Master 2 Agrégation, Mathématiques, Université de Nice Sophia-Antipolis, UE5 - 17 - Fonctions Gamma et Zeta.

Exercice 1 (Prolongement de Γ)

Pour x > 0, on pose $\Gamma(x) = \int_0^{+\infty} t^{x-1} e^{-t} dt$.

Rappelons que Γ est de classe C^{∞} sur $]0, +\infty[$, que pour x > 0, $\Gamma(x+1) = x\Gamma(x)$ et que $\ln \Gamma$ est convexe sur $]0, +\infty[$.

- 1) En utilisant $f_n(t) = \mathbb{I}_{]0,n[}(t) \left(1 \frac{t}{n}\right)^n t^{x-1}$, montrer que $\Gamma(x) = \lim_{n \to +\infty} n^x \int_0^1 s^{x-1} (1-s)^n ds$ pour x > 0.
 - 2) En déduire, pour x > 0, la formule d'Euler : $\Gamma(x) = \lim_{n \to +\infty} \frac{n^x n!}{x(x+1)\cdots(x+n)}$.
 - 3) Posons $G(z) = \lim_{n \to +\infty} \frac{z(z+1)\cdots(z+n)}{n^z n!}$. Montrer que G est holomorphe sur \mathbb{C} .
- 4) En déduire que Γ se prolonge en une fonction holomorphe $\tilde{\Gamma}$ sur $\mathbb{C} \setminus -\mathbb{N}$. La fonction $\tilde{\Gamma}$ a des pôles simples aux points z = -n pour $n \in \mathbb{N}$.

Exercice 2 (Caractérisation de Γ)

Soit f une fonction de $]0, +\infty[$ dans $]0, +\infty[$ telle que f(x+1)=xf(x), f(1)=1 et telle que $\ln f$ est convexe. Nous allons montrer que $f=\Gamma$.

1) soit x, y > 0 et $0 \le t \le 1$. Posons z = tx + (1 - t)t. Montrer que

$$z(z+1)\cdots(z+n)f(z) \le (x(x+1)\cdots(x+n))^t (y(y+1)\cdots(y+n))^{1-t} f(x)^t f(y)^{1-t}.$$

2) En déduire que

$$\frac{f(z)}{\Gamma(z)} \leq \left(\frac{f(x)}{\Gamma(x)}\right)^t \left(\frac{f(y)}{\Gamma(y)}\right)^{1-t}.$$

3) Conclure.

Exercice 3 (Prolongement de ζ)

Pour
$$\Re(z) > 1$$
, on pose $\zeta(z) = \sum_{n=1}^{+\infty} \frac{1}{n^z}$.

- 1) Montrer que ceci définit une fonction holomorphe sur l'ouvert donné.
- 2) On pose $\theta(t) = \sum_{\mathbb{Z}} e^{-\pi n^2 t}$ pour t > 0. On rappelle qu'à l'aide de la formule sommatoire de

Poisson, on a montré que $\theta(t) = \frac{1}{\sqrt{t}}\theta\left(\frac{1}{t}\right)$ pour t > 0. On pose $\tilde{\theta}(t) = \sum_{n=1}^{+\infty} e^{-\pi n^2 t}$ pour t > 0. Quelle relation fonctionnelle est obtenue pour $\tilde{\theta}$?

- 3) Faire le changement de variable $x=\pi n^2y$ dans $\Gamma\left(\frac{z}{2}\right)=\int_0^{+\infty}e^{-x}x^{z/2-1}\,dx$. En déduire une autre expression pour $\zeta(z)$.
- 4) Utilisant $f_N(y) = \sum_{n=1}^N e^{-\pi n^2 y} y^{z/2-1}$ et le théorème de Lebesgue, obtenir que, pour $\Re(z) > 1$, $\zeta(z) = \frac{\pi^{z/2}}{\Gamma(z/2)} \int_0^{+\infty} \tilde{\theta}(y) y^{z/2-1} dy.$

5) On pose
$$I = \int_0^1 \tilde{\theta}(y) y^{z/2-1} dy$$
. Montrer que $I = \int_1^{+\infty} \tilde{\theta}(y) y^{-z/2-1/2} dy + \frac{1}{s-1} - \frac{1}{s}$ et en déduire que $\zeta(z) = \frac{\pi^{z/2}}{2(z-1)\Gamma(z/2+1)} + \frac{\pi^{z/2}}{\Gamma(z/2)} \int_1^{+\infty} \tilde{\theta}(y) (y^{z/2-1} + y^{-z/2-1/2}) dy$.

- 6) En utilisant le fait que $\frac{1}{\Gamma}$ admet un prolongement holomorphe à \mathbb{C} , en déduire que $z \mapsto \frac{\pi^{z/2}}{2(z-1)\Gamma(z/2+1)}$ admet un prolongement holomorphe à $\mathbb{C} \setminus \{1\}$.
 - 7) Montrer que $z \mapsto \int_1^{+\infty} \tilde{\theta}(y) (y^{z/2-1} + y^{-z/2-1/2}) dy$ est holomorphe sur \mathbb{C} .
- 8) Conclure qu'il existe un prolongement holomorphe à ζ sur $\mathbb{C} \setminus \{1\}$ et que le prolongement est égal à $z \mapsto \frac{1}{z-1} + \eta(z)$ avec η holomorphe sur \mathbb{C} .

Références: Chambert-Loir, Zuily