this paper for the classical groups, is to describe the space of "generalized theta functions" $H^{0}\left(\mathcal{M}_{G}^{\bullet}, \mathcal{L}_{\dot{G}}\right)$ and the associated rational map $\varphi_{G}^{\bullet}: \mathcal{M}_{G}^{\bullet} \rightarrow\left|\mathcal{L}_{G}^{\bullet}\right|^{*}$.

Keywords: Principal bundles, orthogonal bundles, symplectic bundles, theta divisors, generalized theta functions, Verlinde formula, strange duality.
Math. classification: 14H60.

The model we have in mind is the case $G=\mathrm{SL}_{r}$. Let J^{g-1} be the component of the Picard variety of C parameterizing line bundles of degree $g-1$; it is isomorphic to the Jacobian of C, and carries a canonical theta divisor Θ consisting of line bundles L in J^{g-1} with $H^{0}(C, L) \neq 0$. For a general $E \in \mathcal{M}_{\mathrm{SL}_{r}}$, the locus

$$
\Theta_{E}=\left\{L \in J^{g-1} \mid H^{0}(C, E \otimes L) \neq 0\right\}
$$

is in a natural way a divisor, which belongs to the linear system $|r \Theta|$ on J^{g-1}. We thus obtain a rational map $\vartheta: \mathcal{M}_{\mathrm{SL}_{r}} \rightarrow|r \Theta|$. The main result of [6] is that there exists an isomorphism $\left|\mathcal{L}_{\mathrm{SL}_{r}}\right|^{*} \xrightarrow{\sim}|r \Theta|$ which identifies the rational maps $\varphi_{\mathrm{SL}_{r}}$ and ϑ. This gives a reasonably concrete description of $\varphi_{\mathrm{SL}_{r}}$, which allows to get some information on the behaviour of this map, at least for small values of r or g (see [2] for a survey of recent results).

Let us consider now the case $G=\mathrm{SO}_{r}$ with $r \geqslant 3$. The moduli space $\mathcal{M}_{\mathrm{SO}_{r}}$ parametrizes oriented orthogonal bundles (E, q) on C of rank r; it has two components $\mathcal{M}_{\mathrm{SO}_{r}}^{+}$and $\mathcal{M}_{\mathrm{SO}_{r}}^{-}$. Let $\theta: \mathcal{M}_{\mathrm{SO}_{r}} \rightarrow|r \Theta|$ be the $\operatorname{map}(E, q) \mapsto \Theta_{E}$. We will see that θ maps $\mathcal{M}_{\mathrm{SO}_{r}}^{+}$and $\mathcal{M}_{\mathrm{SO}_{r}}^{-}$into the subspaces $|r \Theta|^{+}$and $|r \Theta|^{-}$corresponding to even and odd theta functions respectively. Our main result is:

Theorem. - There are canonical isomorphisms $\left|\mathcal{L}_{\mathrm{SO}_{r}}^{ \pm}\right|^{*} \xrightarrow{\sim}|r \Theta|^{ \pm}$ which identify $\varphi_{\mathrm{SO}_{r}}^{ \pm}: \mathcal{M}_{\mathrm{SO}_{r}}^{ \pm} \rightarrow\left|\mathcal{L}_{\mathrm{SO}_{r}}^{ \pm}\right|^{*}$ with the $\operatorname{map} \theta^{ \pm}: \mathcal{M}_{\mathrm{SO}_{r}}^{ \pm} \rightarrow$ $|r \Theta|^{ \pm}$induced by θ.

This is easily seen to be equivalent to the fact that the pull-back map θ^{*} : $H^{0}\left(J^{g-1}, \mathcal{O}(r \Theta)\right)^{*} \rightarrow H^{0}\left(\mathcal{M}_{\mathrm{SO}_{r}}, \mathcal{L}_{\mathrm{SO}_{r}}\right)$ is an isomorphism. We will prove that it is injective by restricting to a small subvariety of $\mathcal{M}_{\mathrm{SO}_{r}}$ (§1). Then we will use the Verlinde formula ($\S 2$ and 3) to show that the dimensions are the same. This is somewhat artificial since it forces us for instance to treat separately the cases r even $\geqslant 6, r$ odd $\geqslant 5, r=3$ and $r=4$. It would be interesting to find a more direct proof, perhaps in the spirit of [6].

In the last section we consider the same question for the symplectic group. Here the theta map does not involve the Jacobian of C but the moduli space \mathcal{N} of semi-stable rank 2 vector bundles on C with determinant K_{C}. Let \mathcal{L} be the determinant bundle on \mathcal{N}. For (E, φ) general in $\mathcal{M}_{\mathrm{Sp}_{2 r}}$, the reduced subvariety

$$
\Delta_{E}=\left\{F \in \mathcal{N} \mid H^{0}(E \otimes F) \neq 0\right\}
$$

is a divisor on \mathcal{N}, which belongs to the linear system $\left|\mathcal{L}^{r}\right|$; this defines a $\operatorname{map} \mathcal{M}_{\mathrm{Sp}_{2 r} \rightarrow} \rightarrow\left|\mathcal{L}^{r}\right|$ which should coincide, up to a canonical isomorphism, with $\varphi_{\mathrm{Sp}_{2 r}}$. This is a particular case of the strange duality conjecture for
the symplectic group, which we discuss in $\S 4$. Unfortunately even this particular case is not known, except in a few cases that we explain below.

1. The moduli space $\mathcal{M}_{\mathrm{SO}_{r}}$

1.1. - Throughout the paper we fix a complex curve C of genus $g \geqslant 2$. For G a semi-simple complex Lie group, we denote by \mathcal{M}_{G} the moduli space of semi-stable G-bundles on C. It is a normal projective variety, of dimension $(g-1) \operatorname{dim} G$. Its connected components are in one-to-one correspondence with the elements of the group $\pi_{1}(G)$.
1.2. - Let us consider the case $G=\mathrm{SO}_{r}(r \geqslant 3)$. The space $\mathcal{M}_{\mathrm{SO}_{r}}$ is the moduli space of (semi-stable) oriented orthogonal bundles, that is triples (E, q, ω) where E is a semi-stable ${ }^{(1)}$ vector bundle of rank r, q : $\mathrm{S}^{2} E \rightarrow \mathcal{O}_{C}$ a non-degenerate quadratic form, and ω a section of $\operatorname{det} E$ with $\tilde{q}(\omega)=1$, where \tilde{q} is the quadratic form on $\operatorname{det} E \operatorname{deduced}$ from q. The two components $\mathcal{M}_{\mathrm{SO}_{r}}^{+}$and $\mathcal{M}_{\mathrm{SO}_{r}}^{-}$are distinguished by the parity of the second Stiefel-Whitney class $w_{2}(E, q) \in H^{2}(C, \mathbf{Z} / 2) \cong \mathbf{Z} / 2$. This class has the following property (see e.g. [17, Thm. 2]): for every theta-characteristic κ on C and orthogonal bundle $(E, q) \in \mathcal{M}_{\mathrm{SO}_{r}}$,

$$
\begin{equation*}
w_{2}(E, q) \equiv h^{0}(C, E \otimes \kappa)+r h^{0}(C, \kappa) \quad(\bmod 2) \tag{1.3}
\end{equation*}
$$

The involution $\iota: L \mapsto K_{C} \otimes L^{-1}$ of J^{g-1} preserves Θ, hence lifts to an involution of $\mathcal{O}_{J^{g-1}}(\Theta)$. We denote by $|r \Theta|^{+}$and $|r \Theta|^{-}$the two corresponding eigenspaces in $|r \Theta|$, and by $\theta: \mathcal{M}_{\mathrm{SO}_{r}} \rightarrow|r \Theta|$ the $\operatorname{map}(E, q) \mapsto \Theta_{E}$.

Lemma 1.4. - The rational map $\theta: \mathcal{M}_{\mathrm{SO}_{r}} \rightarrow|r \Theta|$ maps $\mathcal{M}_{\mathrm{SO}_{r}}^{+}$in $|r \Theta|^{+}$and $\mathcal{M}_{\mathrm{SO}_{r}}^{-}$in $|r \Theta|^{-}$.

Proof. - For any $E \in \mathcal{M}_{\mathrm{SL}_{r}}$ we have $\iota^{*} \Theta_{E}=\Theta_{E^{*}}$, so $\theta\left(\mathcal{M}_{\mathrm{SO}_{r}}\right)$ is contained in the fixed locus $|r \Theta|^{+} \cup|r \Theta|^{-}$of ι^{*}. Since $\mathcal{M}_{\mathrm{SO}_{r}}^{ \pm}$is connected, it suffices to find one element (E, q) of $\mathcal{M}_{\mathrm{SO}_{r}}^{+}\left(\right.$resp. $\left.\mathcal{M}_{\mathrm{SO}_{r}}^{-}\right)$such that Θ_{E} is a divisor in $|r \Theta|^{+}$(resp. $|r \Theta|^{-}$).

Let $\kappa \in J^{g-1}$ be an even theta-characteristic of C; a symmetric divisor $D \in|r \Theta|$ is in $|r \Theta|^{+}$(resp. $|r \Theta|^{-}$) if and only if mult ${ }_{\kappa}(D)$ is even (resp. odd) - see $[13, \S 2]$. Let $J[2]$ be the 2-torsion subgroup of $\operatorname{Pic}(C)$; we take $E=\alpha_{1} \oplus \cdots \oplus \alpha_{r}$, where $\alpha_{1}, \ldots, \alpha_{r} \in J[2]$ and $\sum \alpha_{i}=0$. We endow E with the diagonal quadratic form q deduced from the isomorphisms $\alpha_{i}^{2} \cong \mathcal{O}_{C}$.

[^0]Then $\Theta_{E}=\Theta_{\alpha_{1}}+\cdots+\Theta_{\alpha_{r}}$. By the Riemann singularity theorem the multiplicity at κ of Θ_{α} is $h^{0}(\alpha \otimes \kappa)$. Thus by (1.3)

$$
\operatorname{mult}_{\kappa}\left(\Theta_{E}\right)=\sum_{i} h^{0}\left(\alpha_{i} \otimes \kappa\right)=h^{0}(E \otimes \kappa) \equiv w_{2}(E, q) \quad(\bmod 2)
$$

1.5. - Let $\mathcal{L}_{\mathrm{SO}_{r}}$ be the determinant bundle on $\mathcal{M}_{\mathrm{SO}_{r}}$, that is, the pull back of $\mathcal{L}_{\mathrm{SL}_{r}}$ by the map $(E, q) \mapsto E$, and let $\mathcal{L}_{\mathrm{SO}_{r}}^{+}$and $\mathcal{L}_{\mathrm{SO}_{r}}^{-}$be its restrictions to $\mathcal{M}_{\mathrm{SO}_{r}}^{+}$and $\mathcal{M}_{\mathrm{SO}_{r}}^{-}$. It follows from [5] that for $r \neq 4, \mathcal{L}_{\mathrm{SO}_{r}}^{ \pm}$generates $\operatorname{Pic}\left(\mathcal{M}_{\mathrm{SO}_{r}}^{ \pm}\right)$.

Proposition 1.6. - The map

$$
\theta^{*}: H^{0}\left(J^{g-1}, \mathcal{O}(r \Theta)\right)^{*} \longrightarrow H^{0}\left(\mathcal{M}_{\mathrm{SO}_{r}}, \mathcal{L}_{\mathrm{SO}_{r}}\right)
$$

induced by $\theta: \mathcal{M}_{\mathrm{SO}_{r}} \rightarrow|r \Theta|$ is an isomorphism.
By Lemma $1.4 \theta^{*}$ splits as a direct sum $\left(\theta^{+}\right)^{*} \oplus\left(\theta^{-}\right)^{*}$, where

$$
\left(\theta^{ \pm}\right)^{*}:\left(H^{0}\left(J^{g-1}, \mathcal{O}(r \Theta)\right)^{ \pm}\right)^{*} \longrightarrow H^{0}\left(\mathcal{M}_{\mathrm{SO}_{r}}^{ \pm}, \mathcal{L}_{\mathrm{SO}_{r}}^{ \pm}\right)
$$

The Proposition implies that $\left(\theta^{+}\right)^{*}$ and $\left(\theta^{-}\right)^{*}$ are isomorphisms, and this is equivalent to the Theorem stated in the introduction.

Proof of the Proposition. - We will show in §3 that the Verlinde formula gives

$$
\operatorname{dim} H^{0}\left(\mathcal{M}_{\mathrm{SO}_{r}}, \mathcal{L}_{\mathrm{SO}_{r}}\right)=\operatorname{dim} H^{0}\left(J^{g-1}, \mathcal{O}(r \Theta)\right)=r^{g}
$$

It is therefore sufficient to prove that θ^{*} is injective, or equivalently that $\theta\left(\mathcal{M}_{\mathrm{SO}_{r}}\right)$ spans the projective space $|r \Theta|$. We consider again the orthogonal bundles $(E, q)=\alpha_{1} \oplus \cdots \oplus \alpha_{r}$ for $\alpha_{1}, \ldots, \alpha_{r}$ in $J[2], \sum \alpha_{i}=0$. This bundle has a theta divisor $\Theta_{E}=\Theta_{\alpha_{1}}+\cdots+\Theta_{\alpha_{r}}$. We claim that divisors of this form span $|r \Theta|$. To prove it, let us identify J^{g-1} with the Jacobian J of C (by choosing a divisor class of degree $g-1$). For $a \in J$, the divisor Θ_{a} is the only element of the linear system $\left|\mathcal{O}_{J}(\Theta) \otimes \varphi(a)\right|$, where $\varphi: J \rightarrow \widehat{J}$ is the isomorphism associated to the principal polarization of J. Therefore our assertion follows from the following easy lemma:

Lemma 1.7. - Let A be an abelian variety, L an ample line bundle on $A, \widehat{A}[2]$ the 2-torsion subgroup of $\operatorname{Pic}(A)$. The multiplication map

$$
\sum_{\substack{\alpha_{1}, \ldots, \alpha_{r} \in \widehat{A}[2] \\ \alpha_{1}+\cdots+\alpha_{r}=0}} H^{0}\left(A, L \otimes \alpha_{1}\right) \otimes \cdots \otimes H^{0}\left(A, L \otimes \alpha_{r}\right) \longrightarrow H^{0}\left(A, L^{r}\right)
$$

is surjective.

Proof. - Let 2_{A} be the multiplication by 2 in A. We have canonical isomorphisms

$$
H^{0}\left(A, 2_{A}^{*} L\right) \cong \bigoplus_{\alpha \in \widehat{A}[2]} H^{0}(L \otimes \alpha), \quad H^{0}\left(A, 2_{A}^{*} L^{r}\right) \cong \bigoplus_{\beta \in \widehat{A}[2]} H^{0}\left(L^{r} \otimes \beta\right) ;
$$

through these isomorphisms the product map $m_{r}: H^{0}\left(A, 2_{A}^{*} L\right)^{\otimes r} \longrightarrow$ $H^{0}\left(A, 2_{A}^{*} L^{r}\right)$ is the direct sum over $\beta \in \widehat{A}[2]$ of the maps

$$
m_{r}^{\beta}: \sum_{\substack{\alpha_{1}, \ldots, \alpha_{r} \in \widehat{A}[2] \\ \alpha_{1}+\cdots+\alpha_{r}=\beta}} H^{0}\left(A, L \otimes \alpha_{1}\right) \otimes \cdots \otimes H^{0}\left(A, L \otimes \alpha_{r}\right) \longrightarrow H^{0}\left(A, L^{r} \otimes \beta\right)
$$

Since the line bundle $2_{A}^{*} L$ is algebraically equivalent to L^{4}, the map m_{r} is surjective [14], hence so is m_{r}^{β} for every β. The case $\beta=0$ gives the lemma.

2. The Verlinde formula

2.1. - We keep the notation of 1.1; we denote by q the number of simple factors of the Lie algebra of G (we are mainly interested in the case $q=1$).

To each representation $\rho: G \rightarrow \mathrm{SL}_{r}$ is attached a line bundle \mathcal{L}_{ρ} on \mathcal{M}_{G}, the pull back of the determinant bundle on $\mathcal{M}_{\text {SL }_{r}}$ by the morphism $\mathcal{M}_{G} \rightarrow$ $\mathcal{M}_{\mathrm{SL}_{r}}$ associated to ρ. The Verlinde formula expresses the dimension of $H^{0}\left(\mathcal{M}_{G}, \mathcal{L}_{\rho}^{k}\right)$, for each integer k, in the form

$$
\operatorname{dim} H^{0}\left(\mathcal{M}_{G}, \mathcal{L}_{\rho}^{k}\right)=N_{k \mathbf{d}_{\rho}}(G)
$$

where

- $\mathbf{d}_{\rho} \in \mathbf{N}^{q}$ is the Dynkin index of ρ. For $q=1$ the number d_{ρ} is defined and computed in $[9, \S 2]$. In the general case the universal cover of G is a product $G_{1} \times \cdots \times G_{q}$ of almost simple factors, and we put $\mathbf{d}_{\rho}=\left(d_{\rho_{1}}, \ldots, d_{\rho_{q}}\right)$, where ρ_{i} is the pull back of ρ to G_{i}.

We will need only to know that the Dynkin index is 2 for the standard representation of $\mathrm{SO}_{r}(r \geqslant 5), 4$ for that of SO_{3}, and $(2,2)$ for that of SO_{4}.

- $N_{\ell}(G)$ is an integer depending on G, the genus g of C, and $\boldsymbol{\ell} \in \mathbf{N}^{q}$. We will now explain how this number is computed. Our basic reference is [1].

2.2. The simply connected case

Let us first consider the case where G is simply connected and almost simple (that is, $q=1$). Let T be a maximal torus of G, and $R=R(G, T)$ the
corresponding root system (we view the roots of G as characters of T). We denote by T_{ℓ} the (finite) subgroup of elements $t \in T$ such that $\alpha(t)^{\ell+h}=1$ for each long root α, and by $T_{\ell}^{\text {reg }}$ the subset of regular elements $t \in T_{\ell}$ (that is, such that $\alpha(t) \neq 1$ for each root α). It is stable under the action of the Weyl group W. For $t \in T$, we put $\Delta(t)=\prod_{\alpha \in R}(\alpha(t)-1)$. Then the Verlinde formula is

$$
N_{\ell}(G)=\sum_{t \in T_{\ell}^{\mathrm{reg}} / W}\left(\frac{\left|T_{\ell}\right|}{\Delta(t)}\right)^{g-1}
$$

2.3. - This number can be explicitely computed in the following way. Let \mathfrak{t} be the Lie algebra of T. The character group $P(R)$ of T embeds naturally into \mathfrak{t}^{*}. We endow \mathfrak{t}^{*} with the W-invariant bilinear form (|) such that $(\alpha \mid \alpha)=2$ for each long root α, and we use this product to identify \mathfrak{t}^{*} with t . Let θ be the highest root of R; we denote by P_{ℓ} the set of dominant weights $\lambda \in P(R)$ such that $(\lambda \mid \theta) \leqslant \ell$. Let $\rho \in P(R)$ be the half-sum of the positive roots. The number $h:=(\rho \mid \theta)+1$ is the dual Coxeter number of R. We have $\left|T_{\ell}\right|=(\ell+h)^{s} f \nu$, where s is the rank of R, f the order of the center of G, and ν a number depending on R; it is equal to 1 for R of type D_{s} and to 2 for $B_{s}([4,9.9])$.

For $\lambda \in P_{\ell}$ we put $t_{\lambda}=\exp 2 \pi i \frac{\lambda+\rho}{\ell+h}$. The map $\lambda \mapsto t_{\lambda}$ is a bijection of P_{ℓ} onto $\left.T_{\ell}^{\mathrm{reg}} / W([4,9.3 . \mathrm{c}])\right)$. For $\lambda \in P_{\ell}$, we have $\alpha\left(t_{\lambda}\right)=\exp 2 \pi i \frac{(\alpha \mid \lambda+\rho)}{\ell+h}$, and therefore

$$
\Delta\left(t_{\lambda}\right)=\prod_{\alpha \in R_{+}} 4 \sin ^{2} \pi \frac{(\alpha \mid \lambda+\rho)}{\ell+h}
$$

2.4. The non-simply connected case

We now give the formula for a general almost simple group, following [1].
Let Z be the center of G. An element t of T belongs to Z if and only if $\alpha(t)=1$ for all $\alpha \in R$, or equivalently $w(t)=t$ for all $w \in W$. It follows that Z acts on the set $T_{\ell}^{\text {reg }}$ by multiplication; this action commutes with that of W and thus defines an action of Z on $T_{\ell}^{\text {reg }} / W$. Through the bijection $P_{\ell} \rightarrow T_{\ell}^{\mathrm{reg}} / W$ the action of Z on P_{ℓ} is the one deduced from its action on the extended Dynkin diagram (see [15, §3] or [7, 2.3 and 4.3]).

Now let Γ be a subgroup of Z, and let $G^{\prime}=G / \Gamma$. We denote by P_{ℓ}^{\prime} the sublattice of weights $\lambda \in P_{\ell}$ such that $\lambda_{\mid \Gamma}=1$. The action of Γ on P_{ℓ} preserves P_{ℓ}^{\prime}; we denote by $\Gamma \cdot \lambda$ the orbit of a weight λ in P_{ℓ}^{\prime}. The Verlinde
formula for G^{\prime} is $([1$, Thm. 5.3]):

$$
N_{\ell}\left(G^{\prime}\right)=|\Gamma| \sum_{\lambda \in P_{\ell}^{\prime}}|\Gamma \cdot \lambda|^{-2 g}\left(\frac{\left|T_{\ell}\right|}{\Delta\left(t_{\lambda}\right)}\right)^{g-1}
$$

Each term in the sum is invariant under Γ, so we may as well sum over $P_{\ell}^{\prime} / \Gamma$ provided we multiply each term by $|\Gamma \cdot \lambda|$:

$$
\begin{equation*}
N_{\ell}\left(G^{\prime}\right)=|\Gamma| \sum_{\lambda \in P_{\ell}^{\prime} / \Gamma}|\Gamma \cdot \lambda|^{1-2 g}\left(\frac{\left|T_{\ell}\right|}{\Delta\left(t_{\lambda}\right)}\right)^{g-1} \tag{2.5}
\end{equation*}
$$

2.6. The general case

The above formula actually applies to any semi-simple group $G^{\prime}=G / \Gamma$, where G is a product of simply connected groups G_{1}, \ldots, G_{q} [1].

We choose a maximal torus $T^{(i)}$ in G_{i} for each i and put $T=T^{(1)} \times \cdots \times$ $T^{(q)}$. Let $\ell:=\left(\ell_{1}, \ldots, \ell_{q}\right)$ be a q-uple of nonnegative integers. We put $T_{\ell}=T_{\ell_{1}}^{(1)} \times \cdots \times T_{\ell_{q}}^{(q)} ;$ the subset $T_{\ell}^{\text {reg }}$ of regular elements in T_{ℓ} is the product of the subsets $\left(T_{\ell_{i}}^{(i)}\right)^{\text {reg }}$. For each i, let $P_{\ell_{i}}^{(i)}$ be the set of dominant weights of $T^{(i)}$ associated to G_{i} and ℓ_{i} as in 2.3, and let $P_{\ell}=P_{\ell_{1}}^{(1)} \times \cdots \times P_{\ell_{q}}^{(q)}$. For $\lambda=\left(\lambda_{1}, \ldots, \lambda_{q}\right) \in P_{\ell}$, we put $t_{\lambda}=\left(t_{\lambda_{1}}, \ldots, t_{\lambda_{q}}\right) \in T_{\ell}$; this defines a bijection of P_{ℓ} onto $T_{\ell}^{\text {reg }} / W$. The elements of P_{ℓ} are characters of T, and we denote by P_{ℓ}^{\prime} the subset of characters which are trivial on Γ. The group Γ is contained in the center $Z_{1} \times \cdots \times Z_{q}$ of G, which acts naturally on P_{ℓ} and P_{ℓ}^{\prime}. Then

$$
\begin{equation*}
N_{\ell}\left(G^{\prime}\right)=|\Gamma| \sum_{\lambda \in P_{\ell}^{\prime} / \Gamma}|\Gamma \cdot \lambda|^{1-2 g}\left(\frac{\left|T_{\ell}\right|}{\Delta\left(t_{\lambda}\right)}\right)^{g-1} \tag{2.7}
\end{equation*}
$$

with

$$
\frac{\left|T_{\ell}\right|}{\Delta\left(t_{\lambda}\right)}=\prod_{i=1}^{q} \frac{\left|T_{\ell_{i}}\right|}{\Delta_{i}\left(t_{\lambda_{i}}\right)}, \quad \Delta_{i}(t)=\prod_{\alpha \in R\left(G_{i}, T^{(i)}\right)}(\alpha(t)-1)
$$

for $t \in T^{(i)}$.

3. The Verlinde formula for SO_{r}

We now apply the previous formulas to the case $G^{\prime}=\mathrm{SO}_{r}$. We will rest very much on the computations of [15]. We will borrow their notation as well as that of [7].

3.1. The case $G^{\prime}=\mathrm{SO}_{2 s}, s \geqslant 3$

The root system R is of type D_{s}. Let $\left(\varepsilon_{1}, \ldots, \varepsilon_{s}\right)$ be the standard basis of \mathbf{R}^{s}. The weight lattice $P(R)$ is spanned by the fundamental weights

$$
\begin{gathered}
\varpi_{j}=\varepsilon_{1}+\cdots+\varepsilon_{j}(1 \leqslant j \leqslant s-2) \\
\varpi_{s-1}=\frac{1}{2}\left(\varepsilon_{1}+\cdots+\varepsilon_{s-1}-\varepsilon_{s}\right), \varpi_{s}=\frac{1}{2}\left(\varepsilon_{1}+\cdots+\varepsilon_{s-1}+\varepsilon_{s}\right)
\end{gathered}
$$

For $\lambda \in P(R)$, we write $\lambda+\rho=\sum_{i} t_{i} \varpi_{i}=\sum_{i} u_{i} \varepsilon_{i}$ with

$$
\begin{gathered}
u_{1}=t_{1}+\cdots+t_{s-2}+\frac{1}{2}\left(t_{s-1}+t_{s}\right), \ldots, u_{s-2}=t_{s-2}+\frac{1}{2}\left(t_{s-1}+t_{s}\right) \\
u_{s-1}=\frac{1}{2}\left(t_{s-1}+t_{s}\right), \quad u_{s}=\frac{1}{2}\left(-t_{s-1}+t_{s}\right) \\
\left(u_{i} \in \frac{1}{2} \mathbf{Z}, \quad u_{i}-u_{i+1} \in \mathbf{Z}\right)
\end{gathered}
$$

Put $k=\ell+2 s-2$. The condition $\lambda \in P_{\ell}$ becomes: $u_{1}>\cdots>u_{s}$, $u_{1}+u_{2}<k$ and $u_{s-1}+u_{s}>0$; the condition $\lambda \in P_{\ell}^{\prime}$ imposes moreover $t_{s-1} \equiv t_{s}(\bmod 2)$, that is, $u_{i} \in \mathbf{Z}$ for each i. Thus we find a bijection between P_{ℓ}^{\prime} and the subsets $U=\left\{u_{1}, \ldots, u_{s}\right\}$ of \mathbf{Z} satisfying the above conditions.

The group Z is canonically isomorphic to $P(R) / Q(R)$ (note that $R=R^{\vee}$ in this case); its nonzero elements are the classes of ϖ_{1}, ϖ_{s-1} and ϖ_{s}. The nonzero element γ which vanishes in $\mathrm{SO}_{2 s}$ is represented by the only weight in this list which comes from $\mathrm{SO}_{2 s}$, namely ϖ_{1}. It corresponds to the automorphism of the extended Dynkin diagram which exchanges α_{0} with α_{1} and α_{s-1} with $\alpha_{s}\left(\right.$ see [7, Table $\left.\left.D_{l}\right]\right)$; it acts on P_{ℓ} by $\gamma\left(u_{1}, \ldots, u_{s}\right)=$ $\left(k-u_{1}, u_{2}, \ldots, u_{s-1},-u_{s}\right)$. Thus the subsets U as above with $u_{s} \geqslant 0$, and moreover $u_{1} \leqslant \frac{k}{2}$ if $u_{s}=0$, form a system of representatives of $P_{\ell}^{\prime} / \Gamma$. The corresponding orbit has one element if $u_{1}=\frac{k}{2}$ and $u_{s}=0$, and 2 otherwise.

For a subset U corresponding to the weight λ we have [15]

$$
\Delta\left(t_{\lambda}\right)=\Pi_{k}(U)=\prod_{1 \leqslant i<j \leqslant s} 4 \sin ^{2} \frac{\pi}{k}\left(u_{i}-u_{j}\right) 4 \sin ^{2} \frac{\pi}{k}\left(u_{i}+u_{j}\right)
$$

Now we restrict ourselves to the case $\ell=2$, so that $k=r=2 s$. Put $V=\{s, s-1, \ldots, 0\}$. The subsets U to consider are those of the form $U_{j}:=V-\{j\}$ for $0 \leqslant j \leqslant s$. We have

- $\Pi_{r}\left(U_{j}\right)=4 r^{s-1}$ for $1 \leqslant j \leqslant s-1$ by Corollary 1.7 (ii) in [15];
- $\Pi_{r}\left(U_{0}\right)=\Pi_{r}\left(U_{s}\right)=r^{s-1}$ by Corollary 1.7 (iii) in [15].

We have $\left|T_{2}\right|=4 r^{s}$ (2.3). Multiplying the terms U_{0} and U_{s} by $2^{1-2 g}$ and summing, we find:

$$
N_{2}\left(\mathrm{SO}_{2 s}\right)=2\left[(s-1) \cdot r^{g-1}\right]+2^{1-2 g}\left[2 \cdot(4 r)^{g-1}\right]=r^{g}
$$

3.2. The case $G^{\prime}=\mathrm{SO}_{2 s+1}, s \geqslant 2$

Then R is of type B_{s}. Denoting again by $\left(\varepsilon_{1}, \ldots, \varepsilon_{s}\right)$ the standard basis of \mathbf{R}^{s}, the weight lattice $P(R)$ is spanned by the fundamental weights

$$
\varpi_{1}=\varepsilon_{1}, \varpi_{2}=\varepsilon_{1}+\varepsilon_{2}, \ldots, \varpi_{s-1}=\varepsilon_{1}+\cdots+\varepsilon_{s-1}, \varpi_{s}=\frac{1}{2}\left(\varepsilon_{1}+\cdots+\varepsilon_{s}\right) .
$$

For $\lambda \in P(R)$, we write $\lambda+\rho=\sum_{i} t_{i} \varpi_{i}=\sum_{i} u_{i} \varepsilon_{i}$ with

$$
u_{1}=t_{1}+\cdots+t_{s-1}+\frac{t_{s}}{2}, \ldots, u_{s-1}=t_{s-1}+\frac{t_{s}}{2}, u_{s}=\frac{t_{s}}{2}
$$

with $u_{i} \in \frac{1}{2} \mathbf{Z}$ and $u_{i}-u_{i+1} \in \mathbf{Z}$ for each i. Put $k=\ell+2 s-1$. The condition $\lambda \in P_{\ell}$ becomes $u_{1}>\cdots>u_{s}>0$ and $u_{1}+u_{2}<k$. Since ϖ_{s} is the only fundamental weight which does not come from $\mathrm{SO}_{2 s+1}$, the condition $\lambda \in P_{\ell}^{\prime}$ is equivalent to t_{s} odd, that is, $u_{s} \in \mathbf{Z}+\frac{1}{2}$. Thus we find a bijection between P_{ℓ}^{\prime} and the subsets $U=\left\{u_{1}, \ldots, u_{s}\right\}$ of $\mathbf{Z}+\frac{1}{2}$ satisfying

$$
u_{1}>\cdots>u_{s}>0, \quad u_{1}+u_{2}<k
$$

The non-trivial element γ of Γ acts on P_{ℓ} by $\gamma\left(u_{1}, \ldots, u_{s}\right)=\left(k-u_{1}, u_{2}, \ldots\right.$, $\left.u_{s}\right)$. Thus the elements U as above with $u_{1} \leqslant \frac{k}{2}$ form a system of representatives of $P_{\ell}^{\prime} / \Gamma$. The corresponding orbit has one element if $u_{1}=\frac{k}{2}$ and 2 otherwise.

For a subset U corresponding to the weight λ we have [15]
$\Delta\left(t_{\lambda}\right)=\Phi_{r}(U)=\prod_{1 \leqslant i<j \leqslant s} 4 \sin ^{2} \frac{\pi}{r}\left(u_{i}-u_{j}\right) 4 \sin ^{2} \frac{\pi}{r}\left(u_{i}+u_{j}\right) \prod_{i=1}^{s} 4 \sin ^{2} \frac{\pi}{r} u_{i}$.
Now we restrict ourselves to the case $\ell=2$, so that $k=r=2 s+1$. Put $V=\left\{s+\frac{1}{2}, s-\frac{1}{2}, \ldots, \frac{1}{2}\right\}$. The subsets U to consider are the subsets $U_{j}:=V-\left\{j+\frac{1}{2}\right\}$ for $0 \leqslant j \leqslant s$. We have

- $\Phi_{r}\left(U_{j}\right)=4 r^{s-1}$ for $0 \leqslant j \leqslant s-1$ by Corollary 1.9 (ii) in [15];
- $\Phi_{r}\left(U_{s}\right)=r^{s-1}$ by Corollary 1.9 (ii) in [15].

We have again $\left|T_{2}\right|=4 r^{s}$ (2.3). Multiplying the term U_{s} by $2^{1-2 g}$ and summing, we find:

$$
N_{2}\left(\mathrm{SO}_{2 s+1}\right)=2\left[s \cdot r^{g-1}+2^{1-2 g}(4 r)^{g-1}\right]=r^{g}
$$

3.3. The case $G^{\prime}=\mathrm{SO}_{3}$

In that case $G=\mathrm{SL}_{2}$ has a unique fundamental weight ρ, and a unique positive root $\theta=2 \rho$. The Dynkin index of the standard representation of SO_{3} is 4 , so we want to compute $N_{4}\left(\mathrm{SO}_{3}\right)$. We have $\left|T_{4}\right|=12$ (2.3).

The set P_{4} contains the weights $k \rho$ with $0 \leqslant k \leqslant 4$; the weights with k even come from SO_{3}, and Γ exchanges $k \rho$ and $(4-k) \rho$. Thus a system of representatives of P_{4}^{\prime} / Γ is $\{0,2 \rho\}$, with $|\Gamma \cdot 0|=2$ and $|\Gamma \cdot 2 \rho|=1$. Formula (2.5) gives:

$$
N_{2}\left(\mathrm{SO}_{3}\right)=2 \cdot\left[2^{1-2 g} 12^{g-1}+3^{g-1}\right]=3^{g} .
$$

3.4. The case $G^{\prime}=\mathrm{SO}_{4}$

In that case $G=\mathrm{SL}_{2} \times \mathrm{SL}_{2}$ and the nontrivial element of Γ is $(-I,-I)$. The Dynkin index of the standard representation of SO_{4} is $(2,2)$. We have $\left|T_{2}\right|=8$ for SL_{2}, hence $\left|T_{(2,2)}\right|=8^{2}$. The set $P_{(2,2)}$ contains the weights $(k \rho, l \rho)$ with $0 \leqslant k, l \leqslant 2$, and $P_{(2,2)}^{\prime}$ is defined by the condition $k \equiv l$ $(\bmod 2)$. The element $(-I,-I)$ exchanges $(k \rho, l \rho)$ with $((2-k) \rho,(2-l) \rho)$. Thus $P_{(2,2)}^{\prime} / \Gamma$ consists of the classes of $(0,0),(0,2 \rho)$ and (ρ, ρ), the latter being the only one with a nontrivial stabilizer. Formula (2.7) gives

$$
N_{(2,2)}\left(\mathrm{SO}_{4}\right)=2\left[2 \cdot 2^{1-2 g} \cdot 4^{2 g-2}+2^{2 g-2}\right]=4^{g}
$$

Therefore for each $r \geqslant 3$ we have obtained $\operatorname{dim} H^{0}\left(\mathcal{M}_{\mathrm{SO}_{r}}, \mathcal{L}_{\mathrm{SO}_{r}}\right)=r^{g}$. This achieves the proof of Proposition 1.6, and therefore of the Theorem stated in the introduction.

4. The moduli space $\mathcal{M}_{\mathrm{Sp}_{2 r}}$

4.1. - Let r be an integer $\geqslant 1$. The space $\mathcal{M}_{\mathrm{Sp}_{2 r}}$ is the moduli space of (semi-stable) symplectic bundles, that is pairs (E, φ) where E is a semistable ${ }^{(2)}$ vector bundle of rank $2 r$ and trivial determinant and $\varphi: \Lambda^{2} E \rightarrow$ \mathcal{O}_{C} a non-degenerate alternate form. It is connected. To alleviate the notation we will denote it by \mathcal{M}_{r}. The determinant bundle \mathcal{L}_{r} generates $\operatorname{Pic}\left(\mathcal{M}_{r}\right)([10,12])$.

To describe the "strange duality" in an intrinsic way we need a variant of this space, namely the moduli space \mathcal{M}_{r}^{\prime} of semi-stable vector bundles F of rank $2 r$ and determinant K_{C}^{r}, endowed with a symplectic form $\psi: \Lambda^{2} F \rightarrow$ K_{C}. If κ is a theta-characteristic on C, the map $E \mapsto E \otimes \kappa$ induces an isomorphism $\mathcal{M}_{r} \xrightarrow{\sim} \mathcal{M}_{r}^{\prime}$. We denote by \mathcal{L}_{r}^{\prime} the line bundle corresponding to \mathcal{L}_{r} under any of these isomorphisms.

[^1]Similarly, we will consider for t even the moduli space $\mathcal{M}_{\mathrm{SO}_{t}}^{\prime}$ of semistable vector bundles E of rank t and determinant $K_{C}^{t / 2}$, endowed with a quadratic form $q: \mathrm{S}^{2} E \rightarrow K_{C}$. It has two components $\mathcal{M}_{\mathrm{SO}_{t}}^{\prime \pm}$ depending on the parity of $h^{0}(E)$; if κ is a theta-characteristic on C, the map $E \mapsto E \otimes \kappa$ induces isomorphisms $\mathcal{M}_{\mathrm{SO}_{t}}^{ \pm} \xrightarrow{\sim} \mathcal{M}_{\mathrm{SO}_{t}}^{\prime \pm}$ (1.3). The space $\mathcal{M}_{\mathrm{SO}_{t}}^{\prime+}$ carries a canonical Weil divisor, the reduced subvariety

$$
\mathcal{D}=\left\{(E, q) \in \mathcal{M}_{\mathrm{SO}_{t}}^{\prime+} \mid H^{0}(C, E) \neq 0\right\} ;
$$

$2 \mathcal{D}$ is a Cartier divisor, defined by a section of the generator $\mathcal{L}_{\mathrm{SO}_{t}}^{\prime}$ of $\operatorname{Pic}\left(\mathcal{M}_{\mathrm{SO}_{t}}^{\prime+}\right)([12, \S 7])$.

4.2. The strange duality for symplectic bundles

Let r, s be integers $\geqslant 2$, and $t=4 r s$. Consider the map

$$
\pi: \mathcal{M}_{r} \times \mathcal{M}_{s}^{\prime} \longrightarrow \mathcal{M}_{\mathrm{SO}_{t}}^{\prime}
$$

which maps $\left((E, \varphi),(F, \psi)\right.$ to $(E \otimes F, \varphi \otimes \psi)$. Since \mathcal{M}_{r} is connected and contains the trivial bundle $\mathcal{O}^{2 r}$ with the standard symplectic form, the image lands in $\mathcal{M}_{\mathrm{SO}_{t}}^{\prime+}$.

For $(E, \varphi) \in \mathcal{M}_{r}$, the pull back of $\mathcal{L}_{\mathrm{SO}_{t}}$ to $\{(E, \varphi)\} \times \mathcal{M}_{s}^{\prime}$ is the line bundle associated to $2 r$ times the standard representation, that is $\mathcal{L}_{s}^{\prime 2 r}$; similarly its pull back to $\mathcal{M}_{r} \times\{(F, \psi)\}$, for $(F, \psi) \in \mathcal{M}_{s}^{\prime}$, is $\mathcal{L}_{r}^{2 s}$. It follows that

$$
\pi^{*} \mathcal{L}_{\mathrm{SO}_{t}} \cong \mathcal{L}_{r}^{2 s} \boxtimes \mathcal{L}_{s}^{\prime 2 r}
$$

If κ is a theta-characteristic on C with $h^{0}(\kappa)=0$, we have $\pi\left(\mathcal{O}_{C}^{2 r}, \kappa^{2 s}\right) \notin$ $\mathcal{D}\left(\mathcal{O}_{C}^{2 r}\right.$ and $\kappa^{2 s}$ are endowed with the standard alternate forms). Thus $\Delta:=\pi^{*} \mathcal{D}$ is a Weil divisor on $\mathcal{M}_{r} \times \mathcal{M}_{s}^{\prime}$, whose double is a Cartier divisor defined by a section of $\left(\mathcal{L}_{r}^{s} \boxtimes \mathcal{L}_{s}^{\prime r}\right)^{2}$; but this moduli space is locally factorial ($[18$, Thm. 1.2]), so that Δ is actually a Cartier divisor, defined by a section δ of $\mathcal{L}_{r}^{s} \boxtimes \mathcal{L}_{s}^{\prime r}$, well-defined up to a scalar. Via the Künneth isomorphism we view δ as an element of $H^{0}\left(\mathcal{M}_{r}, \mathcal{L}_{r}^{s}\right) \otimes H^{0}\left(\mathcal{M}_{s}^{\prime}, \mathcal{L}_{s}^{\prime r}\right)$. The strange duality conjecture for symplectic bundles is

Conjecture 4.3. - The section δ induces an isomorphism

$$
\delta^{\sharp}: H^{0}\left(\mathcal{M}_{r}, \mathcal{L}_{r}^{s}\right)^{*} \xrightarrow{\sim} H^{0}\left(\mathcal{M}_{s}^{\prime}, \mathcal{L}_{s}^{\prime r}\right)
$$

If the conjecture holds, the rational map $\varphi_{\mathcal{L}_{r}^{s}}: \mathcal{M}_{r} \rightarrow\left|\mathcal{L}_{r}^{s}\right|^{*}$ is identified through δ^{\sharp} to the map $\mathcal{M}_{r} \rightarrow\left|\mathcal{L}_{s}^{\prime r}\right|$ given by $E \mapsto \Delta_{E}$, where Δ_{E} is the trace of Δ on $\{E\} \times \mathcal{M}_{s}^{\prime}$; set-theoretically:

$$
\Delta_{E}=\left\{(F, \varphi) \in \mathcal{M}_{s}^{\prime} \mid H^{0}(C, E \otimes F) \neq 0\right\}
$$

By [15], we have $\operatorname{dim} H^{0}\left(\mathcal{M}_{r}, \mathcal{L}_{r}^{s}\right)=\operatorname{dim} H^{0}\left(\mathcal{M}_{s}, \mathcal{L}_{s}^{r}\right)$. Therefore the conjecture is equivalent to:
4.4. - The linear system $\left|\mathcal{L}_{r}^{\prime s}\right|$ is spanned by the divisors Δ_{E}, for $E \in$ \mathcal{M}_{r}

We now specialize to the case $s=1$. The space \mathcal{M}_{1}^{\prime} is the moduli space \mathcal{N} of semi-stable rank 2 vector bundles on C with determinant K_{C}; its Picard group is generated by the determinant bundle \mathcal{L}. The conjecture becomes:

Conjecture 4.5.—The isomorphism $\delta^{\sharp}: H^{0}\left(\mathcal{M}_{r}, \mathcal{L}_{r}\right)^{*} \xrightarrow{\sim} H^{0}\left(\mathcal{N}, \mathcal{L}^{r}\right)$ identifies the map $\varphi_{\mathcal{L}_{r}}: \mathcal{M}_{r} \rightarrow\left|\mathcal{L}_{r}\right|^{*}$ with the rational map $E \mapsto \Delta_{E}$ of \mathcal{M}_{r} into $|\mathcal{L}|$.

By 4.4 this is equivalent to saying that the linear system $\left|\mathcal{L}^{r}\right|$ on \mathcal{N} is spanned by the divisors Δ_{E} for $E \in \mathcal{M}_{r}$.
4.6. - Let G be a semi-stable vector bundle of rank r and degree 0 . To G is associated a divisor $\Theta_{G} \in\left|\mathcal{L}^{r}\right|$, supported on the set

$$
\Theta_{G}=\left\{F \in \mathcal{N} \mid H^{0}(C, G \otimes F) \neq 0\right\}
$$

provided this set is $\neq \mathcal{N}[8]$. Put $E=G \oplus G^{*}$, with the standard symplectic form. We have $\Theta_{G}=\Theta_{G^{*}}$ by Serre duality, hence $\Delta_{E}=\frac{1}{2} \Theta_{E}=\frac{1}{2}\left(\Theta_{G}+\right.$ $\left.\Theta_{G^{*}}\right)=\Theta_{G}$; thus conjecture 4.5 holds if the linear system $\left|\mathcal{L}^{r}\right|$ on \mathcal{N} is spanned by the divisors Θ_{G} for G semi-stable of degree 0 . In particular, it suffices to prove that $\left|\mathcal{L}^{r}\right|$ is spanned by the divisors $\Theta_{L_{1}}+\cdots+\Theta_{L_{r}}$, for $L_{1}, \ldots, L_{r} \in J$. As a consequence of [6], the divisors Θ_{L} for L in J span $|\mathcal{L}|$, so Conjecture 4.5 holds if the multiplication map $m_{r}: \mathbf{S}^{r} H^{0}(\mathcal{N}, \mathcal{L}) \rightarrow$ $H^{0}\left(\mathcal{N}, \mathcal{L}^{r}\right)$ is surjective.

Proposition 4.7. - Conjecture 4.5 holds in the following cases:
(i) $r=2$ and C has no vanishing thetanull;
(ii) $r \geqslant 3 g-6$ and C is general enough;
(iii) $g=2$, or $g=3$ and C is non-hyperelliptic.

Proof. - In each case the multiplication map $m_{r}: \mathbf{S}^{r} H^{0}(\mathcal{N}, \mathcal{L}) \rightarrow$ $H^{0}\left(\mathcal{N}, \mathcal{L}^{r}\right)$ is surjective. This follows from [3, Prop. 2.6 c$\left.)\right]$, in case (i), and from the explicit description of $\mathcal{M}_{\mathrm{SL}_{2}}$ in case (iii). When C is generic, the surjectivity of m_{r} for r even $\geqslant 2 g-4$ follows from that of m_{2} together with [11]. We have $H^{i}\left(\mathcal{N}, \mathcal{L}^{j}\right)=0$ for $i \geqslant 1$ and $j \geqslant-3$ by [10, Thm. 2.8]. By [14] this implies that the multiplication map

$$
H^{0}(\mathcal{N}, \mathcal{L}) \otimes H^{0}\left(\mathcal{N}, \mathcal{L}^{k}\right) \longrightarrow H^{0}\left(\mathcal{N}, \mathcal{L}^{k+1}\right)
$$

is surjective for $k \geqslant \operatorname{dim} \mathcal{N}-3=3 g-6$. Together with the previous result this implies the surjectivity of m_{r} for $r \geqslant 3 g-6$, and therefore by 4.6 the Proposition.

Corollary 4.8. - Suppose C has no vanishing thetanull. There is a canonical isomorphism $\left|\mathcal{L}_{2}\right|^{*} \xrightarrow{\sim}|4 \Theta|^{+}$which identify the maps $\varphi_{\mathcal{L}_{2}}$: $\mathcal{M}_{2} \rightarrow\left|\mathcal{L}_{2}\right|^{*}$ with $\theta: \mathcal{M}_{2} \rightarrow|4 \Theta|^{+}$such that $\theta(E, \varphi)=\Theta_{E}$.

Proof. - Let $i: J^{g-1} \rightarrow \mathcal{N}$ be the map $L \mapsto L \oplus \iota^{*} L$. The composition

$$
H^{0}\left(\mathcal{M}_{2}, \mathcal{L}_{2}\right)^{*} \xrightarrow{\delta^{\sharp}} H^{0}\left(\mathcal{N}, \mathcal{L}^{2}\right) \xrightarrow{i^{*}} H^{0}\left(J^{g-1}, \mathcal{O}(4 \Theta)\right)^{+}
$$

is an isomorphism by Prop. 4.7, (i) and Prop. 2.6 c) of [3]; it maps $\varphi_{\mathcal{L}_{2}}(E, \varphi)$ to $i^{*} \Delta_{E}$. Using Serre duality again we find $i^{*} \Delta_{E}=\frac{1}{2}\left(\Theta_{E}+\Theta_{E^{*}}\right)=\Theta_{E}$, hence the Corollary.

Remarks 4.9.

1) The corollary does not hold if C has a vanishing thetanull: the image of θ is contained in that of i^{*}, which is a proper subspace of $|4 \Theta|^{+}$.
2) The analogous statement for $r \geqslant 3$ does not hold: the Verlinde formula implies $\operatorname{dim} H^{0}\left(\mathcal{N}, \mathcal{L}^{r}\right)>\operatorname{dim} H^{0}\left(J^{g-1}, \mathcal{O}(2 r \Theta)\right)^{+}$for $g \geqslant 3$, or $g=2$ and $r \geqslant 4$.

Added in proof. - P. Belkale has announced a proof of the strange duality conjecture for vector bundles on a generic curve of given genus (preprint math.AG/0602018). As explained in 4.6, this implies Conjecture 4.5 for a generic curve.

BIBLIOGRAPHY

[1] A. Alexeev, E. Meinrenken \& C. Woodward, "Formulas of Verlinde type for non-simply connected groups", Preprint, math. SG/0005047.
[2] A. Beauville, "Vector bundles on curves and theta functions", Preprint, math.AG/0502179, Proc. of the conf. "Moduli spaces and arithmetic geometry" (Kyoto, 2004). Advanced studies in pure math, to appear.
[3] -, "Fibrés de rang 2 sur les courbes, fibré déterminant et fonctions thêta II", Bull. Soc. Math. France 119 (1991), no. 3, p. 259-291.
[4] —, "Conformal blocks, Fusion rings and the Verlinde formula", in Proceedings of the Hirzebruch 65 Conference on Algebraic Geometry (Ramat Gan, 1993), Israel Math. Conf. Proc., vol. 9, 1996, p. 75-96.
[5] A. Beauville, Y. Laszlo \& C. Sorger, "The Picard group of the moduli of G bundles on a curve", Compositio Math. 112 (1998), no. 2, p. 183-216.
[6] A. Beauville, M. Narasimhan \& S. Ramanan, "Spectral curves and the generalised theta divisor", J. Reine Angew. Math. 398 (1989), p. 169-179.
[7] N. Bourbaki, Groupes et algèbres de Lie. Chap. VI, Hermann, Paris, 1968.
[8] J.-M. Drezet \& M. Narasimhan, "Groupe de Picard des variétés de modules de fibrés semi-stables sur les courbes algébriques", Invent. Math. 97 (1989), no. 1, p. 53-94.
[9] E. Dynkin, "Semisimple subalgebras of semisimple Lie algebras", Amer. Math. Soc. Translations (II) 6 (1957), p. 111-244.
[10] S. Kumar \& M. Narasimhan, "Picard group of the moduli spaces of G-bundles", Math. Ann. 308 (1997), no. 1, p. 155-173.
[11] Y. LaSZLO, "À propos de l'espace des modules de fibrés de rang 2 sur une courbe", Math. Ann. 299 (1994), no. 4, p. 597-608.
[12] Y. Laszlo \& C. Sorger, "The line bundles on the moduli of parabolic G-bundles over curves and their sections", Ann. Sci. École Norm. Sup. (4) 30 (1997), no. 4, p. 499-525.
[13] D. Mumford, "On the equations defining abelian varieties, I", Invent. Math. 1 (1966), p. 287-354.
[14] -, "Varieties defined by quadratic equations", in Questions on Algebraic Varieties (C.I.M.E., III Ciclo, Varenna, 1969), Edizioni Cremonese, Rome, 1970, p. 29100.
[15] W. Oxbury \& S. Wilson, "Reciprocity laws in the Verlinde formulae for the classical groups", Trans. Amer. Math. Soc. 348 (1996), no. 7, p. 2689-2710.
[16] S. Ramanan, "Orthogonal and spin bundles over hyperelliptic curves", Proc. Indian Acad. Sci. Math. Sci. 90 (1981), no. 2, p. 151-166.
[17] J.-P. Serre, "Revêtements à ramification impaire et thêta-caractéristiques", C. R. Acad. Sci. Paris Sér. I Math. 311 (1990), no. 9, p. 547-552.
[18] C. Sorger, "On moduli of G-bundles of a curve for exceptional G ", Ann. Sci. École Norm. Sup. (4) 32 (1999), no. 1, p. 127-133.

Manuscrit reçu le 29 avril 2005, accepté le 12 janvier 2006.

Arnaud BEAUVILLE
Université de Nice
Laboratoire J.A. Dieudonné
Parc Valrose
06108 Nice Cedex 2 (France)
beauville@math.unice.fr

[^0]: ${ }^{(1)}$ By [16, 4.2], an orthogonal bundle (E, q) is semi-stable if and only if the vector bundle E is semi-stable.

[^1]: ${ }^{(2)}$ By the same argument as in the orthogonal case (footnote 1), a symplectic bundle (E, φ) is semi-stable if and only if E is semi-stable as a vector bundle.

