Master 2 Agrégation, Mathématiques, Université de Nice Sophia-Antipolis, UE5 - 12 - Formule de Cauchy.

Soit Ω un ouvert de \mathbb{C} et $f:\Omega\to\mathbb{C}$. On note U le disque unité ouvert.

Définition 1, Holomorphie en un point : f est holomorphe (ou \mathbb{C} -dérivable) en $a \in \Omega$ si $\frac{f(z)-f(a)}{z-a}$ possède une limite en a dans $\Omega \setminus \{a\}$. On note cette limite f'(a).

Définition 2, Holomorphie sur un ouvert : f est holomorphe sur Ω si f est holomorphe en tout $a \in \Omega$. On note $H(\Omega)$ l'ensemble des fonctions holomorphes sur Ω .

Remarque 1 : f est holomorphe en a revient à voir que f est différentiable en tant que fonction du \mathbb{R} - espace vectoriel \mathbb{C} dans lui-même, sa différentielle étant une similitude directe.

Rappel: Une fonction est dite analytique en un point si elle est développable en série entière en ce point.

Théorème 1, Lien entre holomorphie et analycité : f est holomorphe sur Ω si et seulement si f est analytique sur Ω .

Pour montrer le sens le plus délicat de ce résultat, on va avoir besoin d'un résultat important : la formule de Cauchy.

Définition 3, Courbes et Chemins : Une courbe dans un espace topologique X est une application $\gamma: [\alpha, \beta] \subset \mathbb{R} \to X$. L'intervalle $[\alpha, \beta]$ s'appelle l'intervalle de paramétrisation. Si $\gamma(\alpha) = \gamma(\beta)$, on dit que la courbe est fermée. Un chemin est une courbe continue et C^1 par morceaux.

On pose alors $\int_{\gamma} f(z) dz = \int_{\alpha}^{\beta} f(\gamma(t)) \gamma'(t) dt$ pour f continue.

Par exemple pour un triangle de sommets a, b, c noté Δ , on a $\int_{\partial \Delta} f = \int_{[a,b]} f + \int_{[b,c]} f + \int_{[c,a]} f$ pour toute fonction f continue sur la frontière de Δ .

Définition 4, Îndice en un point par rapport à un chemin fermé : Soit γ un chemin fermé et Ω le complémentaire de $Im(\gamma)$ dans $\mathbb C$. On appelle indice de z par rapport à γ la quantité $Ind_{\gamma}(z)=\frac{1}{2i\pi}\int_{\gamma}\frac{1}{\xi-z}\,d\xi$ pour $z\in\Omega$.

Définition 5, Ouvert étoilé : Un ouvert Ω est dit étoilé s'il existe $a \in \Omega$ (appelé centre) tel que pour tout $z \in \Omega$, le segment [a, z] est inclu dans Ω .

Théorème 2, Théorème de Cauchy : Soit Ω un ouvert étoilé, $p \in \Omega$ et $f \in H(\Omega \setminus \{p\}) \cap C(\Omega)$. Alors $\int_{\gamma} f(z) dz = 0$ pour tout γ chemin fermé de Ω .

Théorème 3, Formule de Cauchy : Soit Ω un ouvert étoilé, γ un chemin fermé de Ω et $f \in H(\Omega)$.

Soit $z \in \Omega \setminus Im(\gamma)$. Alors $f(z)Ind_{\gamma}(z) = \frac{1}{2i\pi} \int_{\gamma} \frac{f(\xi)}{\xi - z} d\xi$.

Remarque 2 : On montre au passage que si Ω est un ouvert convexe, alors toute $f \in H(\Omega)$ possède une primitive.

Corollaire 1, Formule de la moyenne : Soit Ω un ouvert, $z_0 \in \Omega$ et $D(z_0, R) \subset \Omega$ et $f \in H(\Omega)$.

Alors $f(z_0) = \frac{1}{2\pi} \int_0^{2\pi} f(z_0 + re^{it}) dt$ pour tout 0 < r < R.

Corollaire 2: Soit Ω un ouvert, $z_0 \in \Omega$ et $D(z_0, R) \subset \Omega$ et $f \in H(\Omega)$. On note $\sum a_n(z - z_0)^n$ le DSE de f en $z = z_0$. Alors $a_n = \frac{1}{2\pi r^n} \int_0^{2\pi} f(z_0 + re^{it}) e^{-int} dt$ pour tout 0 < r < R.

Corollaire 3: Si $f \in H(\Omega)$, alors $f' \in H(\Omega)$.

Théorème 4, Théorème de Morera : Soit $f \in C(\Omega)$. Alors $f \in H(\Omega)$ si et seulement si $\int_{\partial \Delta} f(z) dz = 0$ pour tout Δ triangle inclus dans Ω .

Théorème 5, Variante du Théorème de Morera : Soit $f \in C(\Omega)$. Alors $f \in H(\Omega)$ si et seulement si $\int_{\partial \square} f(z) \, dz = 0$ pour tout \square rectangle inclus dans Ω et dont les côtés sont parallèles aux axes.

Théorème 6, Théorème de Weierstrass : Soient $f_n \in H(\Omega)$ qui convergent uniformément sur tout les compacts de Ω vers une fonction f . Alors $f \in H(\Omega)$.

Définition 6, Fonction entière : Une fonction entière est une fonction holomorphe de $\mathbb C$ dans $\mathbb C$.

Théorème 6, Théorème de Liouville : Toute fonction entière et bornée est constante.

Exercice 1 [Cours] (Relations de Cauchy-Riemann)

- 1) Pour tous $x,y\in\mathbb{R}$, on pose f(x+iy)=P(x,y)+iQ(x,y) où $P(x,y),Q(x,y)\in C^1(\mathbb{R})$. Montrer l'équivalence entre les propriétés :
- i) f est holomorphe en z_0 ,
- ii) $df(z_0)$ est \mathbb{C} -linéaire,
- iii) $df(z_0)$ est nulle ou est une similitude directe,
- iv) $\frac{\partial f}{\partial y}(z_0) = i \frac{\partial f}{\partial x}(z_0),$
- v) $\frac{\partial P}{\partial x}(z_0) = \frac{\partial Q}{\partial y}(z_0)$ et $\frac{\partial P}{\partial y}(z_0) = -\frac{\partial Q}{\partial x}(z_0)$.
- 2) Pour z = x + iy, $x, y \in \mathbb{R}$, on pose $f(z) = x + iy^2$. Montrer que f est \mathbb{R} -différentiable sur \mathbb{C} . Donner sa différentielle. Existe t-il un ouvert non vide de \mathbb{C} sur lequel f est holomorphe?

Exercice 2 [Cours] (Analytique \Rightarrow Holomorphe)

Montrer que si f est DSE en z = 0, alors f est holomorphe en z = 0.

Exercice 3 (Chemins équivalents)

Soient deux courbes $\gamma: [\alpha, \beta] \subset \mathbb{R} \to \mathbb{C}$ et $\gamma_1: [\alpha_1, \beta_1] \subset \mathbb{R} \to \mathbb{C}$. Soit φ une bijection de classe C^1 de $[\alpha_1, \beta_1]$ sur $[\alpha, \beta]$ telle que $\varphi(\alpha_1) = \alpha$ et $\varphi(\beta_1) = \beta$. On pose $\gamma_1 = \gamma \circ \varphi$. Montrer que $\int_{\gamma_1} f(z) \, dz = \int_{\gamma} f(z) \, dz$. On parle alors de chemins équivalents.

Exercice 4 (Intégrale sur un chemin)

Soit $\gamma(t) = re^{it}$ et $\gamma_n(t) = (1 - 1/n)\gamma(t)$ pour $t \in [0, 2\pi]$. On pose $I = \int_{\gamma} f(z) dz$ et $I_n = \int_{\gamma_n} f(z) dz$. Montrer que $I_n \to I$ quand $n \to +\infty$.

Exercice 5 (Indice de z par rapport à γ)

- 1) Montrer que $Ind_{\gamma}(z)$ est une fonction à valeurs entières sur Ω , constante sur chaque composante connexe de Ω et nulle sur celle qui est non bornée. Pour cela, on posera $\varphi(t) = \exp\left(\int_{\alpha}^{t} \frac{\gamma'(s)}{\gamma(s)-z} \, ds\right)$ avec les notations de la définition 3, et on commencera par montrer que $\frac{\varphi}{\gamma-z}$ est constante sur $[\alpha,\beta]$.
- 2) Soit γ le cercle orienté positivement de centre a et de rayon r. Montrer que $Ind_{\gamma}(z)$ vaut 1 si |z-a| < r et 0 si |z-a| > r.
- 3) Montrer que $Ind_{\gamma}(z)$ reste constant lorsque le chemin fermé γ se déforme continuement sans passer par z. (Cette question est à rapprocher de la notion d'ouvert simplement connexe et à l'homotopie, voir plus loin. On peut aussi montrer d'autres propriétés, par exemple, que si $Im(\gamma) \subset \Omega'$ ouvert simplement connexe ne contenant pas z, alors $Ind_{\gamma}(z) = 0$).

On passe maintenant à la preuve du Théorème de Cauchy, pour cela on va montrer les étapes intermédiaires suivantes :

Proposition 1, Intégrale d'une dérivée : Soit $F \in H(\Omega)$ telle que $F' \in C(\Omega)$. Alors $\int_{\gamma} F'(z) dz = 0$ pour tout γ chemin fermé dans Ω .

Corollaire $4: \int_{\gamma} z^n dz = 0$ pour tout $n \in \mathbb{N}$ et pour $n = -2, -3, \dots$ si $0 \notin Im(\gamma)$.

Proposition 2, Théorème de Cauchy dans un triangle : Soit $p \in \Omega$. Soit Δ un triangle fermé inclu dans Ω . Soit $f \in H(\Omega \setminus \{p\}) \cap C(\Omega)$. Alors $\int_{\partial \Delta} f(z) dz = 0$.

Remarque 3 : On montrera plus loin qu'en fait, ce la implique que $f \in H(\Omega)$.

Exercice 6 [Cours] (Théorème de Cauchy dans un triangle)

On note a, b, c les sommets de Δ . On pose $J = \int_{\partial \Delta} f(z) dz$.

- 1) Montrer la Proposition 1 et le Corollaire 4.
- 2) On commence par le cas où $p \notin \Delta$.
- a) En considérant les milieux des segments du bord du triangle, construire un triangle que l'on notera Δ_1 dont l'un des sommets est dans l'ensemble des sommets de Δ et les deux autres sommets sont des milieux et tel que $|\int_{\partial \Delta_1} f(z) dz| \ge J/4$.

- b) Construire par récurrence une suite de triangles $\Delta \supset \Delta_1 \supset \Delta_2 \supset \cdots$ tels que $|J| \leq 4^n \left| \int_{\partial \Delta_n} f(z) \, dz \right|$.
- c) Appliquer la définition de l'holomorphie de f en $z_0 \in \cap \Delta_n$ et en conclure que J=0.
 - 3) Traiter le cas où p est un sommet de Δ .
 - 4) Conclure dans le cas général.

Exercice 7 [Cours] (Théorème de Cauchy et Holomorphe \Rightarrow Analytique)

- 1) Montrer le Théorème 2 en posant $F(z) = \int_{[a,z]} f(\xi) d\xi$ (existence?) et en justifiant soigneusement.
 - 2) Montrer le Théorème 3 en utilisant la fonction $g(\xi) = \frac{f(\xi) f(z)}{\xi z}$ si $\xi \neq z$ et f'(z) sinon.
- 3) Soit $D(a, R) \subset \Omega$ et γ le cercle orienté positivement de centre a et de rayon R. Appliquer le Théorème de Cauchy sur ce cercle pour conclure au Théorème 1.
 - 4) Montrer les Corollaires 1, 2 et 3.
 - 5) Montrer le Théorème de Morera et son corollaire : le Théorème de Weierstrass.

Exercice 8 (Principe de symétrie de Schwarz)

- 1) Soit $\Omega \subset \mathbb{C}$ voisinage ouvert d'un intervalle ouvert I de \mathbb{R} . On pose $\Omega^+ = \{z \in \Omega \, ; \, Im(z) > 0\}$ et $\Omega^- = \{z \in \Omega \, ; \, Im(z) < 0\}$. Soient $f^+ : \Omega^+ \to \mathbb{C}$ et $f^- : \Omega^- \to \mathbb{C}$ deux fonctions holomorphes qui se prolongent en une fonction $f : \Omega \to \mathbb{C}$ continue. Montrer que f est holomorphe sur Ω . (On pourra utiliser la variante du Théorème de Morera.)
- 2) Soient $P = \{z \in \mathbb{C} ; Im(z) > 0\}$ et $f : \overline{P} \to \mathbb{C}$ continue et holomorphe sur P, réelle sur \mathbb{R} . Montrer que f se prolonge en une fonction entière.

Exercice 9 (Théorème de Liouville et de d'Alembert-Gauss)

- 1) Soit f analytique en z_0 , il existe donc une série entière $\sum a_n(z-z_0)^n$ qui coïncide avec f sur un disque $D(z_0,R)$. Montrer que pour tout 0 < r < R, on a $\frac{1}{2\pi} \int_0^{2\pi} |f(z_0 + re^{it})|^2 dt = \sum |a_n|^2 r^{2n}$. (On utilise ici le fait que la restriction de la série entière à un cercle de centre z_0 est une série trigonométrique.)
 - 2) Montrer les Inégalités de Cauchy : $|a_n| \le \frac{\|f\|_{\infty,\overline{D}(0,r)}}{r^n}$ pour tout 0 < r < R.
 - 3) En déduire le Théorème de Liouville et celui de d'Alembert-Gauss.

Exercice 10 (Croissance polynomiale)

Soit f entière telle que $|f(z)| \le A + B|z|^a$ pour tout z plus grand en module qu'un certain R, avec a > 0. Montrer que f est un polynôme.

Exercice 11 (Utilisation de la formule de Cauchy)

Soit $f(z) = \sum a_n z^n$ une fonction holomorphe sur U.

- 1) Montrer que si $|a_n| \leq M$ pour tout n, alors $|f(z)| \leq \frac{M}{1-|z|}$, $|f'(z)| \leq \frac{M}{(1-|z|)^2}$.
- 2) Montrer que si $|f(z)| \leq M$, alors $|a_n| \leq M$ et $|f'(z)| \leq \frac{M}{1-|z|}$.

Bibliographie:

- Cartan, Théorie élémentaire des fonctions analytiques, ex 5, Rem 7
- Chambert-Loir, Fermigier, Tome 2, ex 8
- \bullet Objectif Agreg, ex 1
- Pabion, ex 1, 4, 6, 7 et 10
- Pommellet, ex 1, 7 et 9
- $\bullet\,$ Rudin, Analyse réelle et complexe, ex 2, 3, 5, 6 et 7
- Tauvel, Exercices d'analyse complexe, ex 11