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Complex manifolds with
split tangent bundle

Arnaud Beauville

Abstract. Let X be a compact K&hler manifold. We ask whether any direct sum de-
composition Tx = @ FE; of its tangent bundle comes from a splitting of the universal
el
covering space of X as a product HUi, in such a way that the given decomposition
i€l
Ty =@ E; lifts to the canonical decomposition Ty, =@ Ty, . We prove that this is
el ! i
the case when X is a Kahler-Einstein manifold or a Kéhler surface, and discuss a general
conjecture.

1991 Mathematics Subject Classification: 32J15
Pour Michael

Introduction

The theme of this note is to investigate when the tangent bundle of a compact
complex manifold X splits as a direct sum of sub-bundles. This occurs typically

when the universal covering space X of X splits as a product [[U; of manifolds
i€l

on which the group 71 (X) acts diagonally (that is, m1(X) acts on each U; and its
action on X = [[U; is the diagonal action g.(u;) = (gu;)): the vector bundles *

Ty, on X are stable under (X), hence the decomposition Ty =& Ty, descends

to a direct sum decomposition of Tx . For Kdhler manifolds, we a;k whether the
converse is true, namely whether a direct sum decomposition of the tangent bundle
Tx gives rise to a splitting of the universal covering. We will show that this is
indeed the case in three different situations:

a) X admits a K&hler-Einstein metric;

b) T'x is a direct sum of line bundles of negative degree;

¢) X is a Kahler surface.

In case a) the properties of Hermite-Einstein metrics imply that the tangent
bundle splits as a direct sum of hermitian sub-bundles; we then conclude with a

*  Throughout the paper we will abuse notation and write Ty, instead of prjTy, .
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holonomy argument (a slightly less precise statement appears already in [Y]). Case
b) is a small improvement of a uniformization result of Simpson [S]. To treat case
¢) we use the classification of surfaces and some simple remarks about connections.
The result in this case is actually an easy consequence of the paper [KO], where
the authors classify surfaces with a holomorphic conformal structure — this turns
out to be closely related to the question we are studying here. However we found
simpler and more enlightening to give an independent proof rather than extracting
from [KO] the pieces of information that we need.

In §2 we give examples which show that the Kahler assumption, as well as some
integrability assumptions, are necessary, and we propose a general conjecture.

1. Kahler-Einstein manifolds

Theorem A. Let X be a compact complex manifold admitting a Kdhler-Einstein

metric. Assume that the tangent bundle of X has a decomposition Tx =& E; .
icl
Then the universal covering space of X is a product [[U; of complex mani-

i€l
folds, in such a way that the decomposition Tx = & E; lifts to the decomposition
iel

Ty, =@ Ty, ; the group m (X) acts diagonally on [[U;.
todel

i€l

Proof. (1.1) A Kéhler-Einstein metric on X is a Hermite-FEinstein metric on the
vector bundle Tx, that is a hermitian metric whose curvature endomorphism,
contracted with the Kahler form w, is scalar (a good reference for the properties
of Hermite-Einstein metrics that we will use is [K]). By theorem V.8.3 of [K], the
hermitian bundle T'x is the direct sum of a family (F}),cs of w-stable, hermitian
vector bundles having the same slope as Tx . These bundles are preserved by
the Levi-Civita connection, hence the holonomy representation of X is the direct
sum of a family of representations corresponding to the F}’s. By the De Rham
theorem, the universal covering space of X splits as a product ][] U; , such that
JjEJ
the decomposition T’x = @ F} pulls back to the decomposition T1y; = @ Ty, .
JjeJ jeJ

(1.2) We observe that the fact that the group m (X) preserves the decomposi-

tion THUJ- = @ Ty, implies that it acts diagonally on I1 U; . Let indeed v be an
jedJ jeJ

automorphism of [[U;; for j € I, put v = prjo7y . The condition v*Ty, = Ty,
means that the partial derivatives of 7; in the directions of Uy, for k # j vanish,
hence v;((u;)icr) depends only on wu;, which gives our claim.

(1.3) The bundles F; are indecomposable, and we can assume that each E; is
indecomposable. By the Krull-Remak-Schmidt theorem, we can identify J to I
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in such a way that F; is isomorphic to FE; for every i € I. We want to compare
the decompositions Tx =@ E; and Tx =@ F;.
iel icl

Lemma 1.3. If Hom(F;, F}) # 0 for some distinct indices i,j in I, the bundles
F; and F; are isomorphic and admit a holomorphic connection.

In particular, all Chern classes of F; vanish.

Proof. Since F; and Fj are stable with the same slope, our hypothesis implies that
F, and F; are isomorphic ([K], 7.11 and 7.12); this is equivalent to the existence
of an isomorphism ¢ : Ty, — Ty, compatible with the actions of 1 (X).

Recall that if f:7T — S is a holomorphic map between two manifolds, and F
a vector bundle on S, the bundle f*FE carries a canonical relative flat connection
Vog: [fE— [fE® Q%r/s , characterized by the property Vz,5(f*s) =0 for ev-
ery local holomorphic section s of FE; if moreover f is equivariant with respect
to a group I' acting on T', S and E, the connection Vg,g is I'-equivariant.
Applying this to the projection [[U; — U; we obtain for each k #1i a partial,

m1(X)-equivariant, connection V. : Ty, — Ty, ® Q. Similarly we have for each
k #j a partial connection V) : Ty, — Ty, ® Qp, . Put Vi = (p®@ 1) 'oViep;
then ), ; V} is a connection on Ty, which is 71 (X)-equivariant, and therefore
descends to a connection on Fj. O

(1.4) Let i € I. If F; does not admit any holomorphic connection, it follows
from the Lemma that the only sub-bundle of Tx isomorphic to F; is F; itself,
hence Ez = Fi .

Now assume that F; has a holomorphic connection. Since F; has the same
slope as Tx , this can only occur if ¢1(X) = 0. According to the structure theorem
for manifolds with ¢; =0 ([B2], thm. 1), the set I splits into two subsets J and
K, such that U; is isomorphic to a vector space for i € J and is compact for
i € K ; the vector bundle F; has trivial Chern classes if and only if i € J. Put
F= 4@J Fj; ; according to Lemma 1.2 we have F; C F' for j € J. We saw already

JE
that Ey = Fj for k € K, hence .GSJ E;=F.

VIS
Put V = HUj, M= 111 Ui . There exists a complex torus A with univer-

jET kEK
sal covering V and a finite étale covering 7: A x M — X (loc. cit.). We have
7" F =Ty ; the decomposition F'= @ FEj; pulls back to a decomposition of the

JeJ
trivial bundle T4, which corresponds to a decomposition V' =@ V; of V into
jeJ
vector subspaces. The splitting X = [] Vi x I1 Ui has the requested properties.
JjeJ ke K

O
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2. Discussion of the conjecture

Let us first show that the K&hler assumption is necessary.

(2.1) Hopf manifolds

Let T = diag(a,...,a,) be a diagonal matrix, with n > 2 and 0 < |a;| < 1
for each i. The cyclic group T% generated by T acts freely and properly on
C™ —{0}; the quotient X is a compact complex manifold, called a Hopf man-
ifold. For each non-zero complex number 6, denote by Ly the flat line bundle
associated to the character of 7 (X) = T% mapping T to 6; in other words, Ly
is the quotient of the trivial line bundle (C™ —{0}) x C by the action of the

automorphism (7',6). By construction we have Tx = & L, , but the universal
=1

1=

covering space C™ — {0} of X is clearly not a product. Note that all direct sums
© L, , for J C[1,n], are integrable sub-bundles of T’x .
=y

(2.2) Integrability conditions
Let X be a compact Kéahler manifold. If a decomposition Tx = ® FE; is as-
iel

sociated as above to a splitting X = [IU; of the universal covering space of X |
i€l
the vector bundles F; and their direct sums & FE;, for every subset J of I,
icJ
are integrable (that is, stable under the Lie bracket). It is easy to produce exam-
ples where the tangent bundle splits into non-integrable factors: take for instance
X = A x P!, where A is an abelian surface. Let (U, V) be a basis of H°(A,T4),
and S,T two vector fields on P! which do not commute. The vector fields U + S
and V + T span a (trivial) rank 2 sub-bundle of Tx , supplementary to Tp: , but

not integrable.
In view of the above examples the natural conjecture is the following:

(2.3) Let X be a compact Kdhler manifold such that Tx = ® E;, each sub-bundle
il
@ E;, for J C 1, being integrable. Then the universal covering space of X is iso-
icJ
morphic to a product 11U, , in such a way that the given decomposition Tx =@ E;
ierl i€l

lifts to the canonical decomposition Tyy, =@ Ty, -

In the case when all the F;’s are line bundles and X is projective, this con-
jecture has just been proved by S. Druel [D].

In the situations a), b), ¢) considered here it turns out that the integrability is
automatic. One may ask whether this holds whenever the canonical bundle Kx
is nef.
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3. Simpson’s uniformization result

The following lemma * ;| which is a variation on the Baum-Bott theorem [B-B], will
allow us to slightly improve Simpson’s result:

Lemma 3.1. Let X be a complex manifold, and E a direct summand of Tx . The
Atiyah class at(E) € HY (X, Q% @ End(E)) comes from HY (X, E* ® End(E)) . In
particular, any class in H"(X, Q%) given by a polynomial in the Chern classes of
E wanishes for r > rk(E).

Proof. Write Tx = E® F'; let p: Tx — E be the corresponding projection. For
sections U of E and V of F over some open subset of X , put Dy U = p([V,U]).
This expression is Ox-linear in V and satisfies the Leibnitz rule Dy (fU) =
fDyv(U)+ (Vf)U, so that D is a F-connection on E [B-B]: if we denote by
D!(E) the sheaf of differential operators A : E — E, of degree < 1, whose symbol
o(A) is scalar, this means that D defines an Ox-linear map F — D!(E) such
that o(Dy) =V for all local sections V' of F. Thus the exact sequence

0 — &End(E) — DYE) L Tx — 0

splits over the sub-bundle F C Tx; therefore its extension class at(F) €
HY(X, QL ® End(E)) vanishes in HY(X,F* ® End(E)), hence comes from
H'(X,E* ® End(E)) . The last assertion follows from the definition of the Chern
classes in terms of the Atiyah class. O

We denote as usual by H the Poincaré upper half-space.

Theorem B. Let X be a compact Kdahler manifold, with Kdhler class w. As-
sume that the tangent bundle Tx is a direct sum of line bundles L1,..., L, with
w Lei(L;) <0 for each i. Then the universal covering space of X is H", and

the decomposition Tx = ®L; lifts to the canonical decomposition Tgn = (Tg)®™.

Proof. Lemma 3.1 gives ¢1(L;)? = 0 for each 4, hence ¢1(X)? — 2¢2(X) = 0. Then
Cor. 9.7 of [S] shows that the universal covering space of X is H™. The assertion
about the compatibility of decompositions is not explicitly stated in loc. cit., but
follows from the proof; or we can apply Theorem A. O

4. The surface case

Theorem C. Let X be a compact complex surface. The tangent bundle of X
splits as a direct sum of two line bundles if and only if one of the following occurs:

* F. Bogomolov reminded me that this lemma appears already in his IHES preprint

Kahlerian varieties with trivial canonical class (1981).
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(a) The universal covering space of X is a product U xV of two (simply-
connected) Riemann surfaces and the group w1 (X) acts diagonally on U x V ;
in that case the given splitting of Tx lifts to the direct sum decomposition
Toxv =Ty © Tv .

(b) X is a Hopf surface, with universal covering space C? —{0}. Its fundamen-
tal group is isomorphic to Z & Z/mZ, for some integer m > 1; it is gen-
erated by diagonal automorphisms (x,y) — (azx,By) with || <|6] <1, and
(z,y) — (A\z, uy) where A and p are primitive m-th roots of 1.

As a corollary, for Kéhler surfaces we see that any direct sum decomposition of
the tangent bundle gives rise to a splitting of the universal covering, as announced
in the introduction.

(4.1) Before starting the proof we will need a few preliminaries. From now on we
denote by X a compact complex surface; we assume given a direct sum decomposi-
tion Q4 = L & M . By lemma 3.1 (or by [B-B]) the Chern class ¢; (L) € H'(X, QL)
belongs to the subspace H!(X, L), and similarly for M. As a consequence, we
get:

(4.2) L?= M? =0, and therefore ¢3(X)=2L.M = 2c3(X).

The following consequence is less obvious.
Proposition 4.3. Let C be a smooth rational curve in X . Then C? > 0.

Proof. Put C? = —d and assume d > 0. Since H'(C,Oc(d +2)) =0, the exact
sequence
0— O¢(d) —’Qﬁﬂc — QL — 0

splits, providing an isomorphism Q7% c = Oc(d) ® Oc(—2) . Thus one of the line
bundles L or M, say L, satisfies Ljc = Oc(d). Consider the commutative
diagram

HY(X,L) ——— HY(X,QL)

l |

Hl(C,L|C) — HYC,QL)

since d >0 we have H'(C,Lic) = 0; thus ¢1(L) goes to 0 in H'(C,Qg ), which
means d = 0, a contradiction. a

(4.4) We shall come across situations where the vector bundle Q% =L & M
appears as an extension

0-P—0 Q-0
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of two line bundles P and @ . In that case,

— either the restriction of p to one of the direct summands of QY , say M, is
surjective; then the exact sequence splits, @ is isomorphic to M and P to L;

— or the restriction of p to both L and M is not surjective; then there exists
effective (non-zero) divisors A and B, whose supports do not intersect, such
that L2 Q(—A), M 2 Q(—B) and P =2 Q(—A — B); the exact sequence does
not split.

In particular, if Hom(P, Q) = 0, the exact sequence splits.

(4.5) Finally we will need some classical facts about connections (see [E]). Let
p: M — B be a smooth holomorphic map between complex manifolds, whose
fibres are isomorphic to a fixed variety F'. A connection on p is a splitting of the
exact sequence
0—>p*QlB—>Q}W—>Q}V[/B—>O,

that is a sub-bundle L C Q}, mapping isomorphically onto Q}w /B the connection
is flat (or integrable) if dL C L A Q}, (this is automatic if B is a curve). In that
case the group m(B) acts on F by complex automorphisms, and M is the fibre
bundle on B with fibre F' associated to the universal covering B — B, that
is the quotient of B x F' by the group m(B) acting diagonally; the splitting
O}, =p*QL @ L pulls back to the decomposition Q%XF = Q% a0k,

5. Proof of Theorem C

(5.1) Kodaira dimension 2

If k(X) =2, the canonical bundle Kx is ample by Prop. 4.3. The Aubin-
Calabi-Yau theorem implies that X admits a K&hler-Einstein metric; we can
therefore apply Theorem A.

(5.2) Kodaira dimension 1

If kx(X)=1, X admits an elliptic fibration p: X — B. By 4.2 we have
¢2(X) = 0; this implies that the only singular fibres of p are multiples of smooth
elliptic curves (see [B1], V1.4 and VL.5). For b € B, we write p*[b] = my, F},, where
F, is a smooth elliptic curve; we have my > 1 and my =1 except for finitely
many points. Put A =37, (my — 1) F},. We have an exact sequence

0 P QL(A) — Qk — wy/p — 0 (5.3)
where wx,p is the relative dualizing line bundle. Since x(Ox) = 0 by Riemann-
Roch, we deduce from [BPV], V.12.2 and II1.18.2, that wx,p is a torsion line
bundle. Since Kx =p*QL(A)® wx/p, the hypothesis (X)=1 implies
Hom(p*Q5(A),wx/p) = 0, hence the exact sequence (5.3) splits by 4.4: one of
the direct summands of QY , say M, maps surjectively onto wx /B -

Let p: B — B be the orbifold universal covering of (B, (my)): this is a ramified

Galois covering, with B simply-connected, such that the stabilizer of a point b € B
is a cyclic group of order m o(0) (see for instance [KOJ, lemma 6.1; note that because
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of the hypothesis £(X) =1 and the formula for Kx , there are at least 3 multiple
fibers if B is of genus 0). Let X be the normalization of X xp B. We have a

commutative diagram
X X
P [ [ P
B B

where p is smooth and = is étale ([B1], VI.7"). The exact sequence

™
R

p
E—

0—-p"0k — 0L — 0L . -0
B X X/B

coincides with the pull back under 7 of the exact sequence (5.3); therefore p
admits an integrable connection, given by the subbundle 7#*M of Q%E . The result

follows from 4.5 and 1.2.

(5.4) Kodaira dimension 0

Assume k(X)=0. By 4.2 and the classification of surfaces, X is either a
complex torus, a bielliptic surface, or a Kodaira surface. Complex tori and biellip-
tic surfaces fall into case (a) of the theorem (a bielliptic surface is the quotient of
a product E x F of elliptic curves by a finite abelian group acting diagonally).

A primary Kodaira surface has trivial canonical bundle and admits a smooth
elliptic fibration p: X — B. Thus the exact sequence (5.3) realizes Q% as an
extension of Ox by Ox . Since h*%(X) = 1, this extension is non-trivial, and it
follows from 4.4 that Q% does not split.

A secondary Kodaira surface admits a primary Kodaira surface as a finite étale
cover, hence its tangent bundle cannot split either.

(5.5) Ruled surfaces

We consider the case when X is algebraic and k(X) = —oco. By 4.2 and 4.3,
X is a geometrically ruled surface, that is a projective bundle p: X — B over a
curve. We again consider the exact sequence

0—>p*QlB—>Q§(—>Q§(/B—>0;

since Q_1X/B has negative degree on the fibres, we have Hom(p*QkL, Qk/B) =0,

hence by 4.4 the above exact sequence splits: one of the direct summands of Q%
defines an integrable connection for p. The result follows then from 4.5.

(5.6) Inoue surfaces

We now assume that X is not algebraic and x(X) = —oo, so that X is what
is usually called a surface of type VIIy. These surfaces have b; = h%! =1 and
therefore c% + ¢ =12x(0Ox) =0; in our case this gives ¢o =0 in view of 4.2,
and finally by = 0. Moreover we have HY(X,Q% ® L™!) £ 0. The surfaces with
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these properties have been completely classified by Inoue [I]: they are either Hopf
surfaces, or belong to three classes of surfaces constructed by Inoue (loc. cit.).

We first consider the Inoue surfaces. The surfaces S); of the first class are
quotients of H x C by a group acting diagonally, hence they fall into case (a) of
the theorem.

The surfaces S](\Z)j’ q.r¢ Of the second class are quotients of H x C by a group
which does not act diagonally. This action leaves invariant the vector field 9/90z
on C, which therefore descends to a non-vanishing vector field v on X . This
gives rise to an exact sequence

i(v) i(v)

0— Kx —> Qk — Ox — 0,

which does not split since h'°(X) =0. We have H°(X,Ky') =0, for instance
because X contains no curves; we infer from 4.4 that Q% does not split.

The surfaces S](\ZI))’ o of the third class are quotients of certain surfaces of the
second class by a fixed point free involution; therefore their tangent bundle does
not split either.

(5.7) Primary Hopf surfaces

It remains to consider the class of Hopf surfaces, which are by definition the
surfaces of class VIIy whose universal covering space is W := C% — {0} . We con-
sider first the primary Hopf surfaces, which are quotients of W by the infinite
cyclic group generated by an automorphism T of W. According to [Ko], §10,
there are two cases to consider:

a) T(z,y) = (ax, By) for some complex numbers «, 5 with 0 < |a| < |8] < 1;
b) T(z,y) = (a™x 4+ \y™, ay) for some positive integer m and non-zero complex

numbers a, A with |o| < 1.

As in 2.1, we denote by Ly, for 6 € C, the flat line bundle associated to the
character of 71(X) mapping T to 0. In case a) we find Q% = L' & Lgl , o the
tangent bundle splits.

Let us consider case b). The form dy on W satisfies T*dy = avdy, hence
descends to a form dy in H°(X, Q% ® L,); similarly the function y descends to
a non-zero section of L, . We have an exact sequence

dy

O—>L;1 — Qﬁg — L, ™" —0.

Since L, has a nonzero section, the space Hom(L;!, L7™) is zero for m > 1.
Hence if Q% splits, we deduce from 4.4 that the exact sequence splits. This means
that there exists a form @ € H°(X, QY ® L™) such that @ A dy # 0. Then @ A dy
is a generator of the trivial line bundle Ky ® L™*! hence pulls back to cdxz A dy
on W | for some constant ¢ % 0. Therefore the pull back w of @ to W is of
the form cdz + f(x,y)dy for some holomorphic function f on C?. The flat line
bundle L7’ carries a flat holomorphic connection V; the 2-form Vw, which is a
global section of Kx ® L™ = L' is zero. This implies dw = 0, so the function
f(z,y) is independent of z; let us write it f(y). Now the condition T*w = a™w
reads af(ay) + cAmy™ ' = o™ f(y) . Differentiating m times we find f(™ =0,
then differentiating m — 1 times leads to a contradiction. O
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(5.8) Secondary Hopf surfaces

A secondary Hopf surface X is the quotient of W by a group I' acting freely,
containing a central, finite index subgroup generated by an automorphism T of
the above type. We assume that Q% splits. The primary Hopf surface Y = W /T%
is a finite étale cover of X, so Q3. also splits; it follows from (5.7) that T is of
type a), and that T' does not contain any transformation of type b). According to
[Ka], §3, this implies that after an appropriate change of coordinates, the group
T acts linearly on C2.

We claim that T is contained in a maximal torus of GL(2, C). This is clear if
a # 3, because T is central in T'. If o = 3, the direct sum decomposition of Q%
pulls back to a decomposition Q3. = L' @ L' (5.7), which for an appropriate
choice of coordinates comes from the decomposition Q4 = Oy dz @ Oy dy . Since
I" must preserve this decomposition, it is contained in the diagonal torus.

Thus we may identify T' with a subgroup of (C*)?; since it acts freely on W ,
the first projection I' — C* is injective. Therefore the torsion subgroup of T' is
cyclic, and we are in case (b) of the theorem. O
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