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Abstract

We classify, up to conjugacy, the subgroups of the Cremona group isomorphic to (Z/p)r , where p is
prime and r is maximal.
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Introduction

Let k be an algebraically closed field. The Cremona group Crk is the group of birational
transformations of P

2
k , or equivalently the group of k-automorphisms of the field k(x, y). There

is an extensive classical literature about this group, in particular about its finite subgroups—see
the introduction of [dF] for a list of references.

The classification of conjugacy classes of elements of prime order p in Crk has been given a
modern treatment in [B-B] for p = 2 and in [dF] for p � 3 (see also [B-Bl]). In this note we go
one step further and classify p-elementary subgroups—that is, subgroups isomorphic to (Z/p)r

for p prime. We will mostly describe such a subgroup as a group G of automorphisms of a
rational surface S: we identify G to a subgroup of Crk by choosing a birational map ϕ :S ��� P

2.
Then the conjugacy class of G in Crk depends only on the data (G,S).

Theorem. Let G be a subgroup of Crk of the form (Z/p)r with p prime �= char(k). Then:
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(a) Assume p � 5. Then r � 2, and if r = 2 G is conjugate to the p-torsion subgroup of the
diagonal torus1 of PGL3(k) = Aut(P2).

(b) Assume p = 3. Then r � 3, and if r = 3 G is conjugate to the 3-torsion subgroup of the
diagonal torus of PGL4(k), acting on the Fermat cubic surface X3

0 + · · · + X3
3 = 0.

(c) Assume p = 2. Then r � 4, and if equality holds G is conjugate to one of the following
subgroups:
(c1) the 2-torsion subgroup of the diagonal torus of PGL5(k), acting on the quartic del

Pezzo surface in P
4 with equations

∑4
i=0 X2

i = ∑4
i=0 λiX

2
i = 0 for some distinct ele-

ments λ0, . . . , λ4 of k.
(c2) the subgroup of Crk spanned by the involutions:

(x, y) �→ (−x, y), (x, y) �→
(

1

x
, y

)
, (x, y) �→

(
x,

α(u)

y

)
,

(x, y) �→
(

x,
λ(u)y − α(u)

y − λ(u)

)

for some α,λ in k(u) with α /∈ {0, λ2}, u = x2 + x−2. Alternatively, this subgroup acts on the
rational surface y2 − α(x)z2 − β(x) = 0 in k∗ × k2, with β = α − λ2, by changing the sign of
x, y, z and changing x in x−1.

Note that the question does not make sense when p = char(k), already in dimension 1: the
group PGL2(k) contains a subgroup isomorphic to k, hence infinite-dimensional over Z/p.

In the next section we discuss some motivation for this question; then we reduce the problem
through standard techniques to the study of p-elementary subgroups G ⊂ Aut(S), where S is
either a del Pezzo surface or carries a P1-fibration preserved by G. We will study the latter case
in Section 2 and the former in Section 3. Finally in Section 4 we discuss the classification of the
conjugacy classes of subgroups isomorphic to (Z/2)4 (the only case where the conjugacy class
is not unique).

As I. Dolgachev pointed out to us, the result (over C) could be deduced from the list of the fi-
nite subgroups of the Cremona group established by Kantor [K], and completed by Wiman [W].
However, the results of Sections 2 and 4 would still be needed to decide whether certain sub-
groups are conjugate or not. Most of the results of Section 3 are contained in those of Kantor and
Wiman, but they are so much simpler in our specific situation that we have preferred to give an
independent proof.

1. Comments, and beginning of the proof

1.1. Though very large, the Cremona group behaves in some respect like a semi-simple group
of rank 2: every maximal torus has dimension 2, and is conjugate to the diagonal torus T of
PGL3(k) [D1]. In this set-up the analogue of the Weyl group is the whole automorphisms group
GL2(Z) of T [D1, Corollary 5, p. 522].

Now let H be a semi-simple group over k, and p a prime number � 7 which does not divide
the order of π1(H). Then every maximal p-elementary subgroup G ⊂ H is the p-torsion sub-

1 By the diagonal torus of PGLr (k) we mean the subgroup of projective transformations (X0, . . . ,Xr ) �→
(t0X0, . . . , trXr ) for t0, . . . , tr in k∗ .
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group of a maximal torus of H ; moreover this torus is unique, in fact it is the centralizer of G

in H [Bo].

1.2. Our theorem (together with [dF]) shows that the first part of this statement also holds for the
Cremona group for p � 7. However, the maximal torus containing G is not unique. Indeed, let T

be the diagonal torus of PGL3(k), and G its p-torsion subgroup. The centralizer of G in Crk
contains the transformations σf : (x, y) �→ (x, yf (xp)) for f ∈ k(t)∗. If f is not a monomial σf

does not normalize T , and G is also contained in σf T σ−1
f .

1.3. Now let us begin the proof of the theorem. Let G be a finite subgroup of Crk . Then G

can be realized as a group of automorphisms of a rational surface S (see for instance [dF-E,
Theorem 1.4]). Moreover we can assume that (G,S) is minimal, that is, every birational G-
equivariant morphism of S onto a smooth surface with a G-action is an isomorphism. Then one
of the following holds:

• G preserves a fibration f :S → P1 with rational fibers;
• rk Pic(S)G = 1.

This result goes back to Manin [M], at least in the case (of interest for us) when G is abelian.
It is by now a direct consequence of Mori theory, see for instance [Z, Lemma 4.1].

In the former case G embeds in the group of automorphisms of the generic fibre P
1
k(t) of f ; in

the next section we are going to classify the p-elementary subgroups of Aut(P1
k(t)

). In the latter
case S is a del Pezzo surface, and the group Aut(S) is well known; we will use this information
in Section 3 to classify the corresponding p-elementary subgroups. Putting these results together
gives the theorem.

2. Subgroups of Aut(P 1
K)

Let K be an extension of k, and p a prime number �= char(k). Let us recall the classification
of p-elementary subgroups of PGL2(K). Let Cp ⊂ PGL2(k) be the cyclic subgroup of homogra-
phies z �→ ζz, with ζp = 1. Let δ : PGL2(K) → K∗/K∗2 be the homomorphism deduced from
the determinant.

Lemma 2.1. Let G be a subgroup of PGL2(K) of the form (Z/p)r , with p prime �= char(k).

(a) We have r � 1 if p is odd and r � 2 if p = 2.
(b) If p is odd and G non-trivial, it is conjugate to Cp .
(c) Assume p = 2, and that the Brauer group of K is trivial. Then r � 2; the homomorphism

δ : PGL2(K) → K∗/K∗2 induces a bijective correspondence between conjugacy classes of
subgroups of PGL2(K) isomorphic to (Z/2)2, and subgroups of order � 4 of K∗/K∗2.

Note that the assumption on K is satisfied when K = k(t) by Tsen’s theorem.

Proof. To prove (a) we embed PGL2(K) into the group PGL2(K), for which the result is well
known.

Assume p is odd. Let σ be an element of G, represented by a matrix A ∈ GL2(K) which
satisfies Ap = λI for some scalar λ ∈ K∗. Taking determinants give (detA)p = λ2, so that λ2 ≡ 1
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(mod.K∗p). Since p is odd, this implies λ ∈ K∗p ; thus A is diagonalizable, and σ is conjugate
to an element of Cp . This proves (b).

We now assume p = 2. Let σ, τ be two distinct commuting involutions in PGL2(K); they are
represented by matrices A,B ∈ GL2(K) satisfying

A2 = αI, B2 = βI, BA = εAB for some α,β, ε in K∗.

By the Cayley–Hamilton theorem we have detA = −α and therefore δ(σ ) = −α (mod.K∗2),
and similarly δ(τ ) = −β (mod.K∗2). Observe that replacing A by λA, for λ ∈ K∗, amounts to
multiply α by λ2.

Taking determinants gives ε = ±1; if B commutes with A, it belongs to the subspace
of M2(K) spanned by I and A, and the condition B2 = βI implies that it is proportional to A

or I , a contradiction. Thus

A2 = αI, B2 = βI, BA = −AB (2.2)

so that A and B define an algebra homomorphism ϕ :Qα,β → M2(K), where Qα,β is the quater-
nion algebra over K of type (α,β). For dimension reasons such a homomorphism is necessarily
an isomorphism.

Let (σ ′, τ ′) be another pair of commuting involutions with δ(σ ′) = δ(σ ) and δ(τ ′) = δ(τ ). We
can represent them by matrices (A′,B ′) satisfying (2.2), thus corresponding to an isomorphism
ϕ′ :Qα,β → M2(K). By the Skolem–Noether theorem ϕ and ϕ′ are conjugate by an element of
GL2(K), thus the pairs (σ, τ ) and (σ ′, τ ′) are conjugate in PGL2(K). Moreover by our assump-
tion on K any quaternion algebra over K is isomorphic to M2(K), thus any pair α,β in K∗/K∗2

corresponds to a pair of commuting involutions. This proves (c). �
Remarks 2.3. (a) Let us make more explicit the description of the group G in case (c). Consider
Eqs. (2.2). In a basis of K2 of the form (v,Av), we have A = ( 0 α

1 0

)
, so that σ becomes the

homography z �→ α
z

. Write Bv = λv + μAv; then BAv = −ABv = −μαv − λAv, so that τ is

the homography z �→ λz−μα
μz−λ

. If μ �= 0 we may suppose μ = 1, so

G is the subgroup Vα,λ generated by the involutions z �→ α
z

and z �→ λz−α
z−λ

,

where λ is any element of K such that α − λ2 ≡ β (mod.K∗2).
The case μ = 0 gives the subgroup generated by z �→ α

z
and z �→ −z, that is Vα,0. In particular

V1,0 is the standard subgroup of PGL2(k) generated by z �→ −z and z �→ 1
z
. We will denote it

simply by V .
(b) Using the adjoint action of PGL2(K) on the Lie algebra sl2(K) endowed with the Killing

form, one can realize G as the 2-torsion subgroup of the diagonal torus of PGL3(k), acting on
the conic X2 − αY 2 − βZ2 in P

2
K .

(c) Suppose K = k(t). The homomorphism div :K∗ → Div(A1) induces an isomorphism
div2 :K∗/K∗2 ∼−→ Div(A1) ⊗Z Z/2. Thus there is a bijective correspondence between classes
in K∗/K∗2 and finite subsets of k.
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2.4. We are interested in the automorphism group Aut(P1
K) of the k-scheme P

1
K . Let Γ be the

automorphism group of K over k. The action of Aut(P1
K) on the global functions of P

1
K gives

rise to an exact sequence

1 → PGL2(K) → Aut
(
P

1
K

) π→ Γ → 1;

the surjection π has a canonical section s :Γ → Aut(P1
K) which maps σ ∈ Γ to the automor-

phism z �→ σ(z). We will use this section to identify Γ to a subgroup of Aut(P1
K), and view

Aut(P1
K) as the semi-direct product PGL2(K) � Γ . In other words, an element of Aut(P1

K) is a

transformation z �→ aσ(z)+b
cσ (z)+d

for some
(

a b
c d

) ∈ GL2(K) and σ ∈ Γ .
We are interested in the case K = k(t), so that Γ = PGL2(k). We first need a purely group-

theoretical lemma:

Lemma 2.5. Let A be a group, P and Γ two subgroups of A, with P normal, such that
A = P � Γ . Let G be a subgroup of A, GΓ its projection onto Γ , and GP := G ∩ P . Assume:

(i) The projection G → GΓ admits a section s.
(ii) The cohomology set H 1(GΓ ,P ) is reduced to one element.

Then G is conjugate to the semi-direct product GP � GΓ .

Proof. Replacing Γ by GΓ we can assume that the projection G → Γ is surjective. Consider
the exact sequence

1 → P → A
p→ Γ → 1.

We have two sections of p: the one given by the inclusion Γ ⊂ A, and the composition
Γ

s−→ G ⊂ A. These two sections differ by a 1-cocycle of Γ with values in P , hence they are con-
jugate by (ii). This means that after replacing G by a conjugate subgroup we can assume Γ ⊂ G;
this implies that the action of Γ on P preserves GP , and that G = GP � Γ . �
Proposition 2.6. Let G be a subgroup of Aut(P1

k(t)
) of the form (Z/p)r , with p prime �= char(k).

(a) When p is odd, we have r � 2; if r = 2, G is conjugate to the subgroup Cp × Cp of
PGL2(K) � PGL2(k).

(b) When p = 2 we have r � 4; if equality holds, G is conjugate to the subgroup Vα,λ × V

of PGL2(K) � PGL2(k) (see 2.3(a)) for some elements α,λ in the V -invariant subfield L

of K . The conjugacy class of this subgroup depends only on the classes of α and β = α −λ2

in L∗/L∗2.

Proof. Let G′ = G ∩ PGL2(K). The bound on r follows from the exact sequence

1 → G′ → G
π→ π(G) → 1
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and Lemma 2.1(a). If equality holds, the above exact sequence splits, so that condition (i) of
Lemma 2.5 is satisfied. To check condition (ii), consider the cohomology exact sequence associ-
ated to the exact sequence

1 → K∗ → GL2(K) → PGL2(K) → 1;
for any finite subgroup H of Γ we have H 1(H,GL2(K)) = {1} [S, chapitre X, Proposition 3]
and H 2(H,K∗) = {1} by Tsen’s theorem and [S, chapitre X, Proposition 11] and therefore
H 1(H,PGL2(K)) = {1}. Thus condition (ii) holds, and Lemma 2.5 implies that G is conjugate
to the subgroup G′ × π(G) of PGL2(K) � PGL2(k). If p is odd, this subgroup is conjugate to
Cp × Cp by Lemma 2.1. If p = 2, we can assume π(G) = V by Lemma 2.1; then the condition
that G′ commutes with V implies that α and λ are in the V -invariant subfield L of K , so that G

is contained in PGL2(L) × PGL2(k). Lemma 2.1 shows that G′ is conjugate in PGL2(L) to Vα,λ

for some α,λ in L, and that the conjugacy class of G′ in PGL2(L) depends only of the classes
of α and β in L∗/L∗2. Since PGL2(L) commutes with V , the proposition follows. �
2.7. Thus for p odd and r = 2, G is conjugate to the p-torsion subgroup of the diagonal torus of
PGL3(k). For p = 2 and r = 4, G is conjugate to the group Vα,λ × V generated by

(z, t) �→ (z,−t), (z, t) �→
(

z,
1

t

)
, (z, t) �→

(
α

z
, t

)
, (z, t) �→

(
λz − α

z − λ
, t

)

with α and β = α − λ2 in k(t)∗. Since the map t �→ t2 + t−2 identifies P
1/V with P

1, the
invariance of α and λ under V means that they are rational functions of t2 + t−2. This gives
case (c2) of the theorem. Using Remark 2.3(b) leads to the alternative form given in the theorem.

3. Automorphisms of del Pezzo surfaces

We now consider the case where S is a del Pezzo surface and G ∼= (Z/p)r a subgroup of
Aut(S) such that rk Pic(S)G = 1. We first recall the following well-known fact, which is a par-
ticular case of the results mentioned in 1.1:

Lemma 3.1. Let G be a subgroup of PGLn(k) of the form (Z/p)r , with p prime �= char(k).
Assume that p does not divide n. Then r � n − 1, and if equality holds G is conjugate to the
p-torsion subgroup of the diagonal torus.

Proof. Pulling back G to SLn(k) gives a central extension of G by the group μn of nth roots
of unity in k. Such extensions are parametrized by the group H 2(G,μn) which is annihilated
both by n and p. Thus our extension is trivial, and G lifts to a subgroup of SLn(k), isomorphic
to (Z/p)r . Such a subgroup is contained in a maximal torus of SLn(k), hence our assertions. �
3.2. Let us start with the case S = P

2. By the above lemma, if p �= 3, we have r � 2, and
any subgroup of PGL3(k) isomorphic to (Z/p)2 is conjugate to the p-torsion subgroup of the
diagonal torus.

The case p = 3 is classical (see e.g. [Bo, 6.4], for a more general statement): we have
again r � 2, and a subgroup isomorphic to (Z/3)2 is conjugate either to the diagonal sub-
group, or to the subgroup spanned by the automorphisms (X0,X1,X2) �→ (X1,X2,X0) and
(X0,X1,X2) �→ (X0, αX1, α

2X2) for α ∈ μ3.
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3.3. If S is obtained from P
2 by blowing up one or two points, the group Aut(S) is a subgroup of

PGL3(k), so 3.2 applies. Suppose that S is the blow up of P
2 at three non-collinear points. Let

N ⊂ PGL3(k) be the subgroup of automorphisms preserving this three-points subset. The group
Aut(S) is the semi-direct product of N and a subgroup of order 2. Let G be a subgroup of Aut(S)

isomorphic to (Z/p)r . If p �= 2, G is contained in N , so that 3.2 applies. If p = 2, we have r � 3
again by 3.2.

We now consider the case S = P
1 × P

1.

Lemma 3.4. Let G be a group of automorphisms of P
1 × P

1, isomorphic to (Z/p)r , such that
rk Pic(P1 × P

1)G = 1. Then p = 2 and r � 3.

Proof. The automorphism group of P
1 × P

1 is the semi-direct product

(
PGL2(k) × PGL2(k)

)
� Z/2,

where Z/2 acts on PGL2(k) × PGL2(k) by exchanging the factors. If p �= 2, our subgroup G is
contained in PGL2(k) × PGL2(k), hence Pic(P1 × P

1)G = Pic(P1 × P
1) has rank 2.

Thus we have p = 2. The subgroup G′of G preserving the two P
1-fibrations is contained in

PGL2(k) × PGL2(k), thus in C2 × C2 up to conjugacy, and G is conjugate to a subgroup of the
semi-direct product (C2 × C2) � Z/2. But the elements of order 2 in this group not contained in
C2 × C2 are contained in the (direct) product of Z/2 by the diagonal subgroup C2 ⊂ C2 × C2.
Therefore G must be contained in C2 × Z/2, hence r � 3. �
3.5. It remains to consider the case when S is obtained from P

2 by blowing up 
 points in general
position, with 4 � 
 � 8. We start by recalling some classical facts about such surfaces, which
can be found for instance in [D2]. The primitive cohomology H 2(S,Z)prim (the orthogonal of
the canonical class in H 2(S,Z)) is the root lattice of a root system R. The group Aut(S) acts
faithfully on H 2(S,Z)prim, hence can be identified with a subgroup of the automorphism group
of the root system R; it is actually contained in the Weyl group W ⊂ Aut(R) [Do]. The root
systems which appear are the following (see [B]):

• 
 = 4: R = A4, W = S5;
• 
 = 5: R = D5, W = (Z/2)4

� S5;
• 
 = 6: R = E6, |W | = 27.34.5;
• 
 = 7: R = E7, |W | = 210.34.5.7;
• 
 = 8: R = E8, |W | = 214.35.52.7.

3.6. For 
 = 7 (respectively 
 = 8), the linear system |−KS | (respectively |−2KS |) defines a
degree 2 morphism onto P

2 (respectively a quadric cone in P
3), branched along a canonically

embedded smooth curve C of genus 3 (respectively 4). This gives rise to an exact sequence

1 → Z/2 → Aut(S) → Aut(C) (3.7)

(the right-hand side map is actually surjective, but we will not need this). To control subgroups
of Aut(C) the following lemma will be useful:

Lemma 3.8. Let p be a prime number, r an integer, and C a curve of genus g with a faithful
action of the group (Z/p)r . Then pr−1 divides 2g − 2.
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Proof. Put G = (Z/p)r , and consider the covering π : C → C/G. Since the stabilizer of any
point of C is cyclic, the fibre of π above a branch point consists of pr−1 points with ramification
index p. Thus Hurwitz’s formula gives the result. �
Proposition 3.9. For p prime � 5, the group (Z/p)2 does not act faithfully on a del Pezzo
surface.

Proof. A glance at the list 3.5 shows that the only case where the order of the Weyl group is
divisible by p2, with p � 5, is 
 = 8. In this case the exact sequence (3.7) shows that (Z/p)2

acts faithfully on a smooth curve C of genus 4, and this contradicts Lemma 3.8. �
Proposition 3.10. Let S be a del Pezzo surface admitting a faithful action of (Z/3)r with r � 3.
Then r = 3, S is isomorphic to the Fermat cubic X3

0 + · · · + X3
3 = 0, and (Z/3)3 acts as the

3-torsion subgroup of the diagonal torus in PGL4(k).

Proof. The list 3.5 gives 
 � 6. On the other hand, 3.6 and Lemma 3.8 give 
 � 6. Thus S is a
cubic surface in P

3, and G is a subgroup of PGL4(k). By Lemma 3.1 we have r = 3, and there
is a coordinate system (X0, . . . ,X3) on P

3 such that G is the diagonal subgroup (μ3)
4/μ3 of

PGL4(k).
The surface S is defined by an element F of H 0(P3,OP3(3)) which is semi-invariant with

respect to the action of (μ3)
4. Under this action the space H 0(P3,OP3(3)) is the direct sum of

the invariant subspace spanned by X3
0, . . . ,X

3
3 and of 16 1-dimensional subspaces spanned by

monomials, corresponding to 16 different characters of (μ3)
4. Since S is smooth, F must be of

the form a0X
3
0 + · · · + a3X

3
3 with ai �= 0 for each i, hence the result. �

Proposition 3.11. Let S be a del Pezzo surface and G a subgroup of Aut(S) isomorphic to (Z/2)r

with r � 4 and rk Pic(S)G = 1. Then r = 4, S is a quartic del Pezzo surface in P
4 with equations∑4

i=0 X2
i = ∑4

i=0 λiX
2
i = 0 for some distinct elements λ0, . . . , λ4 of k, and G is the 2-torsion

subgroup of the diagonal torus in PGL5(k).

Proof. Once again the list 3.5 gives 
 � 5, and 3.6 and Lemma 3.8 give 
 �= 8. If 
 = 7 we get
from 3.6 a subgroup (Z/2)r−1 in Aut(C) ⊂ PGL3(k), hence r � 3 by Lemma 3.1.

Suppose S is a cubic surface. Then G acts on the set of lines in S; since 27 is odd, there must
be one orbit with one element, that is, one line stable under G. This contradicts the assumption
on Pic(S)G.

Suppose S is an intersection of two quadrics in P
4. Then G is a subgroup of PGL5(k); by

Lemma 3.1 we have r = 4, and there is a coordinate system (X0, . . . ,X4) on P
4 such that G is

the diagonal subgroup (μ2)
5/μ2 of PGL5(k).

The representation of (μ2)
5 on H 0(P4,OP4(2)) splits as

H 0(
P

4,OP4(2)
) = I ⊕

∑
i<j

k · (XiXj ),

where I is the invariant subspace spanned by X2
0, . . . ,X

2
4. The 2-dimensional subspace of

quadratic forms vanishing on S must be contained in I , since otherwise it would contain
some XiXj . After a change of coordinates we find the form given in the proposition. �
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Remark 3.12. The same method gives the subgroups of type (Z/3)2 of the Cremona group:
besides the two conjugacy classes of subgroups of PGL3(k) described in 3.2, one gets the auto-
morphisms groups of certain cubic surfaces and del Pezzo surfaces of degree 1. The subgroups
of type (Z/2)3 and (Z/2)2 can also be described with analogous, but more tedious, methods.

4. Conjugacy classes of 2-elementary subgroups

It follows from the theorem that the p-elementary subgroups of Crk of maximal order form
only one conjugacy class, except in the case p = 2. We are going to analyze the latter case. We
assume char(k) �= 2 throughout this section.

4.1. To study subgroups of type (c1), let us first recall some classical facts about quartic del Pezzo
surfaces—one possible reference is [H, lecture 22].

A quartic del Pezzo surface S ⊂ P
4 is contained in a pencil (Qλ)λ∈P1 of quadrics. There

are exactly 5 singular quadrics Qλ0 , . . . ,Qλ4 in this pencil; the map S �→ {λ0, . . . , λ4} is an
isomorphism from the moduli space of quartic del Pezzo surfaces onto the moduli space of 5-
points subsets of P

1 (modulo the action of PGL2). The quadrics Qλ0 , . . . ,Qλ4 have rank 4; their
singular points p0, . . . , p4 span P

4.
The group Aut(S) contains a normal, canonical subgroup GS isomorphic to (Z/2)4. Indeed

for 0 � 
 � 4, there is a unique involution σ
 of P
4 whose fixed locus consists of p
 and the

hyperplane H
 spanned by the points pi for i �= 
; these involutions span the group GS . In more
concrete terms, choose the coordinates on P

1 so that λ0, . . . , λ4 ∈ k. There exists a system of
coordinates on P

4 such that the equations of Q∞ and Q0 are respectively

4∑
i=0

X2
i = 0,

4∑
i=0

λiX
2
i = 0.

Then GS is the 2-torsion subgroup of the diagonal torus in PGL5(k); the involution σ
 maps
(X0, . . . ,X
, . . . ,X4) to (X0, . . . ,−X
, . . . ,X4). As before we view GS as a subgroup of Crk ,
well defined up to conjugacy.

Proposition 4.2. The map S �→ GS induces a bijection between the moduli space of quartic del
Pezzo surfaces and the set of conjugacy classes of subgroups of Crk of type (c1).

As pointed out by the referee, the proposition can be deduced from the more general results
of Iskovskikh [I]. For the convenience of the reader we will give the proof in our particular case,
because it is much simpler than in the general framework considered in [I].

Let S and S′ be two quartic del Pezzo surfaces. If GS is conjugate to GS′ , there exists a
birational map ϕ : S ��� S′ which is equivariant with respect to the action of (Z/2)4. Thus the
proposition is a consequence of the following result, which is a particular case of Theorem 3.3
in [I]:

Proposition 4.3. Any (Z/2)4-equivariant birational map ϕ :S ��� S′ between quartic del Pezzo
surfaces is an isomorphism.
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Proof. Put G := (Z/2)4. We have a G-equivariant diagram

Ŝ
ηε

S
ϕ

S′

where ε and η are birational morphisms. As usual we write

Pic(Ŝ) = ε∗ Pic(S) ⊕
∑
i∈I

Z[Ei] with E2
i = −1, Ei.Ej = 0 for i �= j ;

each Ei is an effective (possibly reducible) divisor contracted by ε. Let us put H = −KS and
H ′ = −KS′ . We have ε∗η∗H ′ ∈ Pic(S)G = ZH , hence2

η∗H ′ ≡ mε∗H −
∑
i∈I

riEi

for some positive integers m,(ri)i∈I satisfying

4 = 4m2 −
∑
i∈I

r2
i . (4.4)

Assume that ϕ is not an isomorphism; then I �= ∅, so m � 2 by (4.4). Since K
Ŝ

≡ ε∗KS +∑
i∈I Ei , we have

η∗H ′ + mK
Ŝ

≡
∑
i∈I

(m − ri)Ei.

On the other hand, we have η∗(η∗H ′ + mK
Ŝ
) ≡ H ′ + mKS′ , and this linear system is empty

since m � 2. This implies ri > m for some i ∈ I .
The group G acts on the finite set I , and the function i �→ ri is G-invariant. Now the key

point is that every orbit of G in I has at least 4 elements: indeed the stabilizer of i ∈ I fixes
the point ε(Ei) of S, and the stabilizer of a point p of S has order � 4 (this stabilizer is (Z/2)ν ,
where ν is the number of coordinates of p which are zero). Thus there are at least 4 elements
i of I with ri > m, and this contradicts (4.4). Therefore we have m = 1, I = ∅, and ϕ is an
isomorphism. �
Remark 4.5. Proposition 4.3 implies that the normalizer of GS in Crk is the finite group Aut(S).
The same argument shows that the normalizer of (Z/3)3 in Crk is the group of automorphisms
of the Fermat cubic surface, that is, (Z/3)3

� S4.

4.6. For σ ∈ Crk , we denote by NF(σ ) the normalized fixed locus of σ , that is, the normalization
of the union of the non-rational curves in P

2 fixed by σ . The isomorphism class of NF(σ ) is an

2 The sign ≡ denotes linear equivalence.
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invariant of the conjugacy class of σ , and this is the basic invariant we will use to distinguish
conjugacy classes.

Let S be a quartic del Pezzo surface. The 5 elements σ
 of GS (4.1) fix the elliptic curve
H
 ∩ S, while the other elements of GS have no fixed curve. On the other hand, for a subgroup
G ⊂ Crk of type (c2), at most 3 elements of G have a non-trivial normalized fixed locus—namely,
with the notation of 2.6, the non-trivial elements of Vα,λ × {1}. Therefore:

Proposition 4.7. A subgroup of type (c2) is not conjugate to one of type (c1).

We now consider subgroups of type (c2). Such a subgroup is the image of an embedding
(Z/2)4 ↪→ Crk , which maps the elements e1, . . . , e4 of the canonical basis to the involutions

(x, y) �→ (−x, y), (x, y) �→
(

1

x
, y

)
, (x, y) �→

(
x,

α(u)

y

)
,

(x, y) �→
(

x,
λ(u)y − α(u)

y − λ(u)

)

with α,λ in k(u), α �= 0, λ2, u = x2 + x−2. The conjugacy class of this embedding depends
only on the classes of α and β = α − λ2 in k(u)∗/k(u)∗2. We will represent these classes by
polynomials in u with simple roots.

Proposition 4.8. Assume that α or β has a zero outside {−2,2}. Then if the embeddings associ-
ated to the pairs (α,β) and (α′, β ′) are conjugate, we have α = α′ and β = β ′ in k(u)∗/k(u)∗2.

Proof. To prove the proposition, we must reconstruct from the embedding ϕ : (Z/2)4 ↪→ Crk the
classes α and β in k(u)/k(u)∗2.

Consider the normalized fixed locus C = NF(ϕ(e3)). It is the normalization of the hyperel-
liptic curve y2 = α(x2 + x−2), provided this curve has genus � 1. The subgroup V of (Z/2)4

spanned by e1 and e2 acts on C and commutes with the hyperelliptic involution σ , so it acts on
the rational curve R = C/〈σ 〉. There is a coordinate x on R such that e1 acts by x �→ −x and e2
by x �→ x−1; it is unique up to the action of V (because V is its own centralizer in PGL2(k)). In
particular the map π :R → P

1 such that π(x) = x2 + x−2 is well defined; it induces an isomor-
phism R/V

∼−→ P
1.

From the hyperelliptic curve C we get the fixed locus of σ , which corresponds to the class
of π∗α in k(x)∗/k(x)∗2 by the isomorphism div2 (Remark 2.3(c)). This is not enough, however,
because the homomorphism π∗ : k(u)∗/k(u)∗2 → k(x)∗/k(x)∗2 is not injective: it has a kernel
of order 4, spanned by u − 2 and u + 2. In other words, if P is a non-constant polynomial in u

such that P(±2) �= 0, the polynomials

P(u), (u − 2)P (u), (u + 2)P (u), (u − 2)(u + 2)P (u)

give rise to the same hyperelliptic curve C with equation z2 = P(x2 + x−2).
To distinguish these cases we consider the action of V on C. If α = P , e1 acts by (x, z) �→

(−x, z); this involution has 4 fixed points, above the points x = 0 and x = ∞ of R (ob-
serve that the fixed locus of σ does not intersect the ramification locus {0,∞,±1,±i} of π ).
On the other hand, if α(u) = (u − 2)P (u), we have z = y(x − x−1)−1, so that e1 gives the
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involution (x, z) �→ (−x,−z), which is fixed-point free. Similar computations show that, if
α(u) = (u − 2)ε(u + 2)ηP (u), with ε, η ∈ {0,1}, e1 (respectively e2) gives a fixed-point free
involution if and only if ε + η = 1 (respectively ε = 1). Therefore if π∗α �= 1 in k(x)∗/k(x)∗2,
the 4 elements αi ∈ k(u)∗/k(u)∗2 such that π∗αi = π∗α are distinguished by the action of V

on C.
This works provided NF(ϕ(e3)) is non-empty, that is, provided α vanishes outside {−2,2};

similarly, if β vanishes outside {−2,2}, we recover β from the curve NF(ϕ(e4)) with the action
of V . If, say, α has a zero outside {−2,2} but β does not, then the same argument determines the
classes of α and αβ in k(u)∗/k(u)∗2, hence also that of β . The proposition follows. �
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