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ORTHOGONAL BUNDLES ON CURVES
AND THETA FUNCTIONS

by Arnaud BEAUVILLE

Abstract. — Let M be the moduli space of principal SOr-bundles on a curve
C, and L the determinant bundle on M. We define an isomorphism of H

0
(M,L)

onto the dual of the space of r-th order theta functions on the Jacobian of C.
This isomorphism identifies the rational map M 99K |L|⇤ defined by the linear
system |L| with the map M 99K |r⇥| which associates to a quadratic bundle (E, q)

the theta divisor ⇥E . The two components M+ and M� of M are mapped into
the subspaces of even and odd theta functions respectively. Finally we discuss the
analogous question for Sp2r-bundles.

Résumé. — Soient M l’espace des modules des fibrés SOr-principaux sur une
courbe C, et L le fibré déterminant sur M. Nous définissons un isomorphisme
de H

0
(M,L) sur le dual de l’espace des fonctions thêta du r-ième ordre sur la

Jacobienne de C. Cet isomorphisme identifie l’application rationnelle M 99K |L|⇤
définie par le système linéaire |L| avec l’application M 99K |r⇥| qui associe à un
fibré quadratique (E, q) le diviseur thêta ⇥E . Les deux composantesM+ etM� de
M sont envoyées sur les sous-espaces de fonctions paires et impaires respectivement.
Finalement nous discutons le problème analogue pour les fibrés symplectiques.

Introduction

Let C be a curve of genus g > 2, G an almost simple complex Lie group,
and MG the moduli space of semi-stable G-bundles on C. For each compo-
nent M•

G of MG, the Picard group is infinite cyclic; its positive generator
L
•
G can be described explicitely as a determinant bundle. Then a natural

question, which we will address in this paper for the classical groups, is to
describe the space of “generalized theta functions” H

0
(M

•
G,L

•
G) and the

associated rational map '
•
G : M

•
G 99K |L•

G|
⇤.

Keywords: Principal bundles, orthogonal bundles, symplectic bundles, theta divisors,
generalized theta functions, Verlinde formula, strange duality.
Math. classification: 14H60.



1406 Arnaud BEAUVILLE

The model we have in mind is the case G = SLr. Let J
g�1 be the

component of the Picard variety of C parameterizing line bundles of degree
g � 1; it is isomorphic to the Jacobian of C, and carries a canonical theta
divisor ⇥ consisting of line bundles L in J

g�1 with H
0
(C,L) 6= 0. For a

general E 2MSLr , the locus

⇥E =
�
L 2 J

g�1
| H

0
(C,E ⌦ L) 6= 0

 

is in a natural way a divisor, which belongs to the linear system |r⇥| on
J

g�1. We thus obtain a rational map # : MSLr 99K |r⇥|. The main result of
[6] is that there exists an isomorphism |LSLr |

⇤ ⇠
�! |r⇥| which identifies the

rational maps 'SLr and #. This gives a reasonably concrete description of
'SLr , which allows to get some information on the behaviour of this map,
at least for small values of r or g (see [2] for a survey of recent results).

Let us consider now the case G = SOr with r > 3. The moduli space
MSOr parametrizes oriented orthogonal bundles (E, q) on C of rank r; it
has two components M

+

SOr
and M

�
SOr

. Let ✓ : MSOr 99K |r⇥| be the
map (E, q) 7! ⇥E . We will see that ✓ maps M+

SOr
and M

�
SOr

into the
subspaces |r⇥|+ and |r⇥|

� corresponding to even and odd theta functions
respectively. Our main result is:

Theorem. — There are canonical isomorphisms |L
±
SOr

|
⇤ ⇠
�! |r⇥|

±

which identify '
±
SOr

: M
±
SOr

99K |L
±
SOr

|
⇤ with the map ✓

±
: M

±
SOr

99K
|r⇥|

± induced by ✓.

This is easily seen to be equivalent to the fact that the pull-back map ✓⇤ :

H
0
(J

g�1
,O(r⇥))

⇤
! H

0
(MSOr ,LSOr ) is an isomorphism. We will prove

that it is injective by restricting to a small subvariety of MSOr (§1). Then
we will use the Verlinde formula (§2 and 3) to show that the dimensions
are the same. This is somewhat artificial since it forces us for instance to
treat separately the cases r even > 6, r odd > 5, r = 3 and r = 4. It would
be interesting to find a more direct proof, perhaps in the spirit of [6].

In the last section we consider the same question for the symplectic
group. Here the theta map does not involve the Jacobian of C but the
moduli space N of semi-stable rank 2 vector bundles on C with determinant
KC . Let L be the determinant bundle on N . For (E,') general in MSp2r

,
the reduced subvariety

�E =
�
F 2 N | H

0
(E ⌦ F ) 6= 0

 

is a divisor on N , which belongs to the linear system |L
r
|; this defines a

map MSp2r
99K |Lr

| which should coincide, up to a canonical isomorphism,
with 'Sp2r

. This is a particular case of the strange duality conjecture for
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the symplectic group, which we discuss in §4. Unfortunately even this par-
ticular case is not known, except in a few cases that we explain below.

1. The moduli space MSOr

1.1. — Throughout the paper we fix a complex curve C of genus g > 2.
For G a semi-simple complex Lie group, we denote by MG the moduli
space of semi-stable G-bundles on C. It is a normal projective variety,
of dimension (g � 1) dim G. Its connected components are in one-to-one
correspondence with the elements of the group ⇡1(G).

1.2. — Let us consider the case G = SOr (r > 3). The space MSOr

is the moduli space of (semi-stable) oriented orthogonal bundles, that is
triples (E, q,!) where E is a semi-stable(1) vector bundle of rank r, q :

S2
E ! OC a non-degenerate quadratic form, and ! a section of det E with

q̃(!) = 1, where q̃ is the quadratic form on det E deduced from q. The
two components M+

SOr
and M

�
SOr

are distinguished by the parity of the
second Stiefel-Whitney class w2(E, q) 2 H

2
(C,Z/2) ⇠= Z/2. This class has

the following property (see e.g. [17, Thm. 2]): for every theta-characteristic
 on C and orthogonal bundle (E, q) 2MSOr ,

(1.3) w2(E, q) ⌘ h
0
(C,E ⌦ ) + rh

0
(C,) (mod 2)

The involution ◆ : L 7! KC ⌦ L
�1 of J

g�1 preserves ⇥, hence lifts to an
involution of OJg�1(⇥). We denote by |r⇥|+ and |r⇥|� the two correspond-
ing eigenspaces in |r⇥|, and by ✓ : MSOr 99K |r⇥| the map (E, q) 7! ⇥E .

Lemma 1.4. — The rational map ✓ : MSOr 99K |r⇥| maps M+

SOr
in

|r⇥|
+ and M

�
SOr

in |r⇥|
�.

Proof. — For any E 2 MSLr we have ◆
⇤
⇥E = ⇥E⇤ , so ✓(MSOr ) is

contained in the fixed locus |r⇥|+ [ |r⇥|� of ◆⇤. Since M±
SOr

is connected,
it su�ces to find one element (E, q) of M+

SOr
(resp. M�

SOr
) such that ⇥E

is a divisor in |r⇥|
+ (resp. |r⇥|�).

Let  2 J
g�1 be an even theta-characteristic of C; a symmetric divisor

D 2 |r⇥| is in |r⇥|
+ (resp. |r⇥|�) if and only if mult(D) is even (resp.

odd) – see [13, §2]. Let J [2] be the 2-torsion subgroup of Pic(C); we take
E = ↵1�· · ·�↵r, where ↵1, . . . ,↵r 2 J [2] and

P
↵i = 0. We endow E with

the diagonal quadratic form q deduced from the isomorphisms ↵2

i
⇠= OC .

(1) By [16, 4.2], an orthogonal bundle (E, q) is semi-stable if and only if the vector bundle
E is semi-stable.
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Then ⇥E = ⇥↵1 + · · · + ⇥↵r . By the Riemann singularity theorem the
multiplicity at  of ⇥↵ is h

0
(↵⌦ ). Thus by (1.3)

mult(⇥E) =

X

i

h
0
(↵i ⌦ ) = h

0
(E ⌦ ) ⌘ w2(E, q) (mod 2).

⇤

1.5. — Let LSOr be the determinant bundle on MSOr , that is, the pull
back of LSLr by the map (E, q) 7! E, and let L+

SOr
and L�

SOr
be its restric-

tions to M+

SOr
and M�

SOr
. It follows from [5] that for r 6= 4, L±

SOr
generates

Pic(M
±
SOr

).

Proposition 1.6. — The map

✓
⇤

: H
0
(J

g�1
,O(r⇥))

⇤
�! H

0
(MSOr ,LSOr )

induced by ✓ : MSOr 99K |r⇥| is an isomorphism.

By Lemma 1.4 ✓⇤ splits as a direct sum (✓
+
)
⇤
� (✓

�
)
⇤, where

(✓
±

)
⇤

:
�
H

0
(J

g�1
,O(r⇥))

±�⇤
�! H

0
(M

±
SOr

,L
±
SOr

).

The Proposition implies that (✓
+
)
⇤ and (✓

�
)
⇤ are isomorphisms, and this

is equivalent to the Theorem stated in the introduction.

Proof of the Proposition. — We will show in §3 that the Verlinde for-
mula gives

dim H
0
(MSOr ,LSOr ) = dim H

0
(J

g�1
,O(r⇥)) = r

g
.

It is therefore su�cient to prove that ✓⇤ is injective, or equivalently that
✓(MSOr ) spans the projective space |r⇥|. We consider again the orthogonal
bundles (E, q) = ↵1� · · ·�↵r for ↵1, . . . ,↵r in J [2],

P
↵i = 0. This bundle

has a theta divisor ⇥E = ⇥↵1 + · · · + ⇥↵r . We claim that divisors of this
form span |r⇥|. To prove it, let us identify J

g�1 with the Jacobian J of
C (by choosing a divisor class of degree g � 1). For a 2 J , the divisor ⇥a

is the only element of the linear system |OJ(⇥) ⌦ '(a)|, where ' : J ! bJ
is the isomorphism associated to the principal polarization of J . Therefore
our assertion follows from the following easy lemma:

Lemma 1.7. — Let A be an abelian variety, L an ample line bundle on
A, bA[2] the 2-torsion subgroup of Pic(A). The multiplication map

X

↵1,...,↵r2bA[2]

↵1+···+↵r=0

H
0
(A,L⌦ ↵1)⌦ · · ·⌦H

0
(A,L⌦ ↵r) �! H

0
(A,L

r
)

is surjective.

ANNALES DE L’INSTITUT FOURIER



ORTHOGONAL BUNDLES ON CURVES AND THETA FUNCTIONS 1409

Proof. — Let 2A be the multiplication by 2 in A. We have canonical
isomorphisms

H
0
(A, 2

⇤
AL) ⇠=

M

↵2bA[2]

H
0
(L⌦ ↵), H

0
(A, 2

⇤
AL

r
) ⇠=

M

�2bA[2]

H
0
(L

r
⌦ �);

through these isomorphisms the product map mr : H
0
(A, 2

⇤
AL)

⌦r
�!

H
0
(A, 2

⇤
AL

r
) is the direct sum over � 2 bA[2] of the maps

m
�
r :

X

↵1,...,↵r2bA[2]

↵1+···+↵r=�

H
0
(A,L⌦ ↵1)⌦ · · ·⌦H

0
(A,L⌦ ↵r) �! H

0
(A,L

r
⌦ �).

Since the line bundle 2
⇤
AL is algebraically equivalent to L

4, the map mr

is surjective [14], hence so is m
�
r for every �. The case � = 0 gives the

lemma. ⇤

2. The Verlinde formula

2.1. — We keep the notation of 1.1; we denote by q the number of simple
factors of the Lie algebra of G (we are mainly interested in the case q = 1).

To each representation ⇢ : G ! SLr is attached a line bundle L⇢ on MG,
the pull back of the determinant bundle on MSLr by the morphism MG !

MSLr associated to ⇢. The Verlinde formula expresses the dimension of
H

0
(MG,L

k
⇢), for each integer k, in the form

dim H
0
(MG,L

k
⇢) = Nkd⇢(G),

where
• d⇢ 2 Nq is the Dynkin index of ⇢. For q = 1 the number d⇢ is de-

fined and computed in [9, §2]. In the general case the universal cover
of G is a product G1 ⇥ · · · ⇥ Gq of almost simple factors, and we put
d⇢ = (d⇢1 , . . . , d⇢q ), where ⇢i is the pull back of ⇢ to Gi.

We will need only to know that the Dynkin index is 2 for the standard
representation of SOr (r > 5), 4 for that of SO3, and (2, 2) for that of SO4.
• N`(G) is an integer depending on G, the genus g of C, and ` 2 Nq. We

will now explain how this number is computed. Our basic reference is [1].

2.2. The simply connected case

Let us first consider the case where G is simply connected and almost
simple (that is, q = 1). Let T be a maximal torus of G, and R = R(G, T ) the

TOME 56 (2006), FASCICULE 5
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corresponding root system (we view the roots of G as characters of T ). We
denote by T` the (finite) subgroup of elements t 2 T such that ↵(t)

`+h
= 1

for each long root ↵, and by T
reg

` the subset of regular elements t 2 T`

(that is, such that ↵(t) 6= 1 for each root ↵). It is stable under the action
of the Weyl group W . For t 2 T , we put �(t) =

Q
↵2R(↵(t)� 1). Then the

Verlinde formula is

N`(G) =

X

t2T reg
`

/W

⇣
|T`|

�(t)

⌘g�1

.

2.3. — This number can be explicitely computed in the following way.
Let t be the Lie algebra of T . The character group P (R) of T embeds
naturally into t⇤. We endow t⇤ with the W -invariant bilinear form (|) such
that (↵ |↵) = 2 for each long root ↵, and we use this product to identify t⇤

with t. Let ✓ be the highest root of R; we denote by P` the set of dominant
weights � 2 P (R) such that (� | ✓) 6 `. Let ⇢ 2 P (R) be the half-sum of
the positive roots. The number h := (⇢ | ✓) + 1 is the dual Coxeter number
of R. We have |T`| = (` + h)

s
f⌫, where s is the rank of R, f the order of

the center of G, and ⌫ a number depending on R; it is equal to 1 for R of
type Ds and to 2 for Bs ([4, 9.9]).

For � 2 P` we put t� = exp 2⇡i
�+⇢
`+h · The map � 7! t� is a bºection of

P` onto T
reg

` /W ([4, 9.3.c])). For � 2 P`, we have ↵(t�) = exp 2⇡i
(↵ |�+⇢)

`+h ,
and therefore

�(t�) =

Y

↵2R+

4 sin
2
⇡

(↵ |�+ ⇢)

`+ h
·

2.4. The non-simply connected case

We now give the formula for a general almost simple group, following [1].
Let Z be the center of G. An element t of T belongs to Z if and only

if ↵(t) = 1 for all ↵ 2 R, or equivalently w(t) = t for all w 2 W . It
follows that Z acts on the set T

reg

` by multiplication; this action commutes
with that of W and thus defines an action of Z on T

reg

` /W . Through the
bºection P` ! T

reg

` /W the action of Z on P` is the one deduced from its
action on the extended Dynkin diagram (see [15, §3] or [7, 2.3 and 4.3]).

Now let � be a subgroup of Z, and let G
0

= G/�. We denote by P
0
`

the sublattice of weights � 2 P` such that �|� = 1. The action of � on P`

preserves P
0
` ; we denote by � ·� the orbit of a weight � in P

0
` . The Verlinde

ANNALES DE L’INSTITUT FOURIER
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formula for G
0 is ([1, Thm. 5.3]):

N`(G
0
) = |�|

X

�2P 0
`

|� · �|
�2g

⇣
|T`|

�(t�)

⌘g�1

.

Each term in the sum is invariant under �, so we may as well sum over
P
0
`/� provided we multiply each term by |� · �|:

(2.5) N`(G
0
) = |�|

X

�2P 0
`
/�

|� · �|
1�2g

⇣
|T`|

�(t�)

⌘g�1

2.6. The general case

The above formula actually applies to any semi-simple group G
0
= G/�,

where G is a product of simply connected groups G1, . . . , Gq [1].
We choose a maximal torus T

(i) in Gi for each i and put T = T
(1)
⇥ · · ·⇥

T
(q). Let ` := (`1, . . . , `q) be a q-uple of nonnegative integers. We put

T` = T
(1)

`1
⇥· · ·⇥T

(q)
`q

; the subset T
reg

` of regular elements in T` is the product
of the subsets (T

(i)
`i

)
reg. For each i, let P

(i)
`i

be the set of dominant weights
of T

(i) associated to Gi and `i as in 2.3, and let P` = P
(1)

`1
⇥ · · · ⇥ P

(q)
`q

.
For � = (�1, . . . ,�q) 2 P`, we put t� = (t�1 , . . . , t�q ) 2 T`; this defines a
bºection of P` onto T

reg

` /W . The elements of P` are characters of T , and
we denote by P

0
` the subset of characters which are trivial on �. The group

� is contained in the center Z1 ⇥ · · ·⇥Zq of G, which acts naturally on P`

and P
0
`. Then

(2.7) N`(G
0
) = |�|

X

�2P 0
`
/�

|� · �|
1�2g

⇣
|T`|

�(t�)

⌘g�1

with
|T`|

�(t�)
=

qY

i=1

|T`i |

�i(t�i)
, �i(t) =

Y

↵2R(Gi,T (i))

(↵(t)� 1)

for t 2 T
(i).

3. The Verlinde formula for SOr

We now apply the previous formulas to the case G
0
= SOr. We will rest

very much on the computations of [15]. We will borrow their notation as
well as that of [7].

TOME 56 (2006), FASCICULE 5
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3.1. The case G
0
= SO2s, s > 3

The root system R is of type Ds. Let ("1, . . . , "s) be the standard basis
of Rs. The weight lattice P (R) is spanned by the fundamental weights

$j = "1 + · · ·+ "j (1 6 j 6 s� 2),

$s�1 =
1

2
("1 + · · ·+ "s�1 � "s), $s =

1

2
("1 + · · ·+ "s�1 + "s).

For � 2 P (R), we write �+ ⇢ =
P

i ti$i =
P

i ui"i with

u1 = t1 + · · ·+ ts�2 +
1

2
(ts�1 + ts), . . . , us�2 = ts�2 +

1

2
(ts�1 + ts)

us�1 =
1

2
(ts�1 + ts), us =

1

2
(�ts�1 + ts)

(ui 2
1

2
Z, ui � ui+1 2 Z).

Put k = ` + 2s � 2. The condition � 2 P` becomes: u1 > · · · > us,
u1 + u2 < k and us�1 + us > 0; the condition � 2 P

0
` imposes moreover

ts�1 ⌘ ts (mod 2), that is, ui 2 Z for each i. Thus we find a bºection
between P

0
` and the subsets U = {u1, . . . , us} of Z satisfying the above

conditions.
The group Z is canonically isomorphic to P (R)/Q(R) (note that R = R

_

in this case); its nonzero elements are the classes of $1,$s�1 and $s.
The nonzero element � which vanishes in SO2s is represented by the only
weight in this list which comes from SO2s, namely $1. It corresponds to the
automorphism of the extended Dynkin diagram which exchanges ↵0 with
↵1 and ↵s�1 with ↵s (see [7, Table Dl]); it acts on P` by �(u1, . . . , us) =

(k � u1, u2, . . . , us�1,�us). Thus the subsets U as above with us > 0, and
moreover u1 6 k

2
if us = 0, form a system of representatives of P

0
`/�. The

corresponding orbit has one element if u1 =
k
2

and us = 0, and 2 otherwise.
For a subset U corresponding to the weight � we have [15]

�(t�) = ⇧k(U) =

Y

16i<j6s

4 sin
2
⇡

k
(ui � uj) 4 sin

2
⇡

k
(ui + uj).

Now we restrict ourselves to the case ` = 2, so that k = r = 2s. Put
V = {s, s � 1, . . . , 0}. The subsets U to consider are those of the form
Uj := V {j} for 0 6 j 6 s. We have
• ⇧r(Uj) = 4r

s�1 for 1 6 j 6 s� 1 by Corollary 1.7 (ii) in [15];
• ⇧r(U0) = ⇧r(Us) = r

s�1 by Corollary 1.7 (iii) in [15].
We have |T2| = 4r

s (2.3). Multiplying the terms U0 and Us by 2
1�2g and

summing, we find:

N2(SO2s) = 2
⇥
(s� 1)· r

g�1
⇤
+ 2

1�2g
⇥
2· (4r)

g�1
⇤

= r
g
.
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3.2. The case G
0
= SO2s+1, s > 2

Then R is of type Bs. Denoting again by ("1, . . . , "s) the standard basis
of Rs, the weight lattice P (R) is spanned by the fundamental weights

$1 = "1,$2 = "1 + "2, . . . ,$s�1 = "1 + · · ·+ "s�1,$s =
1

2
("1 + · · ·+ "s).

For � 2 P (R), we write �+ ⇢ =
P

i ti$i =
P

i ui"i with

u1 = t1 + · · ·+ ts�1 +
ts

2
, . . . , us�1 = ts�1 +

ts

2
, us =

ts

2
,

with ui 2
1

2
Z and ui � ui+1 2 Z for each i. Put k = ` + 2s � 1. The

condition � 2 P` becomes u1 > · · · > us > 0 and u1 + u2 < k. Since
$s is the only fundamental weight which does not come from SO2s+1, the
condition � 2 P

0
` is equivalent to ts odd, that is, us 2 Z+

1

2
. Thus we find a

bºection between P
0
` and the subsets U = {u1, . . . , us} of Z +

1

2
satisfying

u1 > · · · > us > 0, u1 + u2 < k.

The non-trivial element � of � acts on P` by �(u1, . . . , us) = (k�u1, u2, . . . ,

us). Thus the elements U as above with u1 6 k
2

form a system of represen-
tatives of P

0
`/�. The corresponding orbit has one element if u1 =

k
2

and 2
otherwise.

For a subset U corresponding to the weight � we have [15]

�(t�) = �r(U) =

Y

16i<j6s

4 sin
2
⇡

r
(ui � uj) 4 sin

2
⇡

r
(ui + uj)

sY

i=1

4 sin
2
⇡

r
ui.

Now we restrict ourselves to the case ` = 2, so that k = r = 2s + 1.
Put V = {s +

1

2
, s �

1

2
, . . . ,

1

2
}. The subsets U to consider are the subsets

Uj := V {j +
1

2
} for 0 6 j 6 s. We have

• �r(Uj) = 4r
s�1 for 0 6 j 6 s� 1 by Corollary 1.9 (ii) in [15];

• �r(Us) = r
s�1 by Corollary 1.9 (ii) in [15].

We have again |T2| = 4r
s (2.3). Multiplying the term Us by 2

1�2g and
summing, we find:

N2(SO2s+1) = 2
⇥
s· r

g�1
+ 2

1�2g
(4r)

g�1
⇤

= r
g
.

3.3. The case G
0
= SO3

In that case G = SL2 has a unique fundamental weight ⇢, and a unique
positive root ✓ = 2⇢. The Dynkin index of the standard representation
of SO3 is 4, so we want to compute N4(SO3). We have |T4| = 12 (2.3).
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The set P4 contains the weights k⇢ with 0 6 k 6 4; the weights with k

even come from SO3, and � exchanges k⇢ and (4 � k)⇢. Thus a system
of representatives of P

0
4
/� is {0, 2⇢}, with |� · 0| = 2 and |� · 2⇢| = 1.

Formula (2.5) gives:

N2(SO3) = 2·
⇥
2
1�2g

12
g�1

+ 3
g�1

⇤
= 3

g
.

3.4. The case G
0
= SO4

In that case G = SL2⇥SL2 and the nontrivial element of � is (�I,�I).
The Dynkin index of the standard representation of SO4 is (2, 2). We have
|T2| = 8 for SL2, hence |T(2,2)| = 8

2. The set P(2,2) contains the weights
(k⇢, l⇢) with 0 6 k, l 6 2, and P

0
(2,2) is defined by the condition k ⌘ l

(mod 2). The element (�I,�I) exchanges (k⇢, l⇢) with ((2� k)⇢, (2� l)⇢).
Thus P

0
(2,2)/� consists of the classes of (0, 0), (0, 2⇢) and (⇢, ⇢), the latter

being the only one with a nontrivial stabilizer. Formula (2.7) gives

N(2,2)(SO4) = 2 [ 2 · 2
1�2g

· 4
2g�2

+ 2
2g�2

] = 4
g
.

Therefore for each r > 3 we have obtained dim H
0
(MSOr ,LSOr ) = r

g.
This achieves the proof of Proposition 1.6, and therefore of the Theorem
stated in the introduction.

4. The moduli space MSp2r

4.1. — Let r be an integer > 1. The space MSp2r
is the moduli space

of (semi-stable) symplectic bundles, that is pairs (E,') where E is a semi-
stable(2) vector bundle of rank 2r and trivial determinant and ' : ⇤2

E !

OC a non-degenerate alternate form. It is connected. To alleviate the no-
tation we will denote it by Mr. The determinant bundle Lr generates
Pic(Mr) ([10, 12]).

To describe the “strange duality” in an intrinsic way we need a variant of
this space, namely the moduli space M0

r of semi-stable vector bundles F of
rank 2r and determinant K

r
C , endowed with a symplectic form  : ⇤2

F !

KC . If  is a theta-characteristic on C, the map E 7! E ⌦  induces an
isomorphism Mr

⇠
�!M

0
r. We denote by L0r the line bundle corresponding

to Lr under any of these isomorphisms.

(2) By the same argument as in the orthogonal case (footnote 1), a symplectic bundle
(E, ') is semi-stable if and only if E is semi-stable as a vector bundle.
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Similarly, we will consider for t even the moduli space M
0
SOt

of semi-
stable vector bundles E of rank t and determinant K

t/2

C , endowed with a
quadratic form q : S2

E ! KC . It has two components M0±
SOt

depending on
the parity of h

0
(E); if  is a theta-characteristic on C, the map E 7! E⌦

induces isomorphisms M±
SOt

⇠
�! M

0±
SOt

(1.3). The space M0+
SOt

carries a
canonical Weil divisor, the reduced subvariety

D =
�
(E, q) 2M

0+
SOt

| H
0
(C,E) 6= 0

 
;

2D is a Cartier divisor, defined by a section of the generator L
0
SOt

of
Pic(M

0+
SOt

) ([12, §7]).

4.2. The strange duality for symplectic bundles

Let r, s be integers > 2, and t = 4rs. Consider the map

⇡ : Mr ⇥M
0
s �!M

0
SOt

which maps ((E,'), (F, ) to (E ⌦ F,' ⌦  ). Since Mr is connected and
contains the trivial bundle O

2r with the standard symplectic form, the
image lands in M

0+
SOt

.
For (E,') 2 Mr, the pull back of LSOt to {(E,')} ⇥M

0
s is the line

bundle associated to 2r times the standard representation, that is L02r
s ;

similarly its pull back to Mr ⇥ {(F, )}, for (F, ) 2M
0
s, is L2s

r . It follows
that

⇡
⇤
LSOt

⇠= L
2s
r ⇥ L

02r
s .

If  is a theta-characteristic on C with h
0
() = 0, we have ⇡(O

2r
C ,

2s
) /2

D (O2r
C and 

2s are endowed with the standard alternate forms). Thus
� := ⇡

⇤
D is a Weil divisor on Mr⇥M

0
s, whose double is a Cartier divisor

defined by a section of (L
s
r ⇥L

0r
s )

2; but this moduli space is locally factorial
([18, Thm. 1.2]), so that � is actually a Cartier divisor, defined by a section
� of Ls

r ⇥L
0r
s , well-defined up to a scalar. Via the Künneth isomorphism we

view � as an element of H
0
(Mr,L

s
r) ⌦ H

0
(M

0
s,L

0r
s ). The strange duality

conjecture for symplectic bundles is

Conjecture 4.3. — The section � induces an isomorphism

�
]
: H

0
(Mr,L

s
r)
⇤ ⇠
�! H

0
(M

0
s,L

0r
s ).

If the conjecture holds, the rational map 'Ls
r

: Mr 99K |Ls
r|
⇤ is identified

through �
] to the map Mr 99K |L0rs | given by E 7! �E , where �E is the

trace of � on {E}⇥M
0
s; set-theoretically:

�E =
�
(F,') 2M

0
s | H

0
(C,E ⌦ F ) 6= 0

 
.
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By [15], we have dim H
0
(Mr,L

s
r) = dim H

0
(Ms,L

r
s). Therefore the con-

jecture is equivalent to:

4.4. — The linear system |L
0s
r | is spanned by the divisors �E , for E 2

Mr

We now specialize to the case s = 1. The space M0
1

is the moduli space
N of semi-stable rank 2 vector bundles on C with determinant KC ; its
Picard group is generated by the determinant bundle L. The conjecture
becomes:

Conjecture 4.5. —The isomorphism �
]
: H

0
(Mr,Lr)

⇤ ⇠
�! H

0
(N ,L

r
)

identifies the map 'Lr : Mr 99K |Lr|
⇤ with the rational map E 7! �E of

Mr into |L|.

By 4.4 this is equivalent to saying that the linear system |L
r
| on N is

spanned by the divisors �E for E 2Mr.

4.6. — Let G be a semi-stable vector bundle of rank r and degree 0. To
G is associated a divisor ⇥G 2 |L

r
|, supported on the set

⇥G =
�
F 2 N | H

0
(C,G⌦ F ) 6= 0

 

provided this set is 6= N [8]. Put E = G�G
⇤, with the standard symplectic

form. We have ⇥G = ⇥G⇤ by Serre duality, hence �E =
1

2
⇥E =

1

2
(⇥G +

⇥G⇤) = ⇥G; thus conjecture 4.5 holds if the linear system |L
r
| on N is

spanned by the divisors ⇥G for G semi-stable of degree 0. In particular, it
su�ces to prove that |Lr

| is spanned by the divisors ⇥L1 + · · · + ⇥Lr , for
L1, . . . , Lr 2 J . As a consequence of [6], the divisors ⇥L for L in J span
|L|, so Conjecture 4.5 holds if the multiplication map mr : Sr

H
0
(N ,L) !

H
0
(N ,L

r
) is surjective.

Proposition 4.7. — Conjecture 4.5 holds in the following cases:
(i) r = 2 and C has no vanishing thetanull;
(ii) r > 3g � 6 and C is general enough;
(iii) g = 2, or g = 3 and C is non-hyperelliptic.

Proof. — In each case the multiplication map mr : Sr
H

0
(N ,L) !

H
0
(N ,L

r
) is surjective. This follows from [3, Prop. 2.6 c)], in case (i),

and from the explicit description of MSL2 in case (iii). When C is generic,
the surjectivity of mr for r even > 2g� 4 follows from that of m2 together
with [11]. We have H

i
(N ,L

j
) = 0 for i > 1 and j > �3 by [10, Thm. 2.8].

By [14] this implies that the multiplication map

H
0
(N ,L)⌦H

0
(N ,L

k
) �! H

0
(N ,L

k+1
)
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is surjective for k > dimN � 3 = 3g� 6. Together with the previous result
this implies the surjectivity of mr for r > 3g � 6, and therefore by 4.6 the
Proposition. ⇤

Corollary 4.8. — Suppose C has no vanishing thetanull. There is
a canonical isomorphism |L2|

⇤ ⇠
�! |4⇥|

+ which identify the maps 'L2 :

M2 99K |L2|
⇤ with ✓ : M2 99K |4⇥|

+ such that ✓(E,') = ⇥E .

Proof. — Let i : J
g�1

! N be the map L 7! L� ◆
⇤
L. The composition

H
0
(M2,L2)

⇤ �]

�! H
0
(N ,L

2
)

i⇤
�! H

0
(J

g�1
,O(4⇥))

+

is an isomorphism by Prop. 4.7, (i) and Prop. 2.6 c) of [3]; it maps 'L2(E,')

to i
⇤
�E . Using Serre duality again we find i

⇤
�E =

1

2
(⇥E + ⇥E⇤) = ⇥E ,

hence the Corollary. ⇤

Remarks 4.9.
1) The corollary does not hold if C has a vanishing thetanull: the image

of ✓ is contained in that of i
⇤, which is a proper subspace of |4⇥|

+.
2) The analogous statement for r > 3 does not hold: the Verlinde formula

implies dim H
0
(N ,L

r
) > dim H

0
(J

g�1
,O(2r⇥))

+ for g > 3, or g = 2 and
r > 4.

Added in proof. — P. Belkale has announced a proof of the strange dual-
ity conjecture for vector bundles on a generic curve of given genus (preprint
math.AG/0602018). As explained in 4.6, this implies Conjecture 4.5 for a
generic curve.
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