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Abstract. Let SUC(r) be the moduli space of vector bundles of rank r and trivial determinant on
a curve C. A general E in SUC(r) defines a divisor ΘE in the linear system |rΘ|, where Θ is
the canonical theta divisor in Picg−1 (C). This defines a rational map θ: SUC(r) !!" |rΘ|, which
turns out to be the map associated to the determinant bundle on SUC(r) (the positive generator
of Pic (SUC(r)). In genus 2 we prove that this map is generically finite and dominant. The same
method, together with some classical work of Morin, shows that in rank 3 and genus 3 the theta
map is a finite morphism – in other words, every vector bundle in SUC(3) admits a theta divisor.

Introduction. Let C be a smooth projective complex curve, of genus g ≥ 2.
The moduli space SUC(r) of semi-stable vector bundles of rank r on C, with
trivial determinant, is a normal projective variety, which can be considered as a
nonabelian analogue of the Jacobian variety JC. It is actually related to JC by
the following construction, which goes back (at least) to [N-R]. Let Jg−1 be the
translate of JC parameterizing line bundles of degree g− 1 on C, and Θ ⊂ Jg−1

the canonical theta divisor. For E ∈ SUC(r), consider the locus

ΘE := {L ∈ Jg−1 | H0(C, E ⊗ L) &= 0}.

Then either ΘE = Jg−1, or ΘE is in a natural way a divisor in Jg−1, belonging to
the linear system |rΘ|. In this way we get a rational map

θ: SUC(r) !!" |rΘ|

which is the most obvious rational map of SUC(r) in a projective space: it can
be identified to the map ϕL: SUC(r) !!" P(H0(SUC(r),L)∗) given by the global
sections of the determinant bundle L, the positive generator of the Picard group
of SUC(r) [B-N-R].

For r = 2 the map θ is an embedding if C is not hyperelliptic [vG-I]. We
consider in this paper the higher rank case, where very little is known. The first
part is devoted to the case g = 2. There a curious numerical coincidence occurs,
namely

dimSUC(r) = dim |rΘ| = r2 − 1.
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For r = 2 θ is an isomorphism [N-R]; for r = 3 it is a double covering,
ramified along a sextic hypersurface which is the dual of the “Coble cubic” [O].
For r ≥ 4 it is no longer a morphism [R], and this makes its analysis much more
delicate. We will prove:

THEOREM A. For a curve C of genus 2, the map θ: SUC(r) !!" |rΘ| is
generically finite (or, equivalently, dominant). It admits some fibers of dimension
≥ [ r

2 ]− 1.

Our method is to consider the fibre of θ over a reducible element of |rΘ| of
the form Θ + ∆, where ∆ is general in |(r− 1)Θ|. The main point is to show that
this fibre restricted to the stable locus of SUC(r) is finite. The other elements
of the fibre are the classes of the bundles OC ⊕ F, with ΘF = ∆; reasoning by
induction on r we may assume that there are finitely many such F, and this gives
the first assertion of the theorem (§1). The second one is obtained by considering
the restriction of θ to the subspace of symplectic vector bundles (§2).

The method is not, in principle, restricted to genus 2 curves – but the geometry
in higher genus becomes much more intricate. In the second part of the paper
(§3) we will apply it to rank 3 bundles in genus 3. Our result is:

THEOREM B. Let C be a curve of genus 3. The map θ: SUC(3) → |3Θ| is a
finite morphism.

This means that a semi-stable vector bundle of rank 3 on C has always a
theta divisor; or alternatively (see e.g. [B1]), that the linear system |L| on SUC(3)
is base point free.

This is not a big surprise since the result is already known for a generic
curve of genus 3 [R]. We believe, however, that the method is more interesting
than the result itself. In fact we translate the problem into a question of classical
projective geometry: what are the continuous families of planes in P5 such that
any two planes of the family intersect? It turns out that this question has been
completely (and beautifully) solved by Morin [M]. Translating back his result
into the language of vector bundles we get a complete list of the stable rank
3 bundles E of degree 0 such that ΘE ⊃ Θ (Theorem 3.1 below). Theorem B
follows as a corollary.

Acknowledgments. I am very much indebted to C. Ciliberto for pointing out
the paper of Morin and for making it accessible to me.

Notations. Throughout the paper we will work with a complex curve C
(smooth, projective, connected), of genus g. If E is a vector bundle on C, we will
write H0(E) for H0(C, E), and h0(E) for its dimension.



VECTOR BUNDLES AND THETA FUNCTIONS ON CURVES OF GENUS 2 AND 3 609

1. Genus 2: the generic finiteness. In this section we assume g = 2. The
first part of Theorem A follows from a slightly more precise result:

PROPOSITION 1.1. Let ∆ be a general divisor in |(r− 1)Θ|. The fibre θ−1(Θ + ∆)
is finite and nonempty.

1.2. We will prove the proposition by induction on r. Let [E0] ∈ θ−1(Θ+∆).
If it is not stable, it is the class of a direct sum ⊕

i
Ei, so that ΘE0 =

∑
i ΘEi ; thus

[E0] is the class in SUC(r) of OC⊕F for some F ∈ SUC(r−1) with ΘF = ∆. By
the induction hypothesis there exists only finitely many such F, and there exists
at least one.

Thus we can assume that E0 is stable. Let E := E∗0 ⊗ KC. We have h0(E) = r
by Riemann-Roch and the stability of E0. The inclusion Θ = C ⊂ ΘE0 means that
h0(E0(p)) ≥ 1 for all p ∈ C, or equivalently by Serre duality h0(E( − p)) ≥ 1;
this implies that the subsheaf F of E generated by the global sections of E has
rank < r. Moreover if p does not belong to ∆, it is a smooth point of ΘE0 , and
thus satisfies h0(E(− p)) = 1 (see e.g. [L], §V); therefore rk F = r− 1 (otherwise
we would have h0(E(− p)) ≥ h0(F(− p)) ≥ 2).

1.3. Let Z be a component of the locus of stable bundles E of rank r and
determinant K⊗r with the property that H0(E) spans a subsheaf of rank r−1 of E.
We will prove the inequality dim Z ≤ dim |(r − 1)Θ|. It implies that the general
fibre of θ: Z !!" Θ + |(r − 1)Θ| is finite (possibly empty), so the Proposition
follows.

Let E be a general element of Z, and let F be the subsheaf of E spanned by
H0(E). Put L = det F and d = deg F = deg L; we have an exact sequence

0→ L−1 −→ H0(E)⊗C OC −→ F → 0,

hence a linear map H0(E)∗ → H0(L). Let s = r − dim H0(C, F∗) be the rank of
that map. Then F = Or−s

C ⊕ G, where G is a vector bundle of rank s − 1 with
h0(G) = s, h0(G∗) = 0, which fits into an exact sequence

0→ L−1 −→ Os
C −→ G→ 0.

The quotient M = E/F is the direct sum of a line bundle M and a torsion
sheaf T . We have c1(M) + c1(T ) = rc1(KC)− c1(L), and this formula determines
M once T and L are given. We denote by t the length of T .

1.4. To summarize, we have associated to a general bundle E in Z integers
s, d, t and

• a line bundle L of degree d, and a s-dimensional subspace V ⊂ H0(C, L)
generating L; from these data we define G as the cokernel of the natural map
L−1 → V∗ ⊗OC, and put F := Or−s

C ⊕ G;
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• a torsion sheaf T of length t and an extension

0→ F −→ E −→ M ⊕ T → 0,(E)

where the line bundle M is determined by c1(M) = rc1(KC)− c1(L)− c1(T ).
The integers s, d, t are bounded: we have s ≤ r, t ≤ 2r− d, and d < 2(r− 1)

by the stability of E. Observe also that d ≥ 3: indeed L is generated by its global
sections, and cannot be isomorphic to KC since otherwise F would contain a copy
of KC, contradicting the stability of E.

The data (L, V , T , E) are parameterized by a variety dominating Z; we will
bound its dimension. The line bundle L depends on 2 parameters. We have
h0(L) = d − 1 since d ≥ 3, therefore the subspace V ⊂ H0(L) depends on
s(d − 1− s) parameters. The torsion sheaf T depends on t parameters. Over the
variety parameterizing these data we build a vector bundle with fibre Ext1 (M, F),
with M = M ⊕ T , M and F being determined as above. The group Aut (M) ×
Aut (F) acts on Ext1 (M, F), with the group C∗ of homotheties of M and F
acting in the same way; in fact, since the middle term of the extensions we are
interested in is stable, the stabilizer of a general extension class is C∗. This gives
a bound

dim Z ≤ 2 + s(d− 1− s) + t + dim Ext1 (M, F)− dim Aut (M)− dim Aut (F) + 1.

Let us estimate the dimensions which appear in the right hand side. We have
Hom (M, F) ⊂ Hom (M, E) = 0 because E is stable, hence by Riemann-Roch

dim Ext1 (M ⊕ T , F) = (r − 1)(2r + 1)− dr.

The group Aut (F) = Aut (Or−s
C ⊕G) contains the group of matrices

(
u 0
v λ

)
,

with u ∈ Aut (Or−s
C ), v ∈ Hom (Or−s

C , G), λ ∈ C∗; this group has dimension

(r − s)2 + s(r − s) + 1 = r(r − s) + 1.

The group Aut (T ) has dimension at least t, so similarly Aut (M) has dimension
≥ 2t + 1. We get finally:

dim Z ≤ 2 + s(d − 1− s) + t + (r − 1)(2r + 1)− dr − r(r − s)− 2t − 1

= (r − 1)2 − 1− (d − 1− s)(r − s)− t

Since d − 1 = h0(L) ≥ s, this implies dim Z ≤ (r − 1)2 − 1 = dim |(r − 1)Θ| as
required.

2. Symplectic bundles. Let C be a curve of genus g ≥ 2, and r a positive
integer. The moduli space SUC(r) has a natural involution D: E ,→ E∗. Let ι be
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the involution L ,→ KC ⊗ L−1 of Jg−1. The diagram

SUC(r) D !!

θ
""
!
!
!

SUC(r)

θ
""
!
!
!

|rΘ| ι∗ !! |rΘ|

is commutative.
Assume now that r is even. Let SpC(r) be the moduli space of semi-stable

symplectic bundles of rank r on C. This is a normal connected projective variety,
with a forgetful morphism to SUC(r), which is an embedding on the stable locus.
It is contained in the fixed locus of D, thus its image under θ is contained in the
fixed locus of ι∗.

This fixed locus is described for instance in [B-L], ch. 4, §6 (up to a translation
from JC to Jg−1). The involution ι∗ acts linearly on |rΘ| and has 2 fixed spaces
|rΘ|+ and |rΘ|−: a symmetric divisor in |rΘ| is in |rΘ|+ (resp. |rΘ|−) if and only
if its multiplicity at any theta-characteristic κ ∈ Jg−1 is even (resp. odd). The
dimension of |rΘ|± is 1

2 (rg ± 2g)− 1.

PROPOSITION 2.1. θ: SUC(r) !!" |rΘ| induces a rational map from SpC(r) to
|rΘ|+.

Proof. Since SpC(r) is connected, it suffices to find one semi-stable bundle E
which admits a symplectic form, and such that ΘE ∈ |rΘ|+. We take E = F⊕ F∗

with the standard alternate form, where F ∈ SUC(r/2) admits a theta divisor.
Then ΘE = ΘF + ι∗ΘF. Thus if κ ∈ Jg−1 is a theta-characteristic, we have
multκ (ΘE) = 2 multκ (ΘF), hence ΘE ∈ |rΘ|+.

Let us go back to the case g = 2.

PROPOSITION 2.2. If C has genus 2, some fibres of θ: SUC(r) !!" |rΘ| have
dimension ≥ [ r

2 ]− 1.

Proof. If r is even, θ induces a rational map θsp: SpC(r) !!" |rΘ|+ (Prop.
2.1). We have

dimSpC(r) =
1
2

r(r + 1), dim |rΘ|+ =
r2

2
+ 1,

hence the fibres have dimension ≥ r
2 − 1.

If r is odd, consider the bundle E⊕OC, for E general in SpC(r−1); by what
we have just seen θ is defined at E, and its fibre at E has dimension ≥ r−1

2 − 1.
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Remark 2.3. The degree of θr: SUC(r) !!" |rΘ| grows exponentially with r:
indeed the commutative diagram

SUC(r)× SUC(s)
⊕ !!

θr×θs
""
!
!
!

SUC(r + s)

θr+s
""
!
!
!

|rΘ|× |sΘ| + !! |(r + s)Θ|

shows that deg θr+s ≥ deg θr · deg θs. Since deg θ3 = 2, we obtain deg θr ≥ 2[r/3]

(we expect the actual value to be much higher).

3. Genus 3, rank 3. It is more natural to express our result in this case for
bundles of degree zero (but arbitrary determinant). For such a bundle E the locus
ΘE is defined by the same formula as before; it is either equal to Jg−1, or to an
effective divisor algebraically equivalent to rΘ.

Recall also that if L is a line bundle on C generated by its global sections,
the evaluation bundle QL is defined through the exact sequence

0→ Q∗L −→ H0(L)⊗C OC −→ L→ 0 ;

it has rank h0(L)− 1 and determinant L.

THEOREM 3.1. Let C be a curve of genus 3, and E0 a stable vector bundle of
rank 3 and degree 0 on C, such that ΘE0 ⊃ Θ. Then C is not hyperelliptic, and E0

is one of the following bundles:
(a) The vector bundles EN := QK⊗N ⊗ N−1, for N ∈ J2 Θ;
(b) The vector bundle End0(QK) of traceless endomorphisms of QK.
Conversely, the bundles in (a) and (b) are stable and admit a theta divisor which

contains Θ.

Since the condition ΘE = J2 implies ΘE ⊃ Θ, it follows that all stable vector
bundles of rank 3 and degree 0 admit a theta divisor; in particular, the map
θ: SUC(3)→ |3Θ| is a morphism. Since θ∗O(1) = L is ample, this morphism is
finite: this implies Theorem B of the introduction.

The proof of Theorem 3.1 will occupy the rest of this section. Let E0 be
a stable bundle of rank 3 and degree 0 on C with ΘE0 ⊃ Θ. We will deal
mainly with its Serre dual E := E∗0 ⊗ KC. It has slope 4, degree 12 and satisfies
h1(E) = h0(E0) = 0 by stability of E0, so that h0(E) = 6 by Riemann-Roch. We
first establish some properties of E that will be needed later on.

LEMMA 3.2. Any rank 2 sub-bundle F of E satisfies h0(F) ≤ 4.
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Proof. Assume h0(F) ≥ 5. Let A be a sub-line bundle of F of maximal
degree; this degree is ≥ 2 (since h0(F(− p− q) ≥ 1 for p, q ∈ C) and ≤ 3 by the
stability of E. Let B := F/A; again by stability of E we have deg (F) ≤ 7, hence
deg (B) ≤ 5. This gives

5 ≤ h0(F) ≤ h0(A) + h0(B) ≤ 2 + 3 = 5,

hence h0(A) = 2, h0(B) = 3; moreover the class of the extension

0→ A −→ F −→ B→ 0

must be nonzero (because E cannot contain a line bundle of degree ≥ 4), but
must go to zero under the canonical map

Ext1 (B, A) −→ Hom (H0(B), H1(A)).

In particular this map cannot be injective; equivalently its transpose, the multi-
plication map

H0(K ⊗ A−1)⊗ H0(B) −→ H0(K ⊗ A−1 ⊗ B)

cannot be surjective. Now we distinguish two cases:
(a) If deg (A) = 3, we must have A = KC( − p) for some p ∈ C, and B =

KC. But then the multiplication map H0(OC(p)) ⊗ H0(KC) ∼−→ H0(KC(p)) is an
isomorphism.

(b) If deg (A) = 2, C is hyperelliptic and A is the hyperelliptic line bundle on C
(that is, h0(A) = deg A = 2). If B = KC, the multiplication map H0(A)⊗H0(KC)→
H0(A ⊗ KC) is surjective. So we must have deg (B) = 5. By the base point free
pencil trick, the multiplication map H0(A) ⊗ H0(B) → H0(A ⊗ B) is surjective
if and only if H1(B ⊗ A−1) = 0, that is, H0(K ⊗ A ⊗ B−1) = 0. This fails only
if B ∼= K(q) for some q ∈ C. But in that case B, and therefore also F, are
not globally generated. The subsheaf F′ of F spanned by H0(F) has h0(F′) = 5,
deg (F′) ≤ 6, and this is impossible by the previous analysis.

LEMMA 3.3. Let p, q be general points of C. Then h0(E( − p)) = 3 and
h0(E(− p− q)) = 1.

Proof. If h0(E( − p)) ≥ 4 for all p ∈ C, the global sections of E span a
sub-bundle F of rank ≤ 2 with h0(F) = 6. This is impossible by Lemma 3.2.
Similarly if h0(E( − p − q)) ≥ 2 for all q, the global sections of E( − p) span a
sub-line bundle L of E(− p) with h0(L) = 3, hence deg L ≥ 4, contradicting the
stability of E.
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Thus the spaces P(H0(E(− p))) form a one-dimensional family of planes in
P(H0(E)) ∼= P5 with the property that any two of them intersect. This situation
has been thoroughly analyzed by Morin [M].

THEOREM. (Morin) Any irreducible family of planes in P5 such that any two
planes of the family intersect is contained in one of the following families:

(e1) The planes passing trough a given point.
(e2) The planes contained in a given hyperplane.
(e3) The planes intersecting a given plane along a line.
(g1) One of the family of generatrices of a smooth quadric in P5.
(g2) The family of planes cutting down a smooth conic on the Veronese surface.
(g3) The family of planes in P5 tangent to the Veronese surface.

3.4. The elementary cases. We will first show that our family of planes
cannot satisfy one of the elementary conditions (e1) to (e3).

(e1) This would mean that there exists a non-zero section s ∈ H0(E) which
vanishes at each point of C, a contradiction.

(e2) In that case there exists a hyperplane H in H0(E) such that H0(E(−p)) ⊂
H for all p in C. It follows that H span a sub-bundle F of E of rank ≤ 2, with
h0(F) ≥ 5; this contradicts Lemma 3.2.

(e3) In that case there exists a 3-dimensional subspace W in H0(E) such that
dim W ∩ H0(E( − p)) ≥ 2 for all p in C. This implies that W spans a sub-line
bundle L of E with h0(L) ≥ 3, contradicting the stability of E.

3.5. The geometric cases. Suppose now that our family of planes P(H0(E
(−p))) ⊂ P(H0(E)) is contained in one of the families (g1) to (g3). We put
V := H0(E) and consider the map g: C → G(3, V) which associates to a general
point p of C the subspace H0(E(−p)) of V . This map is defined by the sub-bundle
E′ of E spanned by H0(E); that is, the universal exact sequence on G(3, V)

0→ N −→ V ⊗OG −→ Q→ 0

pulls back to the exact sequence

0→ NC −→ V ⊗OC −→ E′ → 0

on C, where (NC)p = H0(E(− p)) for p general in C. The Morin theorem tells us
that g factors as

g: C
f−→ P

r ↪−→ G(3, V),

where r = 2 or 3 and Pr is embedded in G(3, V) as described in (g1) to (g3).
Conversely if this holds, the vector bundle E′ = g∗Q has the property that
h0(E′(− p− q)) ≥ 1 for all p, q in C.
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We will now analyze each of these cases and deduce from this the possibilities
for E. We put L := f ∗OPr (1).

(g1) Planes in a quadric. Let U be a 4-dimensional vector space, and V = Λ2U.
The equation v ∧ v = 0 for v ∈ V defines a smooth quadric Q in P(V). The
subvariety of G(3, V) parameterizing planes contained in Q has two components,
which are exchanged under the automorphism group of Q. One of these is the
image of the map P3 = P(U∗)→ G(3, V) which maps the hyperplane H ⊂ U to
the 3-plane Λ2H ⊂ Λ2U = V . The Euler exact sequence

0→ Ω1
P3 (1) −→ U ⊗C OP3 −→ OP3 (1)→ 0

gives rise to an exact sequence

0→ Λ2(Ω1
P3 (1)

)
−→ Λ2U ⊗C OP3 −→ Ω1

P3 (2)→ 0

which is the pull back to P3 of the universal exact sequence on G(3, V).
Thus E′ ∼= f ∗Ω1

P3 (2); the Euler exact sequence twisted by OP3 (1) pulls back
to

0→ E′ −→ U ⊗C L −→ L⊗2 → 0.

This implies det E′ ∼= L⊗2, hence deg L ≤ 6. On the other hand the condition
h0(E′(− p− q)) ≥ 1 for all p, q in C implies h0(L) ≥ 3 and therefore deg L ≥ 4.
The map U → H0(L) must then be injective, because otherwise a copy of L
would inject into E′, contradicting the stability of E. This gives h0(L) ≥ 4; the
only possibility is deg L = 6 and h0(L) = 4, hence E′ = E and U = H0(L). Thus
E is isomorphic to Q∗L ⊗ L, where QL is the evaluation bundle of L. This vector
bundle is analyzed in [B2]: it always admits a theta divisor, and it is stable if
and only if C is not hyperelliptic and L is very ample, that is, L = KC ⊗ N with
deg N = 2, h0(N) = 0. Dualizing we find E0 = QK⊗N ⊗ N−1; this gives case (a)
of the theorem.

(g2) Secant planes to the Veronese surface. Let U be a 3-dimensional vector
space, and V = S2U. The Veronese surface S is the image of the map u ,→ u2

from P(U) into P(V). The family of planes which cut S along a conic is the image
of the map P2 = P(U∗)→ G(3, V) which maps a 2-plane H ⊂ U to S2H ⊂ S2U.
The pull back to P2 of the universal exact sequence on G(3, V) is the sequence

0→ S2(Ω1
P2 (1)) −→ V ⊗C OP2 −→ OP2 (1)3 → 0

obtained by taking the symmetric square of the Euler exact sequence on P2.
Thus E′ is isomorphic to L⊕3. Since E is stable this implies deg L ≤ 3, while

the inequality h0(E′(− p− q)) ≥ 1 imposes h0(L) ≥ 3, a contradiction.
(g3) Tangent planes to the Veronese surface. Consider again the Veronese

surface S, image of the square map P(U)→ P(V). The projective tangent bundle
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of S in P(V) is PS(T̃S), where T̃S appears in the extension

0→ OS −→ T̃S −→ TS → 0

with class c1(OP(V)(1)|S) ∈ H1(S, Ω1
S); the Euler exact sequence provides an

isomorphism T̃S
∼= U ⊗OP(U)(1). Similarly we have an extension T̃P(V) of TP(V)

by OP(V) and an isomorphism T̃P(V)
∼= V ⊗ OP(V)(1). These bundles fit into a

normal exact sequence

0→ T̃S −→ T̃P(V)|S −→ NS/P(V) → 0,

that is, after a twist by OS(− 2),

0→ U ⊗OS(− 1) −→ V ⊗OS −→ NS/P(V)(− 2)→ 0,

which is the pull back to S of the universal exact sequence on G(3, V). Recall
that the second fundamental form gives an isomorphism NS/P5

∼= S2TS (see for
instance [G-H]).

Thus E′ = S2f ∗(TP2 ( − 1)). This gives det E′ = L⊗3, hence deg L ≤ 4. On
the other hand we have h0(L) ≥ 3: otherwise the image of C in P5 is a conic
c ⊂ S, and all tangent planes to S along c meet the plane of c along a line, so
that we are in case (e3). Therefore L = KC, E = E′. The Euler exact sequence
shows that f ∗(TP2 (−1)) is isomorphic to the evaluation bundle QK of KC, so that
E ∼= S2QK . Using the canonical isomorphism S2F⊗ ( det F)−1 ∼−→ End0(F) for a
rank 2 bundle F we get E0

∼= End0(QK).
The vector bundles QK , and therefore End0(QK), are semi-stable. If C is

hyperelliptic, QK is isomorphic to H ⊕ H, where H is the hyperelliptic line
bundle, hence End0(QK) ∼= O⊕3

C .
Assume now that C is not hyperelliptic; then QK is stable [P-R]. If E :=

End0(QK) is not stable, it admits as sub- or quotient sheaf a line bundle of
degree 0; this means that there exists a nonzero homomorphism QK → QK ⊗M,
with M ∈ JC, which must be an isomorphism because QK is stable. Taking
determinants gives M⊗2 ∼= OC. Since C is not hyperelliptic M cannot be written
OC(p−q) with p, q ∈ C; therefore h0(QK⊗M) = 0 [P-R], so that QK⊗M cannot
be isomorphic to QK .

It remains to prove that E admits a theta divisor. What we have proved so
far is that E is the only stable rank 3 vector bundle of degree 0 which might
possibly satisfy ΘE = J2. But if this was the case, all the vector bundles E ⊗M,
for M ∈ JC, should have the same property—an obvious contradiction.

Remarks 3.6. In what follows we assume that C is not hyperelliptic.
(a) It follows from Thm. 3.1 that there are 37 stable bundles E0 ∈ SUC(3)

with ΘE0 ⊃ Θ, namely End0(QK) and the bundles Eκ where κ is an even theta-
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characteristic. These bundles appear already in [P], in a somewhat disguised form:
one can show indeed that Eκ is isomorphic to End0(A(κ, L, x)), where A(κ, L, x)
is the Aronhold bundle defined in [P] (up to a twist, this bundle depends only
on κ).

(b) The theta divisor of EN is determined in [B2]: it is equal to Θ + ∆N ,
where ∆N is the translate by N of the divisor C − C in JC. The theta divisor of
End0(QK) is Θ + Ξ, where Ξ is an interesting canonical element of |2Θ|. One can
show that the trace of Ξ on Θ ∼= S2C is the locus of divisors p + q such that the
residual intersection points of C with the line 〈p, q〉 are harmonically conjugate
with respect to p, q (here we view C as a plane quartic).

(c) Let X ⊂ |3Θ| be the closed subvariety of divisors of the form Θ + ΘE for
some E in SUC(2). It follows from Theorem 3.1 and the above remarks that the
fibre of θ: SUC(3)→ |3Θ| over a general point of X is reduced to one element,
while θ−1(Θ + ∆κ), for κ an even theta-characteristic, has 2 elements, namely
Eκ and OC ⊕ (QK ⊗ κ−1). From general principles this implies that the variety
θ(SUC(3)) is not normal at the 36 points Θ+∆κ (see for instance [EGA], 15.5.3).

It seems plausible that θ is generically injective. One possible approach would
be to prove that its tangent map is injective at OC ⊕ E for some E in SUC(2),
perhaps in the spirit of [vG-I].

(d) Assume that the Néron-Severi group of JC has rank 1—this holds if C
is general enough. Then a reducible divisor in |3Θ| must contain a translate of
Θ. We thus deduce from Theorem 3.1 that the stable vector bundles of rank 3
and degree 0 on C which admit a reducible theta divisor are those of the form
EN ⊗M or End0(QK)⊗M, for M ∈ JC.
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