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Introduction

The Verlinde formula expresses the number of linearly independent conformal
blocks in any rational conformal field theory. I am concerned here with a quite
particular case, the Wess-Zumino-Witten model associated to a complex semi-simple
group 2 G . In this case the space of conformal blocks can be interpreted as the
space of holomorphic sections of a line bundle on a particular projective variety, the
moduli space MG of holomorphic G-bundles on the given Riemann surface. The
fact that the dimension of this space of sections can be explicitly computed is of
great interest for mathematicians, and a number of rigorous proofs of that formula
(usually called by mathematicians, somewhat incorrectly, the “Verlinde formula”)
have been recently given (see e.g. [F], [B-L], [L-S]).

These proofs deal only with simply-connected groups. In this paper we treat
the case of the projective group PGLr when r is prime.

Our approach is to relate to the case of SLr , using standard algebro-geometric
methods. The components Md

PGLr
(0 ≤ d < r) of the moduli space MPGLr

can
be identified with the quotients Md

r/Jr , where Md
r is the moduli space of vector

bundles on X of rank r and fixed determinant of degree d , and Jr the finite group
of holomorphic line bundles α on X such that α⊗r is trivial. The space we are
looking for is the space of Jr -invariant global sections of a line bundle L on Md

r ;
its dimension can be expressed in terms of the character of the representation of
Jr on H0(Md

r ,L) . This is given by the Lefschetz trace formula, with a subtlety for
d = 0 , since M0

r is not smooth. The key point (already used in [N-R]) which makes
the computation quite easy is that the fixed point set of any non-zero element of
Jr is an abelian variety – this is where the assumption on the group is essential.
Extending the method to other cases would require a Chern classes computation
on the moduli space MH for some semi-simple subgroups H of G ; this may be
feasible, but goes far beyond the scope of the present paper. Note that the case of
M1

PGL2
has been previously worked out in [P] (with an unfortunate misprint in the

formula).

1 Partially supported by the European HCM project “Algebraic Geometry in Europe” (AGE).
2 This group is the complexification of the compact semi-simple group considered by physicists.
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In the last section we check that our formulas agree with the predictions
of Conformal Field Theory, as they appear for instance in [S-Y]. Note that our
results are slightly more precise (in this particular case): we get a formula for
dim H0(Md

PGLr
,L) for every d , while CFT only predicts the sum of these dimen-

sions (see Remark 4.3).

1. The moduli space MPGLr

(1.1) Throughout the paper we denote by X a compact (connected) Riemann
surface, of genus g ≥ 2 ; we fix a point p of X . Principal PGLr -bundles on X
correspond in a one-to-one way to projective bundles of rank r − 1 on X , i.e.
bundles of the form P(E) , where E is a rank r vector bundle on X ; we say that
P(E) is semi-stable if the vector bundle E is semi-stable. The semi-stable projective
bundles of rank r − 1 on X are parameterized by a projective variety, the moduli
space MPGLr

.

Two vector bundles E , F give rise to isomorphic projective bundles if and
only if F is isomorphic to E⊗ α for some line bundle α on X . Thus a projec-
tive bundle can always be written as P(E) with detE = OX(dp) , 0 ≤ d < r ; the
vector bundle E is then determined up to tensor product by a line bundle α with
αr = OX . In particular, the moduli space MPGLr

has r connected components
Md

PGLr
(0 ≤ d < r) . Let us denote by Md

r the moduli space of semi-stable vector
bundles on X of rank r and determinant OX(dp) , and by Jr the kernel of the
multiplication by r in the Jacobian JX of X ; it is a finite group, canonically iso-
morphic to H1(X,Z/(r)) . The group Jr acts on Md

r , by the rule (α, E) 7→ E⊗ α ;
it follows from the above remarks that the component Md

PGLr
is isomorphic to the

quotient Md
r/Jr .

(1.2) We will need a precise description of the line bundles on MPGLr . Let
me first recall how line bundles on Md

r can be constructed [D-N]: a simple way is
to mimic the classical definition of the theta divisor on the Jacobian of X (i.e. in
the rank 1 case). Put δ = (r, d) ; let A be a vector bundle on X of rank r/δ and
degree (r(g − 1)− d)/δ . These conditions imply χ(E⊗A) = 0 for all E in Md

r ;
if A is general enough, it follows that the condition H0(X,E⊗A) 6= 0 defines a
(Cartier) divisor ΘA in Md

r . The corresponding line bundle Ld := O(ΘA) does
not depend on the choice of A , and generates the Picard group Pic(Md

r) .

(1.3) The quotient map q : Md
r → Md

PGLr
induces a homomorphism

q∗ : Pic(Md
PGLr

) → Pic(Md
r) , which is easily seen to be injective. Its image is deter-

mined in [B-L-S]: it is generated by Lδ
d if r is odd, by L2δ

d if r is even.

(1.4) Let L′ be a line bundle on Md
PGLr

. The line bundle L := q∗L′ on
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Md
r admits a natural action of Jr , compatible with the action of Jr on Md

r (this is
often called a Jr -linearization of L ). This action is characterized by the property
that every element α of Jr acts trivially on the fibre of L at a point of Md

r fixed
by α . In the sequel we will always consider line bundles on Md

r of the form q∗L′ ,
and endow them with the above Jr -linearization.

This linearization defines a representation of Jr on the space of global sections;
essentially by definition, the global sections of L′ correspond to the Jr -invariant
sections of L . Therefore our task will be to compute the dimension of the space of
invariant sections; as indicated in the introduction, we will do that by computing,
for any α ∈ Jr of order r , the trace of α acting on H0(Md

r ,L) .

2. The action of Jr on H0(Md
r ,Lk

d)

We start with the case when r and d are coprime, which is easier to deal with
because the moduli space is smooth.

Proposition 2.1 .− Assume r and d are coprime. Let k be an integer; if r is
even we assume that k is even. Let α be an element of order r in JX . Then the
trace of α acting on H0(Md

r ,Lk
d) is (k + 1)(r−1)(g−1) .

Proof: The Lefschetz trace formula reads [A-S]

Tr(α |H0(Md
r ,Lk

d)) =
∫

P

Todd(TP) λ(NP/Md
r
, α)−1 c̃h(Lk

d |P, α) .

Here P is the fixed subvariety of α ; whenever F is a vector bundle on P and ϕ

a diagonalizable endomorphism of F , so that F is the direct sum of its eigen-sub-
bundles Fλ for λ ∈ C , we put

c̃h(F, ϕ) =
∑

λ ch(Fλ) ; λ(F, ϕ) =
∏
λ

∑
p≥0

(−λ)p ch(ΛpF∗λ) .

We have a number of informations on the right hand side thanks to [N-R]:

(2.1 a) Let π : X̃ → X be the étale r-sheeted covering associated to α ; put
ξ = αr(r−1)/2 ∈ JX . The map L 7→ π∗(L) identifies any component of the fibre of
the norm map Nm : JdX̃ → JdX over ξ(dp) with P . In particular, P is isomorphic
to an abelian variety, hence the term Todd(TP) is trivial.

(2.1 b) Let θ ∈ H2(P,Z) be the restriction to P of the class of the principal
polarization of JdX̃ . The term λ(NP/Md

r
, α) is equal to rr(g−1)e−rθ .

(2.1 c) The dimension of P is N = (r − 1)(g − 1) , and the equality
∫
P

θN

N! = rg−1

holds.
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With our convention the action of α on Lk
d |P is trivial. The class c1(Ld |P)

is equal to rθ : the pull back to P of the theta divisor ΘA (1.2) is the divisor of
line bundles L in P with H0(L⊗ π∗A) 6= 0 ; to compute its cohomology class we
may replace π∗A by any vector bundle with the same rank and degree, in particular
by a direct sum of r line bundles of degree r(g − 1)− d , which gives the required
formula.

Putting things together, we find

Tr(α |H0(Md
r ,Lk

d)) =
∫

P

r−r(g−1)erθekrθ = (k + 1)(r−1)(g−1) .

We now consider the degree 0 case:

Proposition 2.2 .− Let k be a multiple of r , and of 2r if r is even; let α be
an element of order r in JX . Then the trace of α acting on H0(M0

r,Lk
0) is

(k
r + 1)(r−1)(g−1) .

Proof: We cannot apply directly the Lefschetz trace formula since it is manageable
only for smooth projective varieties; instead we use another well-known tool, the
Hecke correspondence (this idea appears for instance in [B-S]). For simplicity we
write Md instead of Md

r . There exists a Poincaré bundle E on X×M1 , i.e. a vec-
tor bundle whose restriction to X× {E} , for each point E of M1 , is isomorphic to
E . Such a bundle is determined up to tensor product by a line bundle coming from
M1 ; we will see later how to normalize it. We denote by Ep the restriction of E to
{p} ×M1 , and by P the projective bundle P(E∗p ) on M1 . A point of P is a pair
(E, ϕ) where E is a vector bundle in M1 and ϕ : E → Cp a non-zero homomor-
phism, defined up to a scalar; the kernel of ϕ is then a vector bundle F ∈ M1 , and we
can view equivalently a point of P as a pair of vector bundles (F,E) with F ∈ M0 ,
E ∈ M1 and F ⊂ E . The projections pd on Md (d = 0, 1) give rise to the “Hecke
diagram”

P
p1

~~}}
}}

}}
}} p0

  A
AA

AA
AA

A

M1 M0
.

Lemma 2.3 .− The Poincaré bundle E can be normalized (in a unique way) so
that det Ep = L1 ; then OP(1) ∼= p∗0L0 .

Proof: Let E ∈ M1 . The fibre p−1
1 (E) is the projective space of non-zero linear

forms ` : Ep → C , up to a scalar. The restriction of p∗0L0 to this projective space
is O(1) (choose a line bundle L of degree g − 1 on X ; if E is general enough,
H0(X,E⊗ L) is spanned by a section s with s(p) 6= 0 , and the condition that the
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bundle F corresponding to ` belongs to ΘL is the vanishing of `(s(p)) ). Therefore
p∗0L0 is of the form OP(1)⊗ p∗1N for some line bundle N on M1 . Replacing E
by E ⊗ N we ensure OP(1) ∼= p∗0L0 .

An easy computation gives KP = p∗1L−1
1 ⊗ p∗0L−r

0 ([B-L-S], Lemma 10.3). On
the other hand, since P = P(E∗p ) , we have KP = p∗1(KM1 ⊗ det Ep)⊗OP(−r) ; us-
ing KM1 = L−2

1 [D-N], we get det Ep = L1 .

We normalize E as in the lemma; this gives for each k ≥ 0 a canonical iso-
morphism p1∗p

∗
0Lk

0
∼= SkEp . Let α be an element of order r of JX . It acts on the

various moduli spaces in sight; with a slight abuse of language, I will still denote by
α the corresponding automorphism. There exists an isomorphism α∗E ∼−→ E ⊗ α ,
unique up to a scalar ([N-R], lemma 4.7); the induced isomorphism u : α∗Ep

∼−→ Ep

induces the action of α on P . Imposing ur = Id determines u up to a r-th root of
unity, hence determines completely Sku when k is a multiple of r . Since the Hecke
diagram is equivariant with respect to α , it gives rise to a diagram of isomorphisms

H0(P, p∗0Lk
0)

H0(M1, S
kEp)

p∗1

77oooooooooooo
H0(M0,Lk

0)

p∗0

ggOOOOOOOOOOO

which is compatible with the action of α ; in particular, the trace we are looking for
is equal to the trace of α on H0(M1, S

kEp) .

We are now in the situation of Prop. 2.1, and the Lefschetz trace formula gives:

Tr(α |H0(M1, S
kEp)) =

∫
P

Todd(TP) λ(NP/M1 , α)−1 c̃h(SkEp |P, α) .

The only term we need to compute is c̃h(SkEp |P, α) . Let N be the re-
striction to X̃× P of a Poincaré line bundle on X̃× J1X̃ ; let us still denote by
π : X̃× P → X× P the map π × IdP . The vector bundles π∗(N ) and E|X×P have
the same restriction to X× {γ} for all γ ∈ P , hence after tensoring N by a line
bundle on P we may assume they are isomorphic ([R], lemma 2.5). Restricting to
{p} × P we get Ep |P = ⊕

π(q)=p
Nq , with Nq = N|{q}×P .

We claim that the Nq ’s are the eigen-sub-bundles of Ep |P relative to α . By
(2.1 a), a pair (E,F) ∈ P is fixed by α if and only if E = π∗L , F = π∗L′ , with
Nm(L) = ξ(p) , Nm(L′) = ξ ; because of the inclusion F ⊂ E we may take L′ of the
form L(−q) , for some point q ∈ π−1(p) . In other words, the fixed locus of α acting
on P is the disjoint union of the sections (σq)q∈π−1(p) of the fibration p−1

1 (P) → P
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characterized by σq(π∗L) = (π∗L, π∗(L(−q))) . Viewing P as P(E∗p |P) , the section
σq corresponds to the exact sequence

0 → π∗(N (−q)) |{p}×P −→ π∗(N ) |{p}×P
∼= E |{p}×P −→ Nq → 0 .

Therefore on each fibre P(Ep) , for E ∈ P , the automorphism α has exactly r

fixed points, corresponding to the r sub-spaces N(q,E) for q ∈ π−1(p) ; this proves
our claim.

The line bundles Nq for q ∈ X̃ are algebraically equivalent, and therefore have
the same Chern class. We thus have c1(Ep |P) = r c1(Nq) . On the other hand we
know that det Ep = L1 (lemma 2.3), and that c1(L1 |P) = rθ (proof of Prop. 2.1).
By comparison we get c1(Nq) = θ . Putting things together we obtain

c̃h(SkEp |P, α) =
∫

P

Tr SkDr ekθr−r(g−1)erθ

where Dr is the diagonal r-by-r matrix with entries the r distinct r-th roots of
unity.

Lemma 2.4 .− The trace of SkDr is 1 if r divides k and 0 otherwise.

Consider the formal series s(T) :=
∑
i≥0

Ti Tr Siu and λ(T) :=
∑
i≥0

Ti Tr Λiu .

The formula s(T)λ(−T) = 1 is well-known (see e.g. [Bo], § 9, formula (11)). But

λ(−T) =
r∑

i=0

(−T)i Tr Λiu =
∏

ζr=1

(1− ζT) = 1− Tr ,

hence the lemma. Using (2.1 c) the Proposition follows.

3. Formulas

In this section I will apply the above results to compute the dimension of the
space of sections of the line bundle Lk

d on the moduli space Md
PGLr

. Let me first
recall the corresponding Verlinde formula for the moduli spaces Md

r . Let δ = (r, d) ;
we write Ld = Dr/δ , with the convention that we only consider powers of D which
are multiple of r/δ (the line bundle D actually makes sense on the moduli stack
Md

r , and generates its Picard group). We denote by µr the center of SLr , i.e. the
group of scalar matrices ζIr with ζr = 1 .

Proposition 3.1 .− Let Tk be the set of diagonal matrices t = diag(t1, . . . , tr) in
SLr(C) with ti 6= tj for i 6= j , and tk+r ∈ µr ; for t ∈ Tk , let δ(t) =

∏
i<j

(ti − tj) .
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Then

dim H0(Md
r ,Dk) = rg−1(k + r)(r−1)(g−1)

∑
t∈Tk/Sr

((−1)r−1tk+r)−d

|δ(t)|2g−2
·

Proof: According to [B-L], Thm. 9.1, the space H0(Md
r ,Dk) for 0 < d < r is canon-

ically isomorphic to the space of conformal blocks in genus g with the representation
Vk$r−d

of SLr with highest weight k$r−d inserted at one point. The Verlinde
formula gives therefore (see [B], Cor. 9.8 1 ):

dim H0(Md
r ,Dk) = rg−1(k + r)(r−1)(g−1)

∑
t∈Tk/Sr

TrVk$r−d
(t)

|δ(t)|2g−2
;

this is still valid for d = 0 with the convention $r = 0 .
The character of the representation Vk$r−d

is given by the Schur formula (see
e.g. [F-H], Thm. 6.3):

TrVk$r−d
(t) =

1
δ(t)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

tk+r−1
1 tk+r−1

2 . . . tk+r−1
r

tk+r−2
1 tk+r−2

2 . . . tk+r−2
r

...
...

...
tk+d
1 tk+d

2 . . . tk+d
r

td−1
1 td−1

2 . . . td−1
r

...
...

...
1 1 . . . 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Writing tk+r = ζIr ∈ µr , the big determinant reduces to
ζr−d(−1)d(r−d) det(td−i

j ) , and finally, since
∏

ti = 1 , to ((−1)r−1ζ)−dδ(t) , which
gives the required formula.

Corollary 3.2 .− Let T′
k be the set of matrices t = diag(t1, . . . , tr) in SLr(C)

with ti 6= tj if i 6= j , and tk+r = (−1)r−1Ir . Then

r−1∑
d=0

dim H0(Md
r ,Dk) = rg(k + r)(r−1)(g−1)

∑
t∈T′

k
/Sr

1
|δ(t)|2g−2

·

We now consider the moduli space MPGLr
. We know that the line bundle

Dk on Md
r descends to Md

PGLr
= Md

r/Jr exactly when k is a multiple of r if r

is odd, or of 2r if r is even (1.3). When this is the case we obtain a line bundle

1 There is a misprint in the first equality of that corollary, where one should read Treg
`

/W instead

of Treg
`

; the second equality (and the proof!) are correct.
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on Md
PGLr

, that we will still denote by Dk ; its global sections correspond to the
Jr -invariant sections of H0(Md

r ,Dk) .
We will assume that r is prime, so that every non-zero element α of Jr has

order r . Then Prop. 2.1 and 2.2 lead immediately to a formula for the dimension
of the Jr -invariant subspace of H0(Md

r ,Dk) as the average of the numbers Tr(α)
for α in Jr . Using Prop. 3.1 we conclude:

Proposition 3.3 .− Assume that r is prime. Let k be a multiple of r ; if r = 2
assume 4 | k . Then

dim H0(Md
PGLr

,Dk) = r−2g dim H0(Md
r ,Dk) + (1− r−2g)(

k

r
+ 1)(r−1)(g−1)

= r−2g (
k

r
+ 1)(r−1)(g−1)

(
rr(g−1)

∑
t∈Tk/Sr

((−1)r−1tk+r)−d

|δ(t)|2g−2
+ r2g − 1

)
.

Summing over d and plugging in Cor. 3.2 gives the following rather complicated
formula:

Corollary 3.4 .−

dim H0(MPGLr
,Dk) = r1−2g (

k

r
+1)(r−1)(g−1)

(
rr(g−1)

∑
t∈T′

k
/Sr

1
|δ(t)|2g−2

+ r2g−1
)

.

As an example, if k is an integer divisible by 4 , we get

(3.5) dim H0(MPGL2 ,Dk) = 21−2g (
k

2
+ 1)g−1

( ∑
l odd

0<l<k+2

1
(sin lπ

k+2 )2g−2
+ 22g − 1

)
.

4. Relations with Conformal Field Theory

(4.1) According to Conformal Field Theory, the space H0(MPGLr
,Dk) should

be canonically isomorphic to the space of conformal blocks for a certain Conformal
Field Theory, the WZW model associated to the projective group. This implies
in particular that its dimension should be equal to

∑
j |S0j |2−2g , where (Sij) is a

unitary symmetric matrix. For instance in the case of the WZW model associated
to SL2 , we have

S0j =
sin (j+1)π

k+2√
k
2 + 1

, with 0 ≤ j ≤ k ,

where the index j can be thought as running through the set of irreducible repre-
sentations S1, . . . , Sk of SL2 (or equivalently SU2 ), with Sj := Sj(C2) .
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We deduce from (3.5) an analogous expression for PGL2 : we restrict ourselves
to even indices and write

S′0j = 2S0j for j even < k/2 ; S′
0, k

2
(1) = S′

0, k
2

(2) = S0 k
2

·

In other words, we consider only those representations of SL2 which factor through
PGL2 and we identify the representation S2j with Sk−2j , doubling the coefficient
S0j when these two representations are distinct, and counting twice the representa-
tion which is fixed by the involution (this process is well-known, see e.g. [M-S]).

(4.2) The case of SLr is completely analogous; we only need a few more
terminology from representation theory (we follow the notation of [B]). The primary
fields are indexed by the set Pk of dominant weights λ with λ(Hθ) ≤ k , where Hθ

is the matrix diag(1, 0, . . . , 0,−1) . For λ ∈ Pk , we put tλ = exp 2πi
λ + ρ

k + r
(we

identify the Cartan algebra of diagonal matrices with its dual using the standard
bilinear form); the map λ 7→ tλ induces a bijection of Pk onto Tk/Sr ([B], lemma
9.3 c)). In view of Prop. 3.1, the coefficient S0λ for λ ∈ Pk is given by

S0λ =
δ(tλ)√

r(k + r)(r−1)/2
·

Passing to PGLr , we first restrict the indices to the subset P′k of elements
λ ∈ Pk such that tλ belongs to T′

k ; this means that λ belongs to the root
lattice, i.e. that the representation Vλ factors through PGLr . The center µr

acts on Tk by multiplication; this action preserves T′
k , and commutes with the

action of Sr . The corresponding action on Pk is deduced, via the bijection
λ 7→ λ+ρ

k+r , from the standard action of µr on the fundamental alcove A with ver-
tices {0, $1, . . . , $r−1} . 1

We identify two elements of P′k if they are in the same orbit with respect to
this action. The action has a unique fixed point, the weight k

r ρ , which corresponds
to the diagonal matrix Dr (2.4); we associate to this weight r indices ν(1), . . . , ν(r) ,
and put

S′0λ = r S0λ for λ ∈ P′k/µr , λ 6= k

r
ρ ; S′0,ν(i) = S0, k

r ρ for i = 1, . . . , r .

From Cor. 3.4 follows easily the formula dim H0(MPGLr
,Dk) =

∑
|S′0λ|2−2g , where

λ runs over P′k/µr ∪ {ν(1), . . . , ν(r)} .

Remark 4.3 .− It is not clear to me what is the physical meaning of the space
H0(Md

PGLr
,Dk) , in particular if its dimension can be predicted in terms of the S-

matrix. It is interesting to observe that the number N(g) given by Prop. 3.3, which

1 The element exp $1 of the center gives the rotation of A which maps 0 to $1 , $1 to $2 ,

. . . , and $r−1 to 0 .
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is equal to dim H0(Md
PGLr

,Dk) for g ≥ 2 , is not necessarily an integer for g = 1 :

for d = 0 we find N(1) = 1 +
(k + 1)r−1 − 1

r2
, which is not an integer unless r2 | k .
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