The Verlinde formula for PGL_p

Arnaud BEAUVILLE¹

To the memory of Claude ITZYKSON

Introduction

The Verlinde formula expresses the number of linearly independent conformal blocks in any rational conformal field theory. I am concerned here with a quite particular case, the Wess-Zumino-Witten model associated to a complex semi-simple group ² G. In this case the space of conformal blocks can be interpreted as the space of holomorphic sections of a line bundle on a particular projective variety, the moduli space M_G of holomorphic G-bundles on the given Riemann surface. The fact that the dimension of this space of sections can be explicitly computed is of great interest for mathematicians, and a number of rigorous proofs of that formula (usually called by mathematicians, somewhat incorrectly, the "Verlinde formula") have been recently given (see e.g. [F], [B-L], [L-S]).

These proofs deal only with simply-connected groups. In this paper we treat the case of the projective group \mathbf{PGL}_r when r is prime.

Our approach is to relate to the case of \mathbf{SL}_r , using standard algebro-geometric methods. The components $M^d_{\mathbf{PGL}_r}$ $(0 \le d < r)$ of the moduli space $M_{\mathbf{PGL}_r}$ can be identified with the quotients M_r^d/J_r , where M_r^d is the moduli space of vector bundles on X of rank r and fixed determinant of degree d, and J_r the finite group of holomorphic line bundles α on X such that $\alpha^{\otimes r}$ is trivial. The space we are looking for is the space of J_r -invariant global sections of a line bundle \mathcal{L} on M_r^d ; its dimension can be expressed in terms of the character of the representation of \mathbf{J}_r on $\mathbf{H}^0(\mathbf{M}^d_r, \mathcal{L})$. This is given by the Lefschetz trace formula, with a subtlety for d = 0, since M_r^0 is not smooth. The key point (already used in [N-R]) which makes the computation quite easy is that the fixed point set of any non-zero element of J_r is an abelian variety – this is where the assumption on the group is essential. Extending the method to other cases would require a Chern classes computation on the moduli space M_H for some semi-simple subgroups H of G; this may be feasible, but goes far beyond the scope of the present paper. Note that the case of $M^1_{\mathbf{PGL}_2}$ has been previously worked out in [P] (with an unfortunate misprint in the formula).

 $^{^{1}}$ Partially supported by the European HCM project "Algebraic Geometry in Europe" (AGE).

 $^{^2}$ This group is the complexification of the compact semi-simple group considered by physicists.

In the last section we check that our formulas agree with the predictions of Conformal Field Theory, as they appear for instance in [S-Y]. Note that our results are slightly more precise (in this particular case): we get a formula for $\dim \mathrm{H}^{0}(\mathrm{M}^{d}_{\mathbf{PGL}_{r}}, \mathcal{L})$ for every d, while CFT only predicts the sum of these dimensions (see Remark 4.3).

1. The moduli space M_{PGL_r}

(1.1) Throughout the paper we denote by X a compact (connected) Riemann surface, of genus $g \ge 2$; we fix a point p of X. Principal \mathbf{PGL}_r -bundles on X correspond in a one-to-one way to projective bundles of rank r-1 on X, i.e. bundles of the form $\mathbf{P}(\mathbf{E})$, where E is a rank r vector bundle on X; we say that $\mathbf{P}(\mathbf{E})$ is semi-stable if the vector bundle E is semi-stable. The semi-stable projective bundles of rank r-1 on X are parameterized by a projective variety, the moduli space $\mathbf{M}_{\mathbf{PGL}_r}$.

Two vector bundles E, F give rise to isomorphic projective bundles if and only if F is isomorphic to $E \otimes \alpha$ for some line bundle α on X. Thus a projective bundle can always be written as $\mathbf{P}(E)$ with det $E = \mathcal{O}_{\mathbf{X}}(dp)$, $0 \leq d < r$; the vector bundle E is then determined up to tensor product by a line bundle α with $\alpha^r = \mathcal{O}_{\mathbf{X}}$. In particular, the moduli space $M_{\mathbf{PGL}_r}$ has r connected components $M_{\mathbf{PGL}_r}^d$ ($0 \leq d < r$). Let us denote by M_r^d the moduli space of semi-stable vector bundles on X of rank r and determinant $\mathcal{O}_{\mathbf{X}}(dp)$, and by J_r the kernel of the multiplication by r in the Jacobian JX of X; it is a finite group, canonically isomorphic to $H^1(\mathbf{X}, \mathbf{Z}/(r))$. The group J_r acts on M_r^d , by the rule $(\alpha, E) \mapsto E \otimes \alpha$; it follows from the above remarks that the component $M_{\mathbf{PGL}_r}^d$ is isomorphic to the quotient M_r^d/J_r .

(1.2) We will need a precise description of the line bundles on $M_{\mathbf{PGL}_r}$. Let me first recall how line bundles on M_r^d can be constructed [D-N]: a simple way is to mimic the classical definition of the theta divisor on the Jacobian of X (i.e. in the rank 1 case). Put $\delta = (r, d)$; let A be a vector bundle on X of rank r/δ and degree $(r(g-1)-d)/\delta$. These conditions imply $\chi(E \otimes A) = 0$ for all E in M_r^d ; if A is general enough, it follows that the condition $H^0(X, E \otimes A) \neq 0$ defines a (Cartier) divisor Θ_A in M_r^d . The corresponding line bundle $\mathcal{L}_d := \mathcal{O}(\Theta_A)$ does not depend on the choice of A, and generates the Picard group $Pic(M_r^d)$.

(1.3) The quotient map $q: \mathbf{M}_r^d \to \mathbf{M}_{\mathbf{PGL}_r}^d$ induces a homomorphism $q^*: \operatorname{Pic}(\mathbf{M}_{\mathbf{PGL}_r}^d) \to \operatorname{Pic}(\mathbf{M}_r^d)$, which is easily seen to be injective. Its image is determined in [B-L-S]: it is generated by \mathcal{L}_d^{δ} if r is odd, by $\mathcal{L}_d^{2\delta}$ if r is even.

(1.4) Let \mathcal{L}' be a line bundle on $\mathrm{M}^d_{\mathbf{PGL}_r}$. The line bundle $\mathcal{L} := q^* \mathcal{L}'$ on

 \mathbf{M}_r^d admits a natural action of \mathbf{J}_r , compatible with the action of \mathbf{J}_r on \mathbf{M}_r^d (this is often called a \mathbf{J}_r -linearization of \mathcal{L}). This action is characterized by the property that every element α of \mathbf{J}_r acts trivially on the fibre of \mathcal{L} at a point of \mathbf{M}_r^d fixed by α . In the sequel we will always consider line bundles on \mathbf{M}_r^d of the form $q^*\mathcal{L}'$, and endow them with the above \mathbf{J}_r -linearization.

This linearization defines a representation of J_r on the space of global sections; essentially by definition, the global sections of \mathcal{L}' correspond to the J_r -invariant sections of \mathcal{L} . Therefore our task will be to compute the dimension of the space of invariant sections; as indicated in the introduction, we will do that by computing, for any $\alpha \in J_r$ of order r, the trace of α acting on $\mathrm{H}^0(\mathrm{M}^d_r, \mathcal{L})$.

2. The action of J_r on $H^0(M_r^d, \mathcal{L}_d^k)$

We start with the case when r and d are coprime, which is easier to deal with because the moduli space is smooth.

Proposition 2.1. – Assume r and d are coprime. Let k be an integer; if r is even we assume that k is even. Let α be an element of order r in JX. Then the trace of α acting on $\mathrm{H}^{0}(\mathrm{M}_{r}^{d}, \mathcal{L}_{d}^{k})$ is $(k+1)^{(r-1)(g-1)}$.

Proof: The Lefschetz trace formula reads [A-S]

$$\operatorname{Tr}(\alpha | \mathrm{H}^{0}(\mathrm{M}_{r}^{d}, \mathcal{L}_{d}^{k})) = \int_{\mathrm{P}} \operatorname{Todd}(\mathrm{T}_{\mathrm{P}}) \ \lambda(\mathrm{N}_{\mathrm{P}/\mathrm{M}_{r}^{d}}, \alpha)^{-1} \ \widetilde{\operatorname{ch}}(\mathcal{L}_{d | \mathrm{P}}^{k}, \alpha) \ .$$

Here P is the fixed subvariety of α ; whenever F is a vector bundle on P and φ a diagonalizable endomorphism of F, so that F is the direct sum of its eigen-subbundles F_{λ} for $\lambda \in \mathbf{C}$, we put

$$\widetilde{\mathrm{ch}}(\mathrm{F},\varphi) = \sum \lambda \operatorname{ch}(\mathrm{F}_{\lambda}) \quad ; \quad \lambda(\mathrm{F},\varphi) = \prod_{\lambda} \sum_{p \ge 0} (-\lambda)^p \operatorname{ch}(\mathbf{\Lambda}^p \mathrm{F}_{\lambda}^*) \; .$$

We have a number of informations on the right hand side thanks to [N-R]: (2.1 a) Let $\pi: \widetilde{X} \to X$ be the étale *r*-sheeted covering associated to α ; put $\xi = \alpha^{r(r-1)/2} \in JX$. The map $L \mapsto \pi_*(L)$ identifies any component of the fibre of the norm map Nm : $J^d \widetilde{X} \to J^d X$ over $\xi(dp)$ with P. In particular, P is isomorphic to an abelian variety, hence the term $Todd(T_P)$ is trivial. (2.1 b) Let $\theta \in H^2(P, \mathbb{Z})$ be the restriction to P of the class of the principal

(2.1 b) Let $\theta \in \mathrm{H}^2(\mathrm{P}, \mathbb{Z})$ be the restriction to P of the class of the principal polarization of $\mathrm{J}^d \widetilde{\mathrm{X}}$. The term $\lambda(\mathrm{N}_{\mathrm{P}/\mathrm{M}^d_r}, \alpha)$ is equal to $r^{r(g-1)}e^{-r\theta}$.

(2.1 c) The dimension of P is N = (r-1)(g-1), and the equality $\int_{P} \frac{\theta^{N}}{N!} = r^{g-1}$ holds.

With our convention the action of α on $\mathcal{L}_{d|P}^{k}$ is trivial. The class $c_1(\mathcal{L}_{d|P})$ is equal to $r\theta$: the pull back to P of the theta divisor Θ_A (1.2) is the divisor of line bundles L in P with $\mathrm{H}^0(\mathrm{L}\otimes\pi^*\mathrm{A})\neq 0$; to compute its cohomology class we may replace $\pi^*\mathrm{A}$ by any vector bundle with the same rank and degree, in particular by a direct sum of r line bundles of degree r(g-1) - d, which gives the required formula.

Putting things together, we find

$$Tr(\alpha | H^{0}(M_{r}^{d}, \mathcal{L}_{d}^{k})) = \int_{P} r^{-r(g-1)} e^{r\theta} e^{kr\theta} = (k+1)^{(r-1)(g-1)} . \quad \blacksquare$$

We now consider the degree 0 case:

Proposition 2.2. – Let k be a multiple of r, and of 2r if r is even; let α be an element of order r in JX. Then the trace of α acting on $\mathrm{H}^{0}(\mathrm{M}_{r}^{0}, \mathcal{L}_{0}^{k})$ is $(\frac{k}{r}+1)^{(r-1)(g-1)}$.

Proof: We cannot apply directly the Lefschetz trace formula since it is manageable only for smooth projective varieties; instead we use another well-known tool, the Hecke correspondence (this idea appears for instance in [B-S]). For simplicity we write M_d instead of M_r^d . There exists a Poincaré bundle \mathcal{E} on $X \times M_1$, i.e. a vector bundle whose restriction to $X \times \{E\}$, for each point E of M_1 , is isomorphic to E. Such a bundle is determined up to tensor product by a line bundle coming from M_1 ; we will see later how to normalize it. We denote by \mathcal{E}_p the restriction of \mathcal{E} to $\{p\} \times M_1$, and by \mathcal{P} the projective bundle $\mathbf{P}(\mathcal{E}_p^*)$ on M_1 . A point of \mathcal{P} is a pair (E, φ) where E is a vector bundle in M_1 and $\varphi : E \to \mathbf{C}_p$ a non-zero homomorphism, defined up to a scalar; the kernel of φ is then a vector bundle $\mathbf{F} \in M_1$, and we can view equivalently a point of \mathcal{P} as a pair of vector bundles (\mathbf{F}, \mathbf{E}) with $\mathbf{F} \in \mathbf{M}_0$, $\mathbf{E} \in \mathbf{M}_1$ and $\mathbf{F} \subset \mathbf{E}$. The projections p_d on \mathbf{M}_d (d = 0, 1) give rise to the "Hecke diagram"

Lemma 2.3. – The Poincaré bundle \mathcal{E} can be normalized (in a unique way) so that det $\mathcal{E}_p = \mathcal{L}_1$; then $\mathcal{O}_{\mathcal{P}}(1) \cong p_0^* \mathcal{L}_0$.

Proof: Let $E \in M_1$. The fibre $p_1^{-1}(E)$ is the projective space of non-zero linear forms $\ell : E_p \to \mathbf{C}$, up to a scalar. The restriction of $p_0^* \mathcal{L}_0$ to this projective space is $\mathcal{O}(1)$ (choose a line bundle L of degree g-1 on X; if E is general enough, $H^0(X, E \otimes L)$ is spanned by a section s with $s(p) \neq 0$, and the condition that the bundle F corresponding to ℓ belongs to $\Theta_{\rm L}$ is the vanishing of $\ell(s(p))$). Therefore $p_0^* \mathcal{L}_0$ is of the form $\mathcal{O}_{\mathcal{P}}(1) \otimes p_1^* \mathcal{N}$ for some line bundle \mathcal{N} on M_1 . Replacing \mathcal{E} by $\mathcal{E} \otimes \mathcal{N}$ we ensure $\mathcal{O}_{\mathcal{P}}(1) \cong p_0^* \mathcal{L}_0$.

An easy computation gives $K_{\mathcal{P}} = p_1^* \mathcal{L}_1^{-1} \otimes p_0^* \mathcal{L}_0^{-r}$ ([B-L-S], Lemma 10.3). On the other hand, since $\mathcal{P} = \mathbf{P}(\mathcal{E}_p^*)$, we have $K_{\mathcal{P}} = p_1^*(K_{M_1} \otimes \det \mathcal{E}_p) \otimes \mathcal{O}_{\mathcal{P}}(-r)$; using $K_{M_1} = \mathcal{L}_1^{-2}$ [D-N], we get $\det \mathcal{E}_p = \mathcal{L}_1$.

We normalize \mathcal{E} as in the lemma; this gives for each $k \geq 0$ a canonical isomorphism $p_{1*}p_0^*\mathcal{L}_0^k \cong \mathbf{S}^k\mathcal{E}_p$. Let α be an element of order r of JX. It acts on the various moduli spaces in sight; with a slight abuse of language, I will still denote by α the corresponding automorphism. There exists an isomorphism $\alpha^*\mathcal{E} \xrightarrow{\sim} \mathcal{E} \otimes \alpha$, unique up to a scalar ([N-R], lemma 4.7); the induced isomorphism $u: \alpha^*\mathcal{E}_p \xrightarrow{\sim} \mathcal{E}_p$ induces the action of α on \mathcal{P} . Imposing $u^r =$ Id determines u up to a r-th root of unity, hence determines completely $\mathbf{S}^k u$ when k is a multiple of r. Since the Hecke diagram is equivariant with respect to α , it gives rise to a diagram of isomorphisms

which is compatible with the action of α ; in particular, the trace we are looking for is equal to the trace of α on $\mathrm{H}^{0}(\mathrm{M}_{1}, \mathbf{S}^{k}\mathcal{E}_{p})$.

We are now in the situation of Prop. 2.1, and the Lefschetz trace formula gives:

$$\operatorname{Tr}(\alpha | \mathrm{H}^{0}(\mathrm{M}_{1}, \mathbf{S}^{k} \mathcal{E}_{p})) = \int_{\mathrm{P}} \operatorname{Todd}(\mathrm{T}_{\mathrm{P}}) \ \lambda(\mathrm{N}_{\mathrm{P}/\mathrm{M}_{1}}, \alpha)^{-1} \ \widetilde{\operatorname{ch}}(\mathbf{S}^{k} \mathcal{E}_{p | \mathrm{P}}, \alpha)$$

The only term we need to compute is $\widetilde{ch}(\mathbf{S}^k \mathcal{E}_{p \mid \mathrm{P}}, \alpha)$. Let \mathcal{N} be the restriction to $\widetilde{\mathbf{X}} \times \mathrm{P}$ of a Poincaré line bundle on $\widetilde{\mathbf{X}} \times \mathrm{J}^1 \widetilde{\mathbf{X}}$; let us still denote by $\pi : \widetilde{\mathbf{X}} \times \mathrm{P} \to \mathrm{X} \times \mathrm{P}$ the map $\pi \times \mathrm{Id}_{\mathrm{P}}$. The vector bundles $\pi_*(\mathcal{N})$ and $\mathcal{E}_{|\mathrm{X} \times \mathrm{P}}$ have the same restriction to $\mathrm{X} \times \{\gamma\}$ for all $\gamma \in \mathrm{P}$, hence after tensoring \mathcal{N} by a line bundle on P we may assume they are isomorphic ([R], lemma 2.5). Restricting to $\{p\} \times \mathrm{P}$ we get $\mathcal{E}_{p \mid \mathrm{P}} = \bigoplus_{\pi(q)=p} \mathcal{N}_q$, with $\mathcal{N}_q = \mathcal{N}_{|\{q\} \times \mathrm{P}}$.

We claim that the \mathcal{N}_q 's are the eigen-sub-bundles of $\mathcal{E}_{p|\mathbf{P}}$ relative to α . By (2.1 *a*), a pair (E, F) $\in \mathcal{P}$ is fixed by α if and only if $\mathbf{E} = \pi_* \mathbf{L}$, $\mathbf{F} = \pi_* \mathbf{L}'$, with $\operatorname{Nm}(\mathbf{L}) = \xi(p)$, $\operatorname{Nm}(\mathbf{L}') = \xi$; because of the inclusion $\mathbf{F} \subset \mathbf{E}$ we may take \mathbf{L}' of the form $\mathbf{L}(-q)$, for some point $q \in \pi^{-1}(p)$. In other words, the fixed locus of α acting on \mathcal{P} is the disjoint union of the sections $(\sigma_q)_{q \in \pi^{-1}(p)}$ of the fibration $p_1^{-1}(\mathbf{P}) \to \mathbf{P}$ characterized by $\sigma_q(\pi_* \mathbf{L}) = (\pi_* \mathbf{L}, \pi_*(\mathbf{L}(-q)))$. Viewing \mathcal{P} as $\mathbf{P}(\mathcal{E}_{p|\mathbf{P}}^*)$, the section σ_q corresponds to the exact sequence

$$0 \to \pi_*(\mathcal{N}(-q))_{|\{p\} \times \mathcal{P}} \longrightarrow \pi_*(\mathcal{N})_{|\{p\} \times \mathcal{P}} \cong \mathcal{E}_{|\{p\} \times \mathcal{P}} \longrightarrow \mathcal{N}_q \to 0 .$$

Therefore on each fibre $\mathbf{P}(\mathbf{E}_p)$, for $\mathbf{E} \in \mathbf{P}$, the automorphism α has exactly r fixed points, corresponding to the r sub-spaces $\mathcal{N}_{(q,\mathbf{E})}$ for $q \in \pi^{-1}(p)$; this proves our claim.

The line bundles \mathcal{N}_q for $q \in \widetilde{X}$ are algebraically equivalent, and therefore have the same Chern class. We thus have $c_1(\mathcal{E}_{p|P}) = r c_1(\mathcal{N}_q)$. On the other hand we know that det $\mathcal{E}_p = \mathcal{L}_1$ (lemma 2.3), and that $c_1(\mathcal{L}_{1|P}) = r\theta$ (proof of Prop. 2.1). By comparison we get $c_1(\mathcal{N}_q) = \theta$. Putting things together we obtain

$$\widetilde{\mathrm{ch}}(\mathbf{S}^{k}\mathcal{E}_{p|\mathrm{P}},\alpha) = \int_{\mathrm{P}} \mathrm{Tr}\,\mathbf{S}^{k}\mathrm{D}_{r}\,\,e^{k\theta}r^{-r(g-1)}e^{r\theta}$$

where D_r is the diagonal *r*-by-*r* matrix with entries the *r* distinct *r*-th roots of unity.

Lemma 2.4. – The trace of $S^k D_r$ is 1 if r divides k and 0 otherwise.

Consider the formal series $s(T) := \sum_{i \ge 0} T^i \operatorname{Tr} \mathbf{S}^i u$ and $\lambda(T) := \sum_{i \ge 0} T^i \operatorname{Tr} \mathbf{\Lambda}^i u$. The formula $s(T)\lambda(-T) = 1$ is well-known (see e.g. [Bo], § 9, formula (11)). But

$$\lambda(-T) = \sum_{i=0}^{r} (-T)^{i} \operatorname{Tr} \mathbf{\Lambda}^{i} u = \prod_{\zeta^{r}=1} (1-\zeta T) = 1 - T^{r} ,$$

hence the lemma. Using (2.1 c) the Proposition follows.

3. Formulas

In this section I will apply the above results to compute the dimension of the space of sections of the line bundle \mathcal{L}_d^k on the moduli space $M_{\mathbf{PGL}_r}^d$. Let me first recall the corresponding Verlinde formula for the moduli spaces M_r^d . Let $\delta = (r, d)$; we write $\mathcal{L}_d = \mathcal{D}^{r/\delta}$, with the convention that we only consider powers of \mathcal{D} which are multiple of r/δ (the line bundle \mathcal{D} actually makes sense on the moduli stack \mathcal{M}_r^d , and generates its Picard group). We denote by μ_r the center of \mathbf{SL}_r , i.e. the group of scalar matrices ζI_r with $\zeta^r = 1$.

Proposition 3.1. – Let T_k be the set of diagonal matrices $t = \text{diag}(t_1, \ldots, t_r)$ in $\mathbf{SL}_r(\mathbf{C})$ with $t_i \neq t_j$ for $i \neq j$, and $t^{k+r} \in \boldsymbol{\mu}_r$; for $t \in T_k$, let $\delta(t) = \prod_{i < j} (t_i - t_j)$.

Then

$$\dim \mathcal{H}^{0}(\mathcal{M}^{d}_{r}, \mathcal{D}^{k}) = r^{g-1}(k+r)^{(r-1)(g-1)} \sum_{t \in \mathcal{T}_{k}/\mathfrak{S}_{r}} \frac{((-1)^{r-1}t^{k+r})^{-d}}{|\delta(t)|^{2g-2}}$$

Proof: According to [B-L], Thm. 9.1, the space $\mathrm{H}^{0}(\mathrm{M}_{r}^{d}, \mathcal{D}^{k})$ for 0 < d < r is canonically isomorphic to the space of conformal blocks in genus g with the representation $\mathrm{V}_{k\varpi_{r-d}}$ of \mathbf{SL}_{r} with highest weight $k\varpi_{r-d}$ inserted at one point. The Verlinde formula gives therefore (see [B], Cor. 9.8¹):

$$\dim \mathrm{H}^{0}(\mathrm{M}^{d}_{r}, \mathcal{D}^{k}) = r^{g-1}(k+r)^{(r-1)(g-1)} \sum_{t \in \mathrm{T}_{k}/\mathfrak{S}_{r}} \frac{\mathrm{Tr}_{\mathrm{V}_{k\varpi_{r-d}}}(t)}{|\delta(t)|^{2g-2}} ;$$

this is still valid for d = 0 with the convention $\varpi_r = 0$.

The character of the representation $V_{k\varpi_{r-d}}$ is given by the Schur formula (see e.g. [F-H], Thm. 6.3):

$$\operatorname{Tr}_{\mathbf{V}_{k\varpi_{r-d}}}(t) = \frac{1}{\delta(t)} \begin{vmatrix} t_1^{k+r-1} & t_2^{k+r-1} & \dots & t_r^{k+r-1} \\ t_1^{k+r-2} & t_2^{k+r-2} & \dots & t_r^{k+r-2} \\ \vdots & \vdots & & \vdots \\ t_1^{k+d} & t_2^{k+d} & \dots & t_r^{k+d} \\ t_1^{d-1} & t_2^{d-1} & \dots & t_r^{d-1} \\ \vdots & \vdots & & \vdots \\ 1 & 1 & \dots & 1 \end{vmatrix}$$

Writing $t^{k+r} = \zeta I_r \in \mu_r$, the big determinant reduces to $\zeta^{r-d}(-1)^{d(r-d)} \det(t_j^{d-i})$, and finally, since $\prod t_i = 1$, to $((-1)^{r-1}\zeta)^{-d}\delta(t)$, which gives the required formula.

Corollary 3.2. – Let T'_k be the set of matrices $t = \text{diag}(t_1, \ldots, t_r)$ in $\mathbf{SL}_r(\mathbf{C})$ with $t_i \neq t_j$ if $i \neq j$, and $t^{k+r} = (-1)^{r-1}I_r$. Then

$$\sum_{d=0}^{r-1} \dim \mathcal{H}^0(\mathcal{M}^d_r, \mathcal{D}^k) = r^g(k+r)^{(r-1)(g-1)} \sum_{t \in \mathcal{T}'_k/\mathfrak{S}_r} \frac{1}{|\delta(t)|^{2g-2}} \cdot \quad \bullet$$

We now consider the moduli space $M_{\mathbf{PGL}_r}$. We know that the line bundle \mathcal{D}^k on M_r^d descends to $M_{\mathbf{PGL}_r}^d = M_r^d/J_r$ exactly when k is a multiple of r if r is odd, or of 2r if r is even (1.3). When this is the case we obtain a line bundle

¹ There is a misprint in the first equality of that corollary, where one should read T_{ℓ}^{reg}/W instead of T_{ℓ}^{reg} ; the second equality (and the proof!) are correct.

on $M^d_{\mathbf{PGL}_r}$, that we will still denote by \mathcal{D}^k ; its global sections correspond to the J_r -invariant sections of $H^0(M^d_r, \mathcal{D}^k)$.

We will assume that r is *prime*, so that every non-zero element α of J_r has order r. Then Prop. 2.1 and 2.2 lead immediately to a formula for the dimension of the J_r -invariant subspace of $\mathrm{H}^0(\mathrm{M}^d_r, \mathcal{D}^k)$ as the average of the numbers $\mathrm{Tr}(\alpha)$ for α in J_r . Using Prop. 3.1 we conclude:

Proposition 3.3. – Assume that r is prime. Let k be a multiple of r; if r = 2 assume $4 \mid k$. Then

$$\dim \mathcal{H}^{0}(\mathcal{M}^{d}_{\mathbf{PGL}_{r}}, \mathcal{D}^{k}) = r^{-2g} \dim \mathcal{H}^{0}(\mathcal{M}^{d}_{r}, \mathcal{D}^{k}) + (1 - r^{-2g})(\frac{k}{r} + 1)^{(r-1)(g-1)}$$
$$= r^{-2g} \left(\frac{k}{r} + 1\right)^{(r-1)(g-1)} \left(r^{r(g-1)} \sum_{t \in \mathcal{T}_{k}/\mathfrak{S}_{r}} \frac{((-1)^{r-1}t^{k+r})^{-d}}{|\delta(t)|^{2g-2}} + r^{2g} - 1\right).$$

Summing over d and plugging in Cor. 3.2 gives the following rather complicated formula:

Corollary 3.4.

$$\dim \mathcal{H}^{0}(\mathcal{M}_{\mathbf{PGL}_{r}}, \mathcal{D}^{k}) = r^{1-2g} \left(\frac{k}{r} + 1\right)^{(r-1)(g-1)} \left(r^{r(g-1)} \sum_{t \in \mathcal{T}'_{k}/\mathfrak{S}_{r}} \frac{1}{|\delta(t)|^{2g-2}} + r^{2g} - 1\right) \,.$$

As an example, if k is an integer divisible by 4, we get

(3.5) dim H⁰(M_{PGL₂},
$$\mathcal{D}^k$$
) = 2^{1-2g} $(\frac{k}{2}+1)^{g-1} (\sum_{\substack{l \text{ odd} \\ 0 < l < k+2}} \frac{1}{(\sin \frac{l\pi}{k+2})^{2g-2}} + 2^{2g} - 1)$.

4. Relations with Conformal Field Theory

(4.1) According to Conformal Field Theory, the space $\mathrm{H}^{0}(\mathrm{M}_{\mathbf{PGL}_{r}}, \mathcal{D}^{k})$ should be canonically isomorphic to the space of conformal blocks for a certain Conformal Field Theory, the WZW model associated to the projective group. This implies in particular that its dimension should be equal to $\sum_{j} |\mathrm{S}_{0j}|^{2-2g}$, where (S_{ij}) is a unitary symmetric matrix. For instance in the case of the WZW model associated to SL_{2} , we have

$$S_{0j} = \frac{\sin \frac{(j+1)\pi}{k+2}}{\sqrt{\frac{k}{2}+1}}$$
, with $0 \le j \le k$,

where the index j can be thought as running through the set of irreducible representations S^1, \ldots, S^k of SL_2 (or equivalently SU_2), with $S^j := S^j(\mathbf{C}^2)$. We deduce from (3.5) an analogous expression for \mathbf{PGL}_2 : we restrict ourselves to even indices and write

$$S'_{0j} = 2 S_{0j}$$
 for j even $< k/2$; $S'_{0,\frac{k}{2}^{(1)}} = S'_{0,\frac{k}{2}^{(2)}} = S_{0\frac{k}{2}}$

In other words, we consider only those representations of \mathbf{SL}_2 which factor through \mathbf{PGL}_2 and we identify the representation \mathbf{S}^{2j} with \mathbf{S}^{k-2j} , doubling the coefficient \mathbf{S}_{0j} when these two representations are distinct, and counting twice the representation which is fixed by the involution (this process is well-known, see e.g. [M-S]).

(4.2) The case of \mathbf{SL}_r is completely analogous; we only need a few more terminology from representation theory (we follow the notation of [B]). The primary fields are indexed by the set \mathbf{P}_k of dominant weights λ with $\lambda(\mathbf{H}_{\theta}) \leq k$, where \mathbf{H}_{θ} is the matrix diag $(1, 0, \dots, 0, -1)$. For $\lambda \in \mathbf{P}_k$, we put $t_{\lambda} = \exp 2\pi i \frac{\lambda + \rho}{k + r}$ (we identify the Cartan algebra of diagonal matrices with its dual using the standard bilinear form); the map $\lambda \mapsto t_{\lambda}$ induces a bijection of \mathbf{P}_k onto $\mathbf{T}_k/\mathfrak{S}_r$ ([B], lemma 9.3 c)). In view of Prop. 3.1, the coefficient $\mathbf{S}_{0\lambda}$ for $\lambda \in \mathbf{P}_k$ is given by

$$S_{0\lambda} = \frac{\delta(t_{\lambda})}{\sqrt{r(k+r)^{(r-1)/2}}}$$

Passing to \mathbf{PGL}_r , we first restrict the indices to the subset \mathbf{P}'_k of elements $\lambda \in \mathbf{P}_k$ such that t_λ belongs to \mathbf{T}'_k ; this means that λ belongs to the root lattice, i.e. that the representation \mathbf{V}_λ factors through \mathbf{PGL}_r . The center $\boldsymbol{\mu}_r$ acts on \mathbf{T}_k by multiplication; this action preserves \mathbf{T}'_k , and commutes with the action of \mathfrak{S}_r . The corresponding action on \mathbf{P}_k is deduced, via the bijection $\lambda \mapsto \frac{\lambda+\rho}{k+r}$, from the standard action of $\boldsymbol{\mu}_r$ on the fundamental alcove A with vertices $\{0, \varpi_1, \ldots, \varpi_{r-1}\}$.¹

We identify two elements of P'_k if they are in the same orbit with respect to this action. The action has a unique fixed point, the weight $\frac{k}{r}\rho$, which corresponds to the diagonal matrix D_r (2.4); we associate to this weight r indices $\nu^{(1)}, \ldots, \nu^{(r)}$, and put

$$\mathbf{S}_{0\lambda}' = r \,\mathbf{S}_{0\lambda} \quad \text{for } \lambda \in \mathbf{P}_k'/\boldsymbol{\mu}_r \ , \ \lambda \neq \frac{k}{r}\rho \ ; \qquad \mathbf{S}_{0,\nu^{(i)}}' = \mathbf{S}_{0,\frac{k}{r}\rho} \quad \text{for } i = 1, \dots, r \ .$$

From Cor. 3.4 follows easily the formula $\dim \mathrm{H}^{0}(\mathrm{M}_{\mathbf{PGL}_{r}}, \mathcal{D}^{k}) = \sum |\mathrm{S}'_{0\lambda}|^{2-2g}$, where λ runs over $\mathrm{P}'_{k}/\boldsymbol{\mu}_{r} \cup \{\nu^{(1)}, \ldots, \nu^{(r)}\}$.

Remark 4.3.— It is not clear to me what is the physical meaning of the space $\mathrm{H}^{0}(\mathrm{M}^{d}_{\mathbf{PGL}_{r}}, \mathcal{D}^{k})$, in particular if its dimension can be predicted in terms of the S-matrix. It is interesting to observe that the number $\mathrm{N}(g)$ given by Prop. 3.3, which

¹ The element $\exp \varpi_1$ of the center gives the rotation of A which maps 0 to ϖ_1 , ϖ_1 to ϖ_2 , ..., and ϖ_{r-1} to 0.

is equal to dim $\mathrm{H}^{0}(\mathrm{M}^{d}_{\mathbf{PGL}_{r}}, \mathcal{D}^{k})$ for $g \geq 2$, is not necessarily an integer for g = 1: for d = 0 we find $\mathrm{N}(1) = 1 + \frac{(k+1)^{r-1} - 1}{r^{2}}$, which is not an integer unless $r^{2} \mid k$.

REFERENCES

- [A-S] M.F. ATIYAH, I.M. SINGER: The index of elliptic operators III. Ann. of Math.
 87, 546-604 (1968).
- [B] A. BEAUVILLE: Conformal blocks, Fusion rings and the Verlinde formula. Proc. of the Hirzebruch 65 Conf. on Algebraic Geometry, Israel Math. Conf. Proc. 9, 75-96 (1996).
- [B-L] A. BEAUVILLE, Y. LASZLO: Conformal blocks and generalized theta functions. Comm. Math. Phys. **164**, 385-419 (1994).
- [B-L-S] A. BEAUVILLE, Y. LASZLO, Ch. SORGER: The Picard group of the moduli of G-bundles on a curve. Preprint alg-geom/9608002.
- [B-S] A. BERTRAM, A. SZENES: Hilbert polynomials of moduli spaces of rank 2 vector bundles II. Topology **32**, 599-609 (1993).
- [Bo] N. BOURBAKI: Algèbre, Chap. X (Algèbre homologique). Masson, Paris (1980).
- [D-N] J.M. DREZET, M.S. NARASIMHAN: Groupe de Picard des variétés de modules de fibrés semi-stables sur les courbes algébriques. Invent. math. 97, 53-94 (1989).
- [F] G. FALTINGS: A proof for the Verlinde formula. J. Algebraic Geometry 3, 347-374 (1994).
- [F-H] W. FULTON, J. HARRIS: Representation theory. GTM **129**, Springer-Verlag, New York Berlin Heidelberg (1991).
- [L-S] Y. LASZLO, Ch. SORGER: The line bundles on the moduli of parabolic G-bundles over curves and their sections. Annales de l'ENS, to appear; preprint alg-geom/9507002.
- [M-S] G. MOORE, N. SEIBERG: Taming the conformal zoo. Phys. Letters B 220, 422-430 (1989).
- [N-R] M.S. NARASIMHAN, S. RAMANAN: Generalized Prym varieties as fixed points. J. of the Indian Math. Soc. **39**, 1-19 (1975).
- [P] T. PANTEV: Comparison of generalized theta functions. Duke Math. J. 76, 509-539 (1994).
- [R] S. RAMANAN: The moduli spaces of vector bundles over an algebraic curve. Math. Ann. **200**, 69-84 (1973).
- [S-Y] A.N. SCHELLEKENS, S. YANKIELOWICZ: Field identification fixed points in the coset construction. Nucl. Phys. B 334, 67 (1990).

Arnaud BEAUVILLE DMI – École Normale Supérieure (URA 762 du CNRS) 45 rue d'Ulm F-75230 PARIS Cedex 05