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The quantum cohomology algebra of a projective manifold X   the cohomology 

  *{X, Q) endowed with a different algebra structure, which takes into account the geometry 
of rational curves in X. We show that this algebra takes a remarkably simple form for 
complete intersections when the dimension is large enough with respect to the degree. As 
a consequence we get a number df enumerative formulas relating lines, conies and twisted 
cubicsonX. 

Introduction 

The quantum cohomology algebra of a projective manifold X is die cohomology of 
X endowed with a different algebra structure, which takes into account the geometry of 
rational curves in X. This structure has been first defined heuristically by the mathe-
matical physicists [1, 2]; a rigorous construction (and proof of the associativity, which 
is highly non trivial) has been achieved recently by Ruan and Tian [3]. 

When computed e.g. for surfaces, the quantum cohomology looks rather complicated 
[4]. The aim of this note is to show that the situation improves considerably when the 
dimension becomes high with respect to the degree. Our main result is: 

Theorem. LetX czPn + r be a smooth complete intersection of degree (dv ... , df ) 

and dimension   > 3, with n > 2]T (d. - 1) - 1 . Let d = dx... df and 8 = ]T (d. - 1). 

The quantum cohomology algebra H *(X, Q) is the algebra generated by the hyperplane 

class H and the primitive cohomology H  ( , Q)0 , with the relations: 

# " + 1 = t f ? i . . . r f / # 6 , # a = 0, 
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a . p = ( a | p ^ 

for a, p e Hn(X, Q) Q . 

The method applies more generally to a large class of Fano manifolds (see 
Proposition 1 below). It is actually a straightforward consequence of the definitions, 

except for the exact value of the coefficient d ^ .... d / , which requires some standard 

computations in the cohomology of the Grassmannian. Still I believe that the simplicity 
of the result is worth noticing. ~ 

As the referee pointed out, we get actually more than an abstract presentation of the 
quantum cohomology algebra by generators and relations. The point is that the powers 
of the generator H have a simple geometric interpretation: denoting by 

Hpe   ^ (X, Z ) the class of a codimension p linear section, one has for p <n 

k - p  - p 

where/; =   + r + 1-]T d.and df is the number of lines in X meeting two general linear 

spaces of codimension n - i and   + i - 1 respectively (formula (1.7) and Remark 1 
below). This allows to writedown explicitly the quantum product in the basis (Hp ) . 

We get from this a number of enumerative formulas: for instance we find that the number 
of conies passing through 2 general points in a hypersurface of degree d and dimension 

I 

2d-3 is j d\(d- 1)!, while the number of twisted cubics through 3 general points in 

a hypersurface of degree d and dimension 3d - 6 is d\((d - I)!) 2 . 
I w u l d like to thank A. Bruno, R. Donagi, G. Ellingsrud and Peng Lu for their useful comments. 

During the preparation of this paper I had long and vivid discussions with Claude Itzykson, whi le his health 

was declining very rapidly - till he died on May 2 2 . I would like to dedicate this paper to his memory. 

1. Quantum cohomology of Fano manifolds 

I am considering in this paper Fano manifolds with b2 = I, i.e. smooth compact 

complex manifolds X such that H 2(X, Z ) is generated by an ample class H and the 
canonical class Kx is -      some positive integer  . I will use the following properties 

of the quantum cohomology product on H *(X, Z ) or H *(X, Q) (proved in [3]): 
(1.1) it is invariant under smooth deformations; 
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(1.2) It Is associative, compatible with, the grading mod. 2, and anticommutative. It is 

compatible with the intersection form ( j ) on   *(X, Z), i.e. one has [  \ yz) = (xy \ z) 

for x, y9 z in H *(X, Z). The element I e   °(X, Z) is still a unit. 
(1.3) the product x •   of two homogeneous elements is defined by 

X'y^(X'y)0 + (x-y)1 + ...Mx'y)j^.^r 

where (x :y)Q is the ordinary cohomology product, and (x - )., is a class-of degree 

deg-(jr).+ deg(y) - 2 0 . . 

(1.4) - Assume that the moduli space   of maps / : P 1 X of.degree J'(i.e. such 

that 'deg/*H = / ) has the expected dimension n + kj; choose any smooth. compactiFb 

cation ffaf. of Mj such that the evaluation maps-*;: M.-^X (0'< I < 2 ) defined by; 

e. ( / ) = / ( s ) extend to  , Then the "instanton correction" (x, • y)j is defined by 

(  , z >.: = ((x •  )j I z) = j elx • *J y ^ z . 

(1.5) If x,  y z e H *(X, Z) are classes of subvarieties A9 B, C.o'f X which are in general 
position, it follows easily from (1.4) that the triple-product (x9y9 z )jh the number, of 

curves of degree j meeting A9   and   (counted with multiplicity abc if the curve meets 
A9 resp* B9 resp.   in a9 resp. b9 resp.   distinct points). . 

To avoid confusion'I will denote .by He H2p (X, Z) for 0 < p <   . t he -p-th' 

power of H m the ordinary cohomo!ogy9 and reserve the notations x *   or 

x , | S (x9   €   *(X, Q» exclusively for the quantum product One has HQ = 1,  ,  =  , 

and    is times the class of a point, where d is' (by definition) the degree of X. 

The following result is a direct consequence of Property (1.3): 

Proposition 1. Lei X be a projective manifold, of dimension n>2, of degree d. 
Assume:-

(1) The ordinary cohomology algebra   *(X, Q) is spanned by H and H n(X9 Q). 

mif n^2k^t/Hn(X9q) is nonzero. 

.(iv) If n = 2k-2, dim    ( 9 Q ) Q ^ 1. 

386                      ,       ,          , 1995,  . %   3 / 4 
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There exists an integer \x(X) such that the quantum cohomology algebra   *(X, Q) 

is the algebra generated byHandH "(J, Q ) 0 , with the relations: 

Hn + l = \i(X)Hn + l~k, Ha = 0, a-V = (u\£)l

d(Hn - v(X)H"-k) (R) 

.(Recall that the primitive cohomology H "(X, Q) 0 is by definition equal to 

Hn(X, Q) if n is odd, and to the orthogonal of Hn if n is even.) 

Let p be an integer, with -   < p < j . According to (1.3), one has 

  . + „ , =^+n + C//n. ( 1 , 6 ) 

" for some number   e Q (which is zero for p < 0). Intersecting both sides with 

Hn-P V™    = ±< H, Hn_p,  , +  _ , > (so (hat / = ln_k.tl __p ) . 

• From (1.6) one obtains inductively, for -   < p < ^ , 

• •..- "•• •• -  + = ** -(1,9  - • <L7> 

.'••If n < 2k- 2, we can apply this with p = n -   +• 1; since H + 1 = 0 we obtain 

Hn*1 ^^( )  *1~"  with f i ( l ) - X (1.8) 

If   = 2 * - 2 , the product       ".belongs to Hn(X. Q). We will see below 

that under the hypothesis ;(iv). one; has for all a e H u (X, Q ) 0 H • a = 0, hence 

(   • Hn j a ) =' (  -"a 1: '̂) = 0, Therefore,   -    is proportional to  « , wich means 

• that (1.6) and (1.7) still hold for p^k T I, yielding again (1.8). 

. •' If /i.= 2 t - ' l , one-finds H-H~(kHk + m for some integer m. If m is nonzero 

  is invettible in   '*(X,' Q); since   -   Q) is zero for degree reasons, this implies 

  n(X9 Q) := 0. Therefore, under the hypothesis (Hi) we obtain again (1.8). 

Let a € Hn(X,XBQ; let us prove that   • a is zero. If n ?- 2k - 2 this is dear for 

degree masons. Assume-n = 2 * - 2 ; then  -   belongs to   Q). If   * 0, there 

                     ,       ,          , 1995,  ..2,-  3 /4 387 
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exists by hypothesis (iv) an element p in Hn(XyQjQ not proportional to a; the 

equality (H • a ) p• = (H • P) a leads indeed to   • a' = 0. ' 

Let a, p e   ? I(X, Q) 0 . By (13) and (1.7), there exists a number q e Q such that. 

 -   = (  |  ) ^   - . ^  ^ * ' 

Multiplying by.  and using (1.8) yields = [ p ) - ^ ^ , which'gives the last. 

million (R).. . , ..' '•' ;.• 
; Finally,, we just have to remark that the Q-algebra spamied by   and     with'-

the relations, (R) has the same dimension as   *(X, .Q),. so that all relations'follow from 

( R ) . • ' -V ; " •••;'v 
R e m a r k\s. 1) Assume moreover that-the. variety of lines contained in J has the 

expected dimension ri'+ k- 3,. and .that   Is. very ample,: i.e.. is the class of a hyperplane 

section• of X   P ^ . .Then'according to (1.5) df 'is .the number'of lines in X meeting 

two general linear spaces of codimemfon n-p and   + p - 1 respectively. For instance,, 
/ 0 is the number of lines passing through a point in a general linear section of codimension' 

2) If n is equal to 2k- 2 or 2k - 1, the result of Prop, 1 does not necessarily hold 
if one assumes only (i). and (ii). Consider for instance a general linear section of 

codimension 3 of the Grassmannian.G(2,'5). This is a Fano threefold of index.'k~ 2, 

degree. d'± 5, which satisfies the hypotheses (i) and (ii) of the Proposition (but not ( )).'-
For such a. threefold one has by (1.3)  '- '   = ^  2 +  , .withe = ~ C-#,'#3, '  >2. • 

From  2 =  2 > and H^^Hj+Xfy+QH .(l;7).we deduce • '' ' , ••' 

 4 - ( 2 ^ 

Easy geometric computations give fQ = 3-,^ •= 5,   .= 10,-hence  - ^-\  0/ 

. '.'.Now, let X be a .general linear section of codimension 2 of G{25 5). This is a Fano 
fourfold of index J : = 3, .which satisfies .(i). and. (ii).; Let c ] and c 9 be the classes in 

';H *.(X, Q) of the traces of the special Schubert cycles in-.6(2, 5) (see § 2 below for the 
notation). One h a s , H = C j . A.simple-computation (using (1.4)) gives  •  4 = 5 c 2 , 

from- which -one- can construct a class   e  :

4 (  , Q) 0 . .with   •   * 0. 

388                      ,       ,          , 1995,  . 2 /   3 / 4 
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- 3) Condition (iv) in its current form has been shown to me by A. Bruno. In an earlier 

version I used a weaker condition (for n-2k~ 2): 
(iv)' the cohomology class of the subvariety of X spanned by the Hues passing 

through a general point is proportional to Hn 
2 

. Using (1.4) one shows that this cohomology class is equal to ^   •   , so that (iv)' 

.is essentially equivalent to the result of Prop. 1 (in particular, (iv) implies (iv) ') . 

2. Complete intersections 

Let X be a smooth complete intersection in    +   of degree (dv ... , dr) and 

dimension n >'3, with n > 2 ]     - 1) - 1 . To prove the theorem, we can assume in 

view of (1.1) that X is general; then the variety of lines (resp. conies, resp. twisted 
cubics) contained in X has the expected dimension: see for instance [5], where the proof 
(given for the case of twisted cubics) adapts immediately to the easier cases of lines and 
conies. Let us check that the hypotheses of Prop. 1 are satisfied. Condition (i) holds by 

the weak Lefschetz theorem. One has Kx=~    , with   = n•+ 1 - ^ (d. - 1); there-

fore, the inequality on n ensures that (ii) holds. The space   n(X, Q) is nonzero except 

for odd-dimensional quadrics [6], so condition (iii) holds as well. Finally, if 

  n(X, Q) is of dimension 2 for n even, it is of type , ^ ; by [6], this is possible 

only for even-dimensional quadrics, which gives (iv). 
Therefore, the quantum cohomology of X is given by Prop. 1; to achieve the proof 

of the Theorem it remains to compute the number  (  ) =   . Recall that dfp is the 

number of lines in X meeting two general linear spaces of codimension n - p and 
k+p - I respectively (Remark 1). This number had been computed by Libgober [7]; I 
will give here a different proof. . 

Let V be a complex vector space, of dimension N; let us denote by G = G(2, V) the 
Grassmannian of lines in the projective space P (V ) t . On G we have a tautological exact 
sequence 

0 - > 5 ~ > 0G®Q V - > Q.~> 0,-

where the sub- and quotient bundles S and Q are of rank 2 and N-2 respectively. 
The Chern classes c v ... , c ^ _ 9 of Q are represented by the special Schubert 

cycles: 

t • 
W e u s e the n a i v e c o n v e n t i o n , i . e . P (V) is the var ie ty o f l i n e s in V. 
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   =  \{   \    + 1   } , 

where"H + 1 is a fixed linear subspace of P (V) of codimension /? + 1. In particular, 

the subvariety of lines in G meeting two general linear spaces of codimensionp + 1 and 
q +1 has cohomology class cp . 

L e t /€ S • V be.a homogeneous polynomial of degree d-on P (V).,It defines-, by 

restriction a global section / of S S , wich. vanishes exactly at the points of G where 
the corresponding line is contained in the hypersurface / = 0 . In other, words, the 
subvariety. of lines contained in this hypersurface is the zero locus of 

fe H°(G,& d S * ) . If / is general enough, it has the expected codimension d + 1 , 

and therefore its cohomology class is the top .Chern class "c^+ 1(S- , £ ).,.'Hence the 

cohomology class of the variety of lines contained in our complete; intersection X is 

cd + j C S S * ) . ; . ' c d +  (SdrS*), Therefore, wefind: - ' . ^ • 
I r 

•o 

(recall that   =   +   + 1 - rf.). 

We will compute this number using the Chern classes x = c^S * ) ,   - c2(S 

rather the virtual classes a , p such that JC.= a + p,   == a p . The Schubert cycles cp are 

then given by. 

1 + ^ + . . . + ^ 

- y -a " ' •     

1 - a 1—p a 

hence 

" a P + l _ p P + l-
  .==—• ^ — 

: a - p -
. \ d 

the Chern class ,c d . + 1 (S 5 ) is equal to } } ( j a + (d-j) p ) .To integrate we use 

the following lemma: . 

390                      ,       ,          , 1995,  . 2,   3 /4 
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Lemma, Let P e C[a, p ] be a symmetric homogeneous polynomial of degree 

2(N - 2) (so that P ( a , p )is a polynomial of maximum degree in the Chern classes x 

andy). Then [ P ( a , p ) is the coefficient of aN~ 1 p^~ 1 in - ~ (a - p )2P ( a , p ). 
G 

This is probably well-known; let me give a quick proof for the sake of completeness. 

a p + 1 - B p + l 

Put   = 1 for all p . The (usual!) cohomology algebra of G is the algebra 
P a - p 

of symmetric polynomials in a ? p, modulo the ideal generated by cN_ x and cN [8}. 

Consider the linear form which associates to a symmetric polynomial P (a, p ) the 

coefficient of a ^~ 1  ^ ~ 1 in - ^ (a - p ) 2 P (a, p ). It vanishes on the ideal 
(cN_ p cN) and on the polynomials of degree < 2N - 4, hence factors through a linear 

form C\ H 2N~~ 4 (G, Q) -> Q , necessarily proportional to J . Let us evaluate these two 
G 

forms on the polynomial   2

N„2 - ® n e ^ a s ( a ~ P # - 2 = (a^~ 1 ~ P^" *) 2 * hence 

  ^ _ 2 ) = ^ o n t h e o t h e r h a n d > J c 2 i s t h e number of lines i n P ( V ) through 2 
G 

points, that is 1 . This proves the lemma. 

• Let us apply the lemma to the polynomial F ( a , p )c _, _  . ~ , , where 
1 p   2> ~T~ p 

e - l 

F{o., P ) = ]T a. aJ $e~J is a symmetric homogeneous polynomial of degree 

• • / = 1 . : 

*? :=   +  - One has 

(  -  ) 2  „ _ 1 _ / ,  , _ 2 + / ) = (  " - / ' -  « ^ ) (   : - 1 ^ -   - 1 + / ' ) = 

=    + * - 1 + -  .   + * " 1 ~an~Ppk-l+P-ak-1+P$n-P. 

Since N=n + r+ 1 , the coefficient of a * - 1 p ^ " 1 in 
(a - p ) 2 F (a, p ) cn _ l _p ck _ 2 + p is 2ar _k + r 2 a r + p ; \ f moreover F ( a , P ) is 

divisible by (a, p ) r , the first coefficient is zero (recall that k > f > 1 ) . Applying this 
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to the polynomial F(a, p ) = cd +l(S d* S *)... cd + X ( S d* S") we get £ = a , + _ , 
1 r 

that is 

 + 1 - * r 4" 

£   ^  . -  - ,  1 [ ]  .    +  -   ) . (2.1) 
j? = G • i=l j ^ O 

r 

Taking   = p = 1 gives   (X) = ĵT• / = J~f d ^ ,: which achieves the proof of the 
i = i 

Theorem. Note that Libgober's formula (2.1) gives explicit expressions for the f \ for 

instance 

i=.l 

1= 1 1 < J < r 

l*j<di 

. and so on. 

3 o Application I: enumerative formulas 

• Let X be a smooth projective manifold satisfying the hypotheses of Proposition-1; it 

follows-from that Proposition that all the triple products .< Hp, -H-,  . ) . cm be computed 

in terms of the integers/ . If the variety of lines, conies- or twisted cubics in X has the 
expected dimension, this gives some nice enumerative formulas which we are going to 
describe. 

Let p , q, r be positive integers < n such that /7 + # + r = n + £ ; w e arrange them 

so that/? < q < r . Since 2k > nby hypothesis this impliesp < k&nd k<p + q < 2k 

(hence q > k). Therefore, 

  -   =HP-{H<i-{^fi)H^k) = ^iX)~^C.)Hp + q _ k ; 

? = 0 i = 0 

hence 

•392 - : .                      ,       ,          , 1995, . . 2,   3 / 4 
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Using the equalities    +  „ „{ and the convention £ = G for i > n+l-k,we 

find 

Proposition'2. Assume that the variety of lines contained in X has the expected 
dimension n + k-3 . Let p, qf r be positive integers such that p<q<r<h and 
p + q + r = n + 2k. The number of lines in X meeting three general linear spaces of 

n-q 

codimensionp, q andr respectively inPw + r isrf^T f.. 
i = 0 

Actually this could also be obtained by a computation in the Grassmannian as in 
§ 2. This is probably also the case for the next results, though the computation would 
be much more involved. 

Let us look at conies. Let p9 q, r be positive integers such that p + q + r = n + 2k; 
as above we assume p < q<r<h. Moreover, we will assume   < n, which excludes 
only the trivial case of quadrics [9]. Ibis implies p <   and therefore 

n-q 

2k <p + q < 3k . We have as before   • Hq = ( £ Hp + q~k; since  4 * 9 ~ k = 
i = 0 

n - r " 

= # n i . „ L + ( T O ^ ; „, we obtain 
p  - q —   x JL*s j / . n-r 9 

y = o 

i = 0 jf = 0 ' . ' 

Proposition 3, Assume that X is not a quadric, and that the variety of conies 
contained in X has the expected dimension n + 2k- 3. Let pf q, r be positive integers 
such that p<q<r<n and p + q + r = n + 2k. The number of conies in X meeting 

three general linear spaces of codimension p, q and r respectively in P w + r is 

n-q n~r 

• i = 0 j = 0 

                     ,       ,          , 1995 ,  . 2 ,   3 / 4 3 9 3 
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This has to be taken with a grain of sah hi {he case p = i, # = r =   because every 
hyperplane meets a conic twice, so the above nrniber must be divided by 2 . Since.# 

is d times the class of a point we find thai the number o f conies m X through 2 general 

points is 2^ > where ^ is the number of lines through a general point in the intersection 

of J with a general linear space of codimension   - 2. For complete intersections formula 
(2,2) gives: 

'Corollary. Let X'ber a smooth complete'intersection of degree (dv ... .9-.d ) in 

?" ~*, withn- 2 2 (d. - 1)--   The number of conies in X passing through 2 general 

,wtsis^f\(d.l)2. 

F s a m p l e . Let X be a cubic threefold P, Q two general points in X, L, Af two 
-enerai lines. We find that there are   conies lr. X throinjn P and Q - a fact that can 
^ : i l y be checked geometrically (tbe line <PV 0 *r*eets /V along a third point R; conies 
*v Y through J P and Q    in one-to-one oorrcsoorfteor.e wHh Hpes through J?)., Similarly 
x c , n proposition 3 we find 14 conxs tnrou^b P meeting L and M. 

The cementation for twisted   *  $ >/e,y sLn»hr Letp,   be positive integers. 
• rh p < C < J < n rod v + q + r=4 + 3k Vbct ?Jc r dm implies p >      

  + a >   -f  . We have -

    - (  ' - { ^ Q H P ~ k } • (  * - ( ^ V . .4 = 
• i = 0 ' ./ = ©' 

= (ji (x >2 -    ) ^ f j -   (x)' j / + < T J i ) ( »  ' + q ~ 2 k •= 
7 = ' 0 ; / = 0 i - O j = ( / > v . • 

Reasoning as above wetget: . 

Proposition 4, Assume that the variety of Misted cubics contained in X has the 

expected dimension h +   - . Let p., qP r be positive[integers such that p <q <r<n 
aridp.+ q + r = n + 3k. The number of twisted cubics in X meeting three, general linear 

spaces of codimension pP q and r respectively   P   + r is 

394                      ,       ,            19.&5,  . ^  . 3 / 4 
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In particular: 

Corollary, L # X be a smooth complete intersection of degree (d v ..'. , dr) in 

P n + r

t with / i = ' 3 ' 2   - 1) 3. Then the number of twisted cubics inX passing through 

3 general points is ™ j 17   ' ) 3 • ' 

E x a m p 1 e. Going back to our cubic threefold we find that the number of twisted 
cubics through 3 general points is 24; this can be checked geometrically, as shown    
me by S. Verra. 

4, Appl icat ion I I : the pr imit ive cohomology 

So far we have only considered the subalgebra of H * (X, Z ) generated by H. In this 
last section I would like to look at the remaining part. Because of the relations (i?), the 

only interesting triple product which appears is < Hk , a , p ) 1 for a ? p e H n (X, Z ) Q . 

Since Hk • a = (H   - fQ ) • a = - fQ a , we get 

<  ^  ,  ) = (  ^  |  ) = ~ 0( | ). ( 4  ) 

Let us translate this geometrically using (1.4). We suppose given a smooth subvariety 
F of X, of codimension   and degree dy, such, that the variety   of lines in X meeting 

Fis smooth, of dimension n - 2. For instance we can take for Fa general linear section 
of codimension /: in X; i f & =/z - 1, we can take for F a line. The correspondence 

R -4 -   -• 

with 7? ;= {(L,x) e   x X | jc e L } 

gives rise to a homomorphism   = p% q * : Hn (X, Z ) - > Hn~2 (  , Z ) . By definition 

this is a morphism of Hodge structures, i.e.    maps Hp>q (X) into Hp " lf q " 1 (  ) 

for/? + q = n. * • . ; . . . '* . ^ 
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   ^  -  5*     has (   (a) |cp ( p ) ) = ~ ^ ( a j'p) for a, p e Hn(X9 Z)Q . 

Let us choose a dtemgularization F of 'die variety of lines in X; as above it has the 

expected dimension n +   - 3, We denote by £/ the natural family of lines above F and 

by q: U -> J the natural map, The moduli space  /^ of degree 1 maps P 1 - » X has a 

natural smooth compactification, namely Ml ='17 x F 17 £/; the map e. •':  /^ X 

(0 < i < 2) is obtained by composing the projection pj " + j with . 9 . The inverse.'image of 

  under e 0 is thee identified with the fibered product R x r if, in such a way that the 

evaluation .map . ..: R *TR ~ » : J i s 'o p (1,4) yields . 

• "  ^ .  /  ) ^ ) ^ o ^ p . . •- ; • 

Since J? is a over   and the class q E is transversal to the fibres, the map 

• X 1  n~2 (  , Z) 0 Hn ( , Z) - -> .  ' (if, Z) given by   ,.6)=/  8 is, 
' an isomorphism, which satisfies /"X (y, 5) = y. Let us write 

q*a=p* <p(a)-q*H+p*d' ,• f *p = /   (P) • qR+p*p , 

Let ^ = p   p 1 = p   p 2 be the projection of if x r if onto  . One has' 

..    p . q a =      ( ) p. q   +  .  ' , 

and similarly for ^ P . .' 

For degree reasons the last terms disappear in the product  \ a > e^ p., and we get. 

where L i s a general line intersecting 7. The value'of the integral is obviously 1; since' 

the cohomology class of   is -j Hk , the result follows from (4.1) . . 

E x a m p 1 e. Let us go back'to our favorite example, the cubic threefold, taking for 

Fa generic line in X. Then   is a smooth curve; the map  : H3 (X,Z) ~>  1( , ) gives 

rise to a morphism  : JX -> JT, where JT is the Jacobian of   and   the intermediate 

396                      ,       ,          , 1.995,  . 2,  . 3 / 4 
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Jacobian of X (see e.g. [101); the formula (<p (a) |   ( )) = « 2(a \ 0) for c . 
p €   1 (X, 2 ) given by Proposition 5 mwm th*t the vrinciwu     ^   rf   
induces twice the principal notarization of IX . O e deduces easily frcm i*« <h?i „ 
i mtmediatp Jacobum JX £«* immorphk ( *    >    &      AhfIvr >> < y\V ;V 
^ /Vyro variety associated to    ?^ the tmiml iwolitikw of ^ which   ^ 
to the third I ke mi down on X by the 2-piane spanned by   and I - a uind#mfcrt^      
fcF the geometry of toe cubic threefold* due to Mumford free Appendix   of 
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