The Verlinde formula for $\mathbf{P G L}_{p}$

Arnaud Beauville ${ }^{1}$

To the memory of
Claude ITZYKSON

Introduction

The Verlinde formula expresses the number of linearly independent conformal blocks in any rational conformal field theory. I am concerned here with a quite particular case, the Wess-Zumino-Witten model associated to a complex semi-simple group ${ }^{2} \mathrm{G}$. In this case the space of conformal blocks can be interpreted as the space of holomorphic sections of a line bundle on a particular projective variety, the moduli space M_{G} of holomorphic G -bundles on the given Riemann surface. The fact that the dimension of this space of sections can be explicitly computed is of great interest for mathematicians, and a number of rigorous proofs of that formula (usually called by mathematicians, somewhat incorrectly, the "Verlinde formula") have been recently given (see e.g. [F], [B-L], [L-S]).

These proofs deal only with simply-connected groups. In this paper we treat the case of the projective group $\mathbf{P G L}_{r}$ when r is prime.

Our approach is to relate to the case of $\mathbf{S L}_{r}$, using standard algebro-geometric methods. The components $\mathrm{M}_{\mathbf{P G L}_{r}}^{d}(0 \leq d<r)$ of the moduli space $\mathbf{M}_{\mathbf{P G L}_{r}}$ can be identified with the quotients $\mathrm{M}_{r}^{d} / \mathrm{J}_{r}$, where M_{r}^{d} is the moduli space of vector bundles on X of rank r and fixed determinant of degree d, and J_{r} the finite group of holomorphic line bundles α on X such that $\alpha^{\otimes r}$ is trivial. The space we are looking for is the space of J_{r}-invariant global sections of a line bundle \mathcal{L} on M_{r}^{d}; its dimension can be expressed in terms of the character of the representation of J_{r} on $\mathrm{H}^{0}\left(\mathrm{M}_{r}^{d}, \mathcal{L}\right)$. This is given by the Lefschetz trace formula, with a subtlety for $d=0$, since M_{r}^{0} is not smooth. The key point (already used in [N-R]) which makes the computation quite easy is that the fixed point set of any non-zero element of J_{r} is an abelian variety - this is where the assumption on the group is essential. Extending the method to other cases would require a Chern classes computation on the moduli space M_{H} for some semi-simple subgroups H of G ; this may be feasible, but goes far beyond the scope of the present paper. Note that the case of $\mathrm{M}_{\mathbf{P G L}_{2}}^{1}$ has been previously worked out in [P] (with an unfortunate misprint in the formula).

[^0]In the last section we check that our formulas agree with the predictions of Conformal Field Theory, as they appear for instance in $[\mathrm{S}-\mathrm{Y}]$. Note that our results are slightly more precise (in this particular case): we get a formula for $\operatorname{dim} \mathrm{H}^{0}\left(\mathrm{M}_{\mathbf{P G L _ { r }}}^{d}, \mathcal{L}\right)$ for every d, while CFT only predicts the sum of these dimensions (see Remark 4.3).

1. The moduli space $\mathrm{M}_{\mathrm{PGL}_{r}}$

(1.1) Throughout the paper we denote by X a compact (connected) Riemann surface, of genus $g \geq 2$; we fix a point p of X . Principal $\mathbf{P G L}{ }_{r}$-bundles on X correspond in a one-to-one way to projective bundles of rank $r-1$ on X , i.e. bundles of the form $\mathbf{P}(\mathrm{E})$, where E is a rank r vector bundle on X ; we say that $\mathbf{P}(E)$ is semi-stable if the vector bundle E is semi-stable. The semi-stable projective bundles of rank $r-1$ on X are parameterized by a projective variety, the moduli space $\mathrm{M}_{\mathbf{P G L}}^{r}$.

Two vector bundles E, F give rise to isomorphic projective bundles if and only if F is isomorphic to $\mathrm{E} \otimes \alpha$ for some line bundle α on X . Thus a projective bundle can always be written as $\mathbf{P}(\mathrm{E})$ with $\operatorname{det} \mathrm{E}=\mathcal{O}_{\mathrm{X}}(d p), 0 \leq d<r$; the vector bundle E is then determined up to tensor product by a line bundle α with $\alpha^{r}=\mathcal{O}_{\mathrm{X}}$. In particular, the moduli space $\mathrm{M}_{\mathbf{P G L}_{r}}$ has r connected components $\mathrm{M}_{\mathbf{P G L}_{r}}^{d}(0 \leq d<r)$. Let us denote by M_{r}^{d} the moduli space of semi-stable vector bundles on X of rank r and determinant $\mathcal{O}_{\mathrm{X}}(d p)$, and by J_{r} the kernel of the multiplication by r in the Jacobian JX of X ; it is a finite group, canonically isomorphic to $\mathrm{H}^{1}(\mathrm{X}, \mathbf{Z} /(r))$. The group J_{r} acts on M_{r}^{d}, by the rule $(\alpha, \mathrm{E}) \mapsto \mathrm{E} \otimes \alpha$; it follows from the above remarks that the component $\mathrm{M}_{\mathbf{P G L _ { r }}}^{d}$ is isomorphic to the quotient $\mathrm{M}_{r}^{d} / \mathrm{J}_{r}$.
(1.2) We will need a precise description of the line bundles on $\mathrm{M}_{\mathbf{P G L}_{r}}$. Let me first recall how line bundles on M_{r}^{d} can be constructed [D-N]: a simple way is to mimic the classical definition of the theta divisor on the Jacobian of X (i.e. in the rank 1 case). Put $\delta=(r, d)$; let A be a vector bundle on X of rank r / δ and degree $(r(g-1)-d) / \delta$. These conditions imply $\chi(\mathrm{E} \otimes \mathrm{A})=0$ for all E in M_{r}^{d}; if A is general enough, it follows that the condition $H^{0}(X, E \otimes A) \neq 0$ defines a (Cartier) divisor Θ_{A} in M_{r}^{d}. The corresponding line bundle $\mathcal{L}_{d}:=\mathcal{O}\left(\Theta_{\mathrm{A}}\right)$ does not depend on the choice of A , and generates the Picard group $\operatorname{Pic}\left(\mathrm{M}_{r}^{d}\right)$.
(1.3) The quotient map $q: \mathrm{M}_{r}^{d} \rightarrow \mathrm{M}_{\mathbf{P G L}_{r}}^{d}$ induces a homomorphism $q^{*}: \operatorname{Pic}\left(\mathrm{M}_{\mathbf{P G L}_{r}}^{d}\right) \rightarrow \operatorname{Pic}\left(\mathrm{M}_{r}^{d}\right)$, which is easily seen to be injective. Its image is determined in [B-L-S]: it is generated by \mathcal{L}_{d}^{δ} if r is odd, by $\mathcal{L}_{d}^{2 \delta}$ if r is even.
(1.4) Let \mathcal{L}^{\prime} be a line bundle on $\mathrm{M}_{\mathbf{P G L}_{r}}^{d}$. The line bundle $\mathcal{L}:=q^{*} \mathcal{L}^{\prime}$ on
M_{r}^{d} admits a natural action of J_{r}, compatible with the action of J_{r} on M_{r}^{d} (this is often called a J_{r}-linearization of \mathcal{L}). This action is characterized by the property that every element α of J_{r} acts trivially on the fibre of \mathcal{L} at a point of M_{r}^{d} fixed by α. In the sequel we will always consider line bundles on M_{r}^{d} of the form $q^{*} \mathcal{L}^{\prime}$, and endow them with the above J_{r}-linearization.

This linearization defines a representation of J_{r} on the space of global sections; essentially by definition, the global sections of \mathcal{L}^{\prime} correspond to the J_{r}-invariant sections of \mathcal{L}. Therefore our task will be to compute the dimension of the space of invariant sections; as indicated in the introduction, we will do that by computing, for any $\alpha \in \mathrm{J}_{r}$ of order r, the trace of α acting on $\mathrm{H}^{0}\left(\mathrm{M}_{r}^{d}, \mathcal{L}\right)$.
2. The action of J_{r} on $\mathrm{H}^{0}\left(\mathrm{M}_{r}^{d}, \mathcal{L}_{d}^{k}\right)$

We start with the case when r and d are coprime, which is easier to deal with because the moduli space is smooth.

Proposition 2.1.- Assume r and d are coprime. Let k be an integer; if r is even we assume that k is even. Let α be an element of order r in JX. Then the trace of α acting on $\mathrm{H}^{0}\left(\mathrm{M}_{r}^{d}, \mathcal{L}_{d}^{k}\right)$ is $(k+1)^{(r-1)(g-1)}$.
Proof: The Lefschetz trace formula reads [A-S]

$$
\operatorname{Tr}\left(\alpha \mid \mathrm{H}^{0}\left(\mathrm{M}_{r}^{d}, \mathcal{L}_{d}^{k}\right)\right)=\int_{\mathrm{P}} \operatorname{Todd}\left(\mathrm{~T}_{\mathrm{P}}\right) \lambda\left(\mathrm{N}_{\mathrm{P} / \mathrm{M}_{r}^{d}}, \alpha\right)^{-1} \widetilde{\operatorname{ch}}\left(\mathcal{L}_{d \mid \mathrm{P}}^{k}, \alpha\right)
$$

Here P is the fixed subvariety of α; whenever F is a vector bundle on P and φ a diagonalizable endomorphism of F , so that F is the direct sum of its eigen-subbundles F_{λ} for $\lambda \in \mathbf{C}$, we put

$$
\widetilde{\operatorname{ch}}(\mathrm{F}, \varphi)=\sum \lambda \operatorname{ch}\left(\mathrm{F}_{\lambda}\right) \quad ; \quad \lambda(\mathrm{F}, \varphi)=\prod_{\lambda} \sum_{p \geq 0}(-\lambda)^{p} \operatorname{ch}\left(\Lambda^{p} \mathrm{~F}_{\lambda}^{*}\right)
$$

We have a number of informations on the right hand side thanks to $[N-R]$:
$\left(\begin{array}{ll}2.1 & a\end{array}\right)$ Let $\pi: \widetilde{\mathrm{X}} \rightarrow \mathrm{X}$ be the étale r-sheeted covering associated to α; put $\xi=\alpha^{r(r-1) / 2} \in \mathrm{JX}$. The map $\mathrm{L} \mapsto \pi_{*}(\mathrm{~L})$ identifies any component of the fibre of the norm map $\mathrm{Nm}: \mathrm{J}^{d} \widetilde{\mathrm{X}} \rightarrow \mathrm{J}^{d} \mathrm{X}$ over $\xi(d p)$ with P . In particular, P is isomorphic to an abelian variety, hence the term $\operatorname{Todd}\left(\mathrm{T}_{\mathrm{P}}\right)$ is trivial.
$(2.1 b)$ Let $\theta \in \mathrm{H}^{2}(\mathrm{P}, \mathbf{Z})$ be the restriction to P of the class of the principal polarization of $\mathrm{J}^{d} \widetilde{\mathrm{X}}$. The term $\lambda\left(\mathrm{N}_{\mathrm{P} / \mathrm{M}_{r}^{d}}, \alpha\right)$ is equal to $r^{r(g-1)} e^{-r \theta}$.
(2.1c) The dimension of P is $\mathrm{N}=(r-1)(g-1)$, and the equality $\int_{\mathrm{P}} \frac{\theta^{\mathrm{N}}}{\mathrm{N}!}=r^{g-1}$ holds.

With our convention the action of α on $\mathcal{L}_{d \mid \mathrm{P}}^{k}$ is trivial. The class $c_{1}\left(\mathcal{L}_{d \mid \mathrm{P}}\right)$ is equal to $r \theta$: the pull back to P of the theta divisor $\Theta_{\mathrm{A}}(1.2)$ is the divisor of line bundles L in P with $\mathrm{H}^{0}\left(\mathrm{~L} \otimes \pi^{*} \mathrm{~A}\right) \neq 0$; to compute its cohomology class we may replace $\pi^{*} \mathrm{~A}$ by any vector bundle with the same rank and degree, in particular by a direct sum of r line bundles of degree $r(g-1)-d$, which gives the required formula.

Putting things together, we find

$$
\operatorname{Tr}\left(\alpha \mid \mathrm{H}^{0}\left(\mathrm{M}_{r}^{d}, \mathcal{L}_{d}^{k}\right)\right)=\int_{\mathrm{P}} r^{-r(g-1)} e^{r \theta} e^{k r \theta}=(k+1)^{(r-1)(g-1)}
$$

We now consider the degree 0 case:
Proposition 2.2.- Let k be a multiple of r, and of $2 r$ if r is even; let α be an element of order r in JX. Then the trace of α acting on $\mathrm{H}^{0}\left(\mathrm{M}_{r}^{0}, \mathcal{L}_{0}^{k}\right)$ is $\left(\frac{k}{r}+1\right)^{(r-1)(g-1)}$.
Proof: We cannot apply directly the Lefschetz trace formula since it is manageable only for smooth projective varieties; instead we use another well-known tool, the Hecke correspondence (this idea appears for instance in [B-S]). For simplicity we write M_{d} instead of M_{r}^{d}. There exists a Poincaré bundle \mathcal{E} on $\mathrm{X} \times \mathrm{M}_{1}$, i.e. a vector bundle whose restriction to $\mathrm{X} \times\{\mathrm{E}\}$, for each point E of M_{1}, is isomorphic to E. Such a bundle is determined up to tensor product by a line bundle coming from M_{1}; we will see later how to normalize it. We denote by \mathcal{E}_{p} the restriction of \mathcal{E} to $\{p\} \times \mathrm{M}_{1}$, and by \mathcal{P} the projective bundle $\mathbf{P}\left(\mathcal{E}_{p}^{*}\right)$ on M_{1}. A point of \mathcal{P} is a pair (E, φ) where E is a vector bundle in M_{1} and $\varphi: \mathrm{E} \rightarrow \mathbf{C}_{p}$ a non-zero homomorphism, defined up to a scalar; the kernel of φ is then a vector bundle $\mathrm{F} \in \mathrm{M}_{1}$, and we can view equivalently a point of \mathcal{P} as a pair of vector bundles (F, E) with $\mathrm{F} \in \mathrm{M}_{0}$, $\mathrm{E} \in \mathrm{M}_{1}$ and $\mathrm{F} \subset \mathrm{E}$. The projections p_{d} on $\mathrm{M}_{d}(d=0,1)$ give rise to the "Hecke diagram"

Lemma 2.3.- The Poincaré bundle \mathcal{E} can be normalized (in a unique way) so that $\operatorname{det} \mathcal{E}_{p}=\mathcal{L}_{1} ;$ then $\mathcal{O}_{\mathcal{P}}(1) \cong p_{0}^{*} \mathcal{L}_{0}$.
Proof: Let $\mathrm{E} \in \mathrm{M}_{1}$. The fibre $p_{1}^{-1}(\mathrm{E})$ is the projective space of non-zero linear forms $\ell: \mathrm{E}_{p} \rightarrow \mathbf{C}$, up to a scalar. The restriction of $p_{0}^{*} \mathcal{L}_{0}$ to this projective space is $\mathcal{O}(1)$ (choose a line bundle L of degree $g-1$ on X ; if E is general enough, $\mathrm{H}^{0}(\mathrm{X}, \mathrm{E} \otimes \mathrm{L})$ is spanned by a section s with $s(p) \neq 0$, and the condition that the
bundle F corresponding to ℓ belongs to Θ_{L} is the vanishing of $\ell(s(p))$). Therefore $p_{0}^{*} \mathcal{L}_{0}$ is of the form $\mathcal{O}_{\mathcal{P}}(1) \otimes p_{1}^{*} \mathcal{N}$ for some line bundle \mathcal{N} on M_{1}. Replacing \mathcal{E} by $\mathcal{E} \otimes \mathcal{N}$ we ensure $\mathcal{O}_{\mathcal{P}}(1) \cong p_{0}^{*} \mathcal{L}_{0}$.

An easy computation gives $\mathrm{K}_{\mathcal{P}}=p_{1}^{*} \mathcal{L}_{1}^{-1} \otimes p_{0}^{*} \mathcal{L}_{0}^{-r}$ ([B-L-S], Lemma 10.3). On the other hand, since $\mathcal{P}=\mathbf{P}\left(\mathcal{E}_{p}^{*}\right)$, we have $\mathrm{K}_{\mathcal{P}}=p_{1}^{*}\left(\mathrm{~K}_{\mathrm{M}_{1}} \otimes \operatorname{det} \mathcal{E}_{p}\right) \otimes \mathcal{O}_{\mathcal{P}}(-r)$; using $\mathrm{K}_{\mathrm{M}_{1}}=\mathcal{L}_{1}^{-2}[\mathrm{D}-\mathrm{N}]$, we get $\operatorname{det} \mathcal{E}_{p}=\mathcal{L}_{1}$.

We normalize \mathcal{E} as in the lemma; this gives for each $k \geq 0$ a canonical isomorphism $p_{1 *} p_{0}^{*} \mathcal{L}_{0}^{k} \cong \mathbf{S}^{k} \mathcal{E}_{p}$. Let α be an element of order r of JX. It acts on the various moduli spaces in sight; with a slight abuse of language, I will still denote by α the corresponding automorphism. There exists an isomorphism $\alpha^{*} \mathcal{E} \xrightarrow{\sim} \mathcal{E} \otimes \alpha$, unique up to a scalar ($[\mathrm{N}-\mathrm{R}]$, lemma 4.7); the induced isomorphism $u: \alpha^{*} \mathcal{E}_{p} \xrightarrow{\sim} \mathcal{E}_{p}$ induces the action of α on \mathcal{P}. Imposing $u^{r}=\operatorname{Id}$ determines u up to a r-th root of unity, hence determines completely $\mathbf{S}^{k} u$ when k is a multiple of r. Since the Hecke diagram is equivariant with respect to α, it gives rise to a diagram of isomorphisms

which is compatible with the action of α; in particular, the trace we are looking for is equal to the trace of α on $\mathrm{H}^{0}\left(\mathrm{M}_{1}, \mathrm{~S}^{k} \mathcal{E}_{p}\right)$.

We are now in the situation of Prop. 2.1, and the Lefschetz trace formula gives:

$$
\operatorname{Tr}\left(\alpha \mid \mathrm{H}^{0}\left(\mathrm{M}_{1}, \mathrm{~S}^{k} \mathcal{E}_{p}\right)\right)=\int_{\mathrm{P}} \operatorname{Todd}\left(\mathrm{~T}_{\mathrm{P}}\right) \lambda\left(\mathrm{N}_{\mathrm{P} / \mathrm{M}_{1}}, \alpha\right)^{-1} \widetilde{\operatorname{ch}}\left(\mathrm{~S}^{k} \mathcal{E}_{p \mid \mathrm{P}}, \alpha\right)
$$

The only term we need to compute is $\widetilde{\operatorname{ch}}\left(\mathbf{S}^{k} \mathcal{E}_{p \mid \mathrm{P}}, \alpha\right)$. Let \mathcal{N} be the restriction to $\widetilde{\mathrm{X}} \times \mathrm{P}$ of a Poincaré line bundle on $\widetilde{\mathrm{X}} \times \mathrm{J}^{1} \widetilde{\mathrm{X}}$; let us still denote by $\pi: \widetilde{\mathrm{X}} \times \mathrm{P} \rightarrow \mathrm{X} \times \mathrm{P}$ the map $\pi \times \mathrm{Id}_{\mathrm{P}}$. The vector bundles $\pi_{*}(\mathcal{N})$ and $\mathcal{E}_{\mid \mathrm{X} \times \mathrm{P}}$ have the same restriction to $\mathrm{X} \times\{\gamma\}$ for all $\gamma \in \mathrm{P}$, hence after tensoring \mathcal{N} by a line bundle on P we may assume they are isomorphic ($[\mathrm{R}]$, lemma 2.5). Restricting to $\{p\} \times \mathrm{P}$ we get $\mathcal{E}_{p \mid \mathrm{P}}=\underset{\pi(q)=p}{\oplus} \mathcal{N}_{q}$, with $\mathcal{N}_{q}=\mathcal{N}_{\mid\{q\} \times \mathrm{P}}$.

We claim that the \mathcal{N}_{q} 's are the eigen-sub-bundles of $\mathcal{E}_{p \mid \mathrm{P}}$ relative to α. By (2.1 a) , a pair $(\mathrm{E}, \mathrm{F}) \in \mathcal{P}$ is fixed by α if and only if $\mathrm{E}=\pi_{*} \mathrm{~L}, \mathrm{~F}=\pi_{*} \mathrm{~L}^{\prime}$, with $\operatorname{Nm}(\mathrm{L})=\xi(p), \operatorname{Nm}\left(\mathrm{L}^{\prime}\right)=\xi$; because of the inclusion $\mathrm{F} \subset \mathrm{E}$ we may take L^{\prime} of the form $\mathrm{L}(-q)$, for some point $q \in \pi^{-1}(p)$. In other words, the fixed locus of α acting on \mathcal{P} is the disjoint union of the sections $\left(\sigma_{q}\right)_{q \in \pi^{-1}(p)}$ of the fibration $p_{1}^{-1}(\mathrm{P}) \rightarrow \mathrm{P}$
characterized by $\sigma_{q}\left(\pi_{*} \mathrm{~L}\right)=\left(\pi_{*} \mathrm{~L}, \pi_{*}(\mathrm{~L}(-q))\right)$. Viewing \mathcal{P} as $\mathbf{P}\left(\mathcal{E}_{p \mid \mathrm{P}}^{*}\right)$, the section σ_{q} corresponds to the exact sequence

$$
0 \rightarrow \pi_{*}(\mathcal{N}(-q))_{\mid\{p\} \times P} \longrightarrow \pi_{*}(\mathcal{N})_{\mid\{p\} \times P} \cong \mathcal{E}_{\mid\{p\} \times \mathrm{P}} \longrightarrow \mathcal{N}_{q} \rightarrow 0
$$

Therefore on each fibre $\mathbf{P}\left(\mathrm{E}_{p}\right)$, for $\mathrm{E} \in \mathrm{P}$, the automorphism α has exactly r fixed points, corresponding to the r sub-spaces $\mathcal{N}_{(q, \mathrm{E})}$ for $q \in \pi^{-1}(p)$; this proves our claim.

The line bundles \mathcal{N}_{q} for $q \in \widetilde{\mathrm{X}}$ are algebraically equivalent, and therefore have the same Chern class. We thus have $c_{1}\left(\mathcal{E}_{p \mid \mathrm{P}}\right)=r c_{1}\left(\mathcal{N}_{q}\right)$. On the other hand we know that $\operatorname{det} \mathcal{E}_{p}=\mathcal{L}_{1}$ (lemma 2.3), and that $c_{1}\left(\mathcal{L}_{1 \mid \mathrm{P}}\right)=r \theta$ (proof of Prop. 2.1). By comparison we get $c_{1}\left(\mathcal{N}_{q}\right)=\theta$. Putting things together we obtain

$$
\widetilde{\operatorname{ch}}\left(\mathbf{S}^{k} \mathcal{E}_{p \mid \mathrm{P}}, \alpha\right)=\int_{\mathrm{P}} \operatorname{Tr} \mathbf{S}^{k} \mathrm{D}_{r} e^{k \theta} r^{-r(g-1)} e^{r \theta}
$$

where D_{r} is the diagonal r-by- r matrix with entries the r distinct r-th roots of unity.

Lemma 2.4.- The trace of $\mathbf{S}^{k} \mathrm{D}_{r}$ is 1 if r divides k and 0 otherwise.
Consider the formal series $s(\mathrm{~T}):=\sum_{i \geq 0} \mathrm{~T}^{i} \operatorname{Tr} \mathbf{S}^{i} u$ and $\lambda(\mathrm{T}):=\sum_{i \geq 0} \mathrm{~T}^{i} \operatorname{Tr} \boldsymbol{\Lambda}^{i} u$. The formula $s(\mathrm{~T}) \lambda(-\mathrm{T})=1$ is well-known (see e.g. [Bo], § 9, formula (11)). But

$$
\lambda(-\mathrm{T})=\sum_{i=0}^{r}(-\mathrm{T})^{i} \operatorname{Tr} \Lambda^{i} u=\prod_{\zeta^{r}=1}(1-\zeta \mathrm{T})=1-\mathrm{T}^{r},
$$

hence the lemma. Using (2.1 c) the Proposition follows.

3. Formulas

In this section I will apply the above results to compute the dimension of the space of sections of the line bundle \mathcal{L}_{d}^{k} on the moduli space $\mathrm{M}_{\mathbf{P G L _ { r }}}^{d}$. Let me first recall the corresponding Verlinde formula for the moduli spaces M_{r}^{d}. Let $\delta=(r, d)$; we write $\mathcal{L}_{d}=\mathcal{D}^{r / \delta}$, with the convention that we only consider powers of \mathcal{D} which are multiple of r / δ (the line bundle \mathcal{D} actually makes sense on the moduli stack \mathcal{M}_{r}^{d}, and generates its Picard group). We denote by $\boldsymbol{\mu}_{r}$ the center of $\mathbf{S L}_{r}$, i.e. the group of scalar matrices ζI_{r} with $\zeta^{r}=1$.

Proposition 3.1.- Let T_{k} be the set of diagonal matrices $t=\operatorname{diag}\left(t_{1}, \ldots, t_{r}\right)$ in $\mathbf{S L}_{r}(\mathbf{C})$ with $t_{i} \neq t_{j}$ for $i \neq j$, and $t^{k+r} \in \boldsymbol{\mu}_{r} ;$ for $t \in \mathrm{~T}_{k}$, let $\delta(t)=\prod_{i<j}\left(t_{i}-t_{j}\right)$.

Then

$$
\operatorname{dim} \mathrm{H}^{0}\left(\mathrm{M}_{r}^{d}, \mathcal{D}^{k}\right)=r^{g-1}(k+r)^{(r-1)(g-1)} \sum_{t \in \mathrm{~T}_{k} / \mathfrak{S}_{r}} \frac{\left((-1)^{r-1} t^{k+r}\right)^{-d}}{|\delta(t)|^{2 g-2}} .
$$

Proof: According to [B-L], Thm. 9.1, the space $\mathrm{H}^{0}\left(\mathrm{M}_{r}^{d}, \mathcal{D}^{k}\right)$ for $0<d<r$ is canonically isomorphic to the space of conformal blocks in genus g with the representation $\mathrm{V}_{k \varpi_{r-d}}$ of $\mathbf{S L}_{r}$ with highest weight $k \varpi_{r-d}$ inserted at one point. The Verlinde formula gives therefore (see [B], Cor. 9.8^{1}):

$$
\operatorname{dim} \mathrm{H}^{0}\left(\mathrm{M}_{r}^{d}, \mathcal{D}^{k}\right)=r^{g-1}(k+r)^{(r-1)(g-1)} \sum_{t \in \mathrm{~T}_{k} / \mathfrak{S}_{r}} \frac{\operatorname{Tr}_{\mathrm{V}_{k w_{r-d}}}(t)}{|\delta(t)|^{2 g-2}} ;
$$

this is still valid for $d=0$ with the convention $\varpi_{r}=0$.
The character of the representation $\mathrm{V}_{k \varpi_{r-d}}$ is given by the Schur formula (see e.g. $[\mathrm{F}-\mathrm{H}]$, Thm. 6.3):

$$
\operatorname{Tr}_{\mathrm{V}_{k \omega_{r-d}}}(t)=\frac{1}{\delta(t)}\left|\begin{array}{cccc}
t_{1}^{k+r-1} & t_{2}^{k+r-1} & \ldots & t_{r}^{k+r-1} \\
t_{1}^{k+r-2} & t_{2}^{k+r-2} & \ldots & t_{r}^{k+r-2} \\
\vdots & \vdots & & \vdots \\
t_{1}^{k+d} & t_{2}^{k+d} & \ldots & t_{r}^{k+d} \\
t_{1}^{d-1} & t_{2}^{d-1} & \ldots & t_{r}^{d-1} \\
\vdots & \vdots & & \vdots \\
1 & 1 & \ldots & 1
\end{array}\right| .
$$

Writing $t^{k+r}=\zeta I_{r} \in \boldsymbol{\mu}_{r}$, the big determinant reduces to $\zeta^{r-d}(-1)^{d(r-d)} \operatorname{det}\left(t_{j}^{d-i}\right)$, and finally, since $\prod t_{i}=1$, to $\left((-1)^{r-1} \zeta\right)^{-d} \delta(t)$, which gives the required formula.

Corollary 3.2.- Let T_{k}^{\prime} be the set of matrices $t=\operatorname{diag}\left(t_{1}, \ldots, t_{r}\right)$ in $\mathbf{S L}_{r}(\mathbf{C})$ with $t_{i} \neq t_{j}$ if $i \neq j$, and $t^{k+r}=(-1)^{r-1} I_{r}$. Then

$$
\sum_{d=0}^{r-1} \operatorname{dim} \mathrm{H}^{0}\left(\mathrm{M}_{r}^{d}, \mathcal{D}^{k}\right)=r^{g}(k+r)^{(r-1)(g-1)} \sum_{t \in \mathrm{~T}_{k}^{\prime} / \mathfrak{S}_{r}} \frac{1}{|\delta(t)|^{2 g-2}}
$$

We now consider the moduli space $\mathbf{M}_{\mathbf{P G L}_{r}}$. We know that the line bundle \mathcal{D}^{k} on M_{r}^{d} descends to $\mathrm{M}_{\mathbf{P G L}_{r}}^{d}=\mathrm{M}_{r}^{d} / \mathrm{J}_{r}$ exactly when k is a multiple of r if r is odd, or of $2 r$ if r is even (1.3). When this is the case we obtain a line bundle

[^1]on $\mathrm{M}_{\mathbf{P G L}_{r}}^{d}$, that we will still denote by \mathcal{D}^{k}; its global sections correspond to the J_{r}-invariant sections of $\mathrm{H}^{0}\left(\mathrm{M}_{r}^{d}, \mathcal{D}^{k}\right)$.

We will assume that r is prime, so that every non-zero element α of J_{r} has order r. Then Prop. 2.1 and 2.2 lead immediately to a formula for the dimension of the J_{r}-invariant subspace of $\mathrm{H}^{0}\left(\mathrm{M}_{r}^{d}, \mathcal{D}^{k}\right)$ as the average of the numbers $\operatorname{Tr}(\alpha)$ for α in J_{r}. Using Prop. 3.1 we conclude:

Proposition 3.3.- Assume that r is prime. Let k be a multiple of r; if $r=2$ assume $4 \mid k$. Then

$$
\begin{aligned}
& \operatorname{dim} \mathrm{H}^{0}\left(\mathrm{M}_{\mathbf{P G L _ { r }}}^{d}, \mathcal{D}^{k}\right)=r^{-2 g} \operatorname{dim} \mathrm{H}^{0}\left(\mathrm{M}_{r}^{d}, \mathcal{D}^{k}\right)+\left(1-r^{-2 g}\right)\left(\frac{k}{r}+1\right)^{(r-1)(g-1)} \\
& \quad=r^{-2 g}\left(\frac{k}{r}+1\right)^{(r-1)(g-1)}\left(r^{r(g-1)} \sum_{t \in \mathrm{~T}_{k} / \mathfrak{G}_{r}} \frac{\left((-1)^{r-1} t^{k+r}\right)^{-d}}{|\delta(t)|^{2 g-2}}+r^{2 g}-1\right) .
\end{aligned}
$$

Summing over d and plugging in Cor. 3.2 gives the following rather complicated formula:

Corollary 3.4.-
$\operatorname{dim} \mathrm{H}^{0}\left(\mathrm{M}_{\mathbf{P G L}_{r}}, \mathcal{D}^{k}\right)=r^{1-2 g}\left(\frac{k}{r}+1\right)^{(r-1)(g-1)}\left(r^{r(g-1)} \sum_{t \in \mathrm{~T}_{k}^{\prime} / \mathfrak{G}_{r}} \frac{1}{|\delta(t)|^{2 g-2}}+r^{2 g}-1\right)$.
As an example, if k is an integer divisible by 4 , we get

$$
\begin{equation*}
\operatorname{dim} \mathrm{H}^{0}\left(\mathrm{M}_{\mathbf{P G L}_{2}}, \mathcal{D}^{k}\right)=2^{1-2 g}\left(\frac{k}{2}+1\right)^{g-1}\left(\sum_{\substack{l \text { odd } \\ 0<l<k+2}} \frac{1}{\left(\sin \frac{l \pi}{k+2}\right)^{2 g-2}}+2^{2 g}-1\right) \tag{3.5}
\end{equation*}
$$

4. Relations with Conformal Field Theory

(4.1) According to Conformal Field Theory, the space $\mathrm{H}^{0}\left(\mathrm{M}_{\mathbf{P G L}_{r}}, \mathcal{D}^{k}\right)$ should be canonically isomorphic to the space of conformal blocks for a certain Conformal Field Theory, the WZW model associated to the projective group. This implies in particular that its dimension should be equal to $\sum_{j}\left|\mathrm{~S}_{0 j}\right|^{2-2 g}$, where $\left(\mathrm{S}_{i j}\right)$ is a unitary symmetric matrix. For instance in the case of the WZW model associated to $\mathbf{S L}_{2}$, we have

$$
\mathrm{S}_{0 j}=\frac{\sin \frac{(j+1) \pi}{k+2}}{\sqrt{\frac{k}{2}+1}} \quad, \text { with } \quad 0 \leq j \leq k
$$

where the index j can be thought as running through the set of irreducible representations $\mathbf{S}^{1}, \ldots, \mathbf{S}^{k}$ of $\mathbf{S L}_{2}$ (or equivalently $\mathbf{S U}_{2}$), with $\mathbf{S}^{j}:=\mathbf{S}^{j}\left(\mathbf{C}^{2}\right)$.

We deduce from (3.5) an analogous expression for $\mathbf{P G L} \mathbf{L}_{2}$: we restrict ourselves to even indices and write

$$
\mathrm{S}_{0 j}^{\prime}=2 \mathrm{~S}_{0 j} \quad \text { for } \quad j \text { even }<k / 2 \quad ; \quad \mathrm{S}_{0, \frac{k}{2}(1)}^{\prime}=\mathrm{S}_{0, \frac{k}{2}(2)}^{\prime}=\mathrm{S}_{0 \frac{k}{2}}
$$

In other words, we consider only those representations of $\mathbf{S L}_{2}$ which factor through $\mathbf{P G L} \mathbf{L}_{2}$ and we identify the representation $\mathbf{S}^{2 j}$ with $\mathbf{S}^{k-2 j}$, doubling the coefficient $\mathrm{S}_{0 j}$ when these two representations are distinct, and counting twice the representation which is fixed by the involution (this process is well-known, see e.g. [M-S]).
(4.2) The case of $\mathbf{S L}_{r}$ is completely analogous; we only need a few more terminology from representation theory (we follow the notation of [B]). The primary fields are indexed by the set P_{k} of dominant weights λ with $\lambda\left(\mathrm{H}_{\theta}\right) \leq k$, where H_{θ} is the matrix $\operatorname{diag}(1,0, \ldots, 0,-1)$. For $\lambda \in \mathrm{P}_{k}$, we put $t_{\lambda}=\exp 2 \pi i \frac{\lambda+\rho}{k+r}$ (we identify the Cartan algebra of diagonal matrices with its dual using the standard bilinear form); the map $\lambda \mapsto t_{\lambda}$ induces a bijection of P_{k} onto $\mathrm{T}_{k} / \mathfrak{S}_{r}$ ([B], lemma $9.3 c)$). In view of Prop. 3.1, the coefficient $\mathrm{S}_{0 \lambda}$ for $\lambda \in \mathrm{P}_{k}$ is given by

$$
\mathrm{S}_{0 \lambda}=\frac{\delta\left(t_{\lambda}\right)}{\sqrt{r}(k+r)^{(r-1) / 2}} .
$$

Passing to $\mathbf{P G L} \mathbf{r}_{r}$, we first restrict the indices to the subset P_{k}^{\prime} of elements $\lambda \in \mathrm{P}_{k}$ such that t_{λ} belongs to T_{k}^{\prime}; this means that λ belongs to the root lattice, i.e. that the representation V_{λ} factors through $\mathbf{P G L} \mathbf{L}_{r}$. The center $\boldsymbol{\mu}_{r}$ acts on T_{k} by multiplication; this action preserves T_{k}^{\prime}, and commutes with the action of \mathfrak{S}_{r}. The corresponding action on P_{k} is deduced, via the bijection $\lambda \mapsto \frac{\lambda+\rho}{k+r}$, from the standard action of $\boldsymbol{\mu}_{r}$ on the fundamental alcove A with vertices $\left\{0, \varpi_{1}, \ldots, \varpi_{r-1}\right\} .{ }^{1}$

We identify two elements of P_{k}^{\prime} if they are in the same orbit with respect to this action. The action has a unique fixed point, the weight $\frac{k}{r} \rho$, which corresponds to the diagonal matrix $\mathrm{D}_{r}(2.4)$; we associate to this weight r indices $\nu^{(1)}, \ldots, \nu^{(r)}$, and put

$$
\mathrm{S}_{0 \lambda}^{\prime}=r \mathrm{~S}_{0 \lambda} \quad \text { for } \lambda \in \mathrm{P}_{k}^{\prime} / \boldsymbol{\mu}_{r}, \lambda \neq \frac{k}{r} \rho ; \quad \mathrm{S}_{0, \nu^{(i)}}^{\prime}=\mathrm{S}_{0, \frac{k}{r} \rho} \quad \text { for } i=1, \ldots, r .
$$

From Cor. 3.4 follows easily the formula $\operatorname{dim} \mathrm{H}^{0}\left(\mathrm{M}_{\mathbf{P G L}_{r}}, \mathcal{D}^{k}\right)=\sum\left|\mathrm{S}_{0 \lambda}^{\prime}\right|^{2-2 g}$, where λ runs over $\mathrm{P}_{k}^{\prime} / \boldsymbol{\mu}_{r} \cup\left\{\nu^{(1)}, \ldots, \nu^{(r)}\right\}$.

Remark 4.3.- It is not clear to me what is the physical meaning of the space $\mathrm{H}^{0}\left(\mathrm{M}_{\mathbf{P G L}_{r}}^{d}, \mathcal{D}^{k}\right)$, in particular if its dimension can be predicted in terms of the S matrix. It is interesting to observe that the number $\mathrm{N}(g)$ given by Prop. 3.3, which

[^2]is equal to $\operatorname{dim} \mathrm{H}^{0}\left(\mathrm{M}_{\mathbf{P G L}_{r}}^{d}, \mathcal{D}^{k}\right)$ for $g \geq 2$, is not necessarily an integer for $g=1$: for $d=0$ we find $\mathrm{N}(1)=1+\frac{(k+1)^{r-1}-1}{r^{2}}$, which is not an integer unless $r^{2} \mid k$.

REFERENCES

[A-S] M.F. Atiyah, I.M. Singer: The index of elliptic operators III. Ann. of Math. 87, 546-604 (1968).
[B] A. Beauville: Conformal blocks, Fusion rings and the Verlinde formula. Proc. of the Hirzebruch 65 Conf. on Algebraic Geometry, Israel Math. Conf. Proc. 9, 75-96 (1996).
[B-L] A. Beauville, Y. Laszlo: Conformal blocks and generalized theta functions. Comm. Math. Phys. 164, 385-419 (1994).
[B-L-S] A. Beauville, Y. Laszlo, Ch. Sorger: The Picard group of the moduli of G-bundles on a curve. Preprint alg-geom/9608002.
[B-S] A. Bertram, A. Szenes: Hilbert polynomials of moduli spaces of rank 2 vector bundles II. Topology 32, 599-609 (1993).
[Bo] N. Bourbaki: Algèbre, Chap. X (Algèbre homologique). Masson, Paris (1980).
[D-N] J.M. Drezet, M.S. Narasimhan: Groupe de Picard des variétés de modules de fibrés semi-stables sur les courbes algébriques. Invent. math. 97, 53-94 (1989).
[F] G. Faltings: A proof for the Verlinde formula. J. Algebraic Geometry 3, 347-374 (1994).
[F-H] W. Fulton, J. Harris: Representation theory. GTM 129, Springer-Verlag, New York Berlin Heidelberg (1991).
[L-S] Y. Laszlo, Ch. Sorger: The line bundles on the moduli of parabolic G-bundles over curves and their sections. Annales de l'ENS, to appear; preprint alg-geom/9507002.
[M-S] G. Moore, N. Seiberg: Taming the conformal zoo. Phys. Letters B 220, 422-430 (1989).
[N-R] M.S. Narasimhan, S. Ramanan: Generalized Prym varieties as fixed points. J. of the Indian Math. Soc. 39, 1-19 (1975).
[P] T. Pantev: Comparison of generalized theta functions. Duke Math. J. 76, 509-539 (1994).
[R] S. Ramanan: The moduli spaces of vector bundles over an algebraic curve. Math. Ann. 200, 69-84 (1973).
[S-Y] A.N. Schellekens, S. Yankielowicz: Field identification fixed points in the coset construction. Nucl. Phys. B 334, 67 (1990).

> Arnaud Beauville
> DMI - École Normale Supérieure
> (URA 762 du CNRS)
> 45 rue d'Ulm
> F- 75230 Paris Cedex 05

[^0]: 1 Partially supported by the European HCM project "Algebraic Geometry in Europe" (AGE).
 2 This group is the complexification of the compact semi-simple group considered by physicists.

[^1]: 1 There is a misprint in the first equality of that corollary, where one should read $\mathrm{T}_{\ell}^{\text {reg }} / \mathrm{W}$ instead of $\mathrm{T}_{\ell}^{\mathrm{reg}}$; the second equality (and the proof!) are correct.

[^2]: 1 The element $\exp \varpi_{1}$ of the center gives the rotation of A which maps 0 to ϖ_{1}, ϖ_{1} to ϖ_{2}, \ldots, and ϖ_{r-1} to 0 .

