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Abstract

Conservation laws are well known to be a crucial part of modeling. Consid-
ering such models with the inclusion of non-local flows is becoming increasingly
important in many models. On the other hand, kinetic equations provide in-
teresting theoretical results and numerical schemes for the usual conservation
laws. Therefore, studying kinetic equations associated to conservation laws for
non-local flows naturally arises and is very important. The aim of this paper is
to propose kinetic models associated to conservation laws with a non-local flux
in dimension d and to prove the existence of solutions for these kinetic equations.
This is the very first result of this kind. In order for the paper to be as general as
possible, we have highlighted the properties that a kinetic model must verify in
order that the present study applies. Thus the result can be applied to various
situations. We present two sets of properties on a kinetic model and two differ-
ent techniques to obtain an existence result. Finally, we present two examples of
kinetic model for which our results apply, one for each set of properties.
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1 Introduction

1.1 Context

Conservation laws are now well known to model a wide range of situations in physics,
biology, economics, engineering, etc. Non-local fluxes have been introduced recently to
model pedestrian or vehicle traffic [15], [16], [18], [12]. These fields of application are
also emerging for biology with, for example, the article [1] and non-local models should
appear in the coming years to model more phenomena. We also refer to [10] for more
bibliography on this subjet. Indeed, it is the natural extension of the conservation laws
to take into account phenomena that are not all necessarily local. On the other hand,
it is known that kinetic models associated with conservation laws provide interesting
theoretical results and numerical schemes for usual conservation laws. (see for example
[22], [25], [2]). It is therefore natural to propose and study kinetic models for non-local
conservation laws. This is the object of this paper: to propose kinetic models associated
with conservation laws with a non-local flux and to prove the existence of solutions for
these kinetic equations. This paper is to our knowledge the first result of this kind of
problem, that is to say where the non-local term is considered in the kinetic framework.
Note that this extension is not trivial because the usual kinetic equations only account
for the local character of the variables of the unknowns of the conservation law. Also
one of the ideas of this paper is to consider kinetic equations with some kind of second
kinetic variable which will account for non-local quantities. We have highlighted the
properties that the kinetic equation has to verify for the proposed method to apply,



so that it can be used for various models. We present two types of properties on the
kinetic model and two different techniques to obtain an existence result. Finally, we
present two examples for which our results apply. This paper is the first study of this
kind of kinetic model associated with non-local laws with also the idea of adding this
additional variable.

1.2 Models

First of all, let us specify the kind of models that we will study both from the point of
view of the law of conservation with non-local flux then from the point of view of the
kinetic equation.

For the non-local scalar conservation law, we consider the following equation. A

function p : [0, +oo[xR? — R have to satisfy
Op + diva(F(p)G(n = p)) =0, (1.1)

where the product F(p)G(n * p) have to be understood in the sense that (F'(p)G(n *
p))i = Fi(p(t,x))Gi((n* p)(t,z)) for any i = 1,...,d, which means

0up(t, ) + 3 0, (Fi(p(t, ))Gi(n * p)(t,2))) =0, (t,2) € [0,+00[xR%,  (1.2)

=1

where F,G € C1(R,R%), n € CY (R, R) N L*>°(R?) and
(nxp)(t, x) = /Rd n(z —y)p(t,y) dy. (1.3)

This term is well defined if y — p(t,y) € LY(R?) for a.e. t.

For the kinetic equation, we consider the following model. A function f. : [0, +o0o[xR%x
R X R — R have to satisfy

0.+ div(a(w, O f) = o =L (1.4
which means
d
OJlt,,0,€) 4 3 O s, &) ol1, 2,0, ) = e bDVE ZIBT0E g
i=1
for (t,z,v,&) € [0, +0o[xR? X R x R, where a : R> — R?,
pelt ) = [[ ft,2,5,€) dédi (16)
R2

and the Maxwelian M : [0, +oo[xR¥"? — R, defined for any p : [0, +0o[xR? — R,
will have to be related with the non-local scalar conservation and will be defined later.
The variable v is the classical kinetic variable and the variable ¢ is the new added
variable that must account for the non-local quantities of the associated non-local
conservation law. For some practical conservation laws with non-local flux exemples,
see the references [15], [16], [18], [12] and [1]. For BGK model with classical flux, see
(23], [22], [6], [20] and [3]. Notice that in the present work, we are not in the classical
BGK model framework as we need to extend the models by allowing some kind of
second kinetic velocity to account the non-local effect.



1.3 Main results and organization of the paper

The organization of the paper is as follows. In section 2, we list the properties that a
kinetic model must satisfy in order to be applied to the present study. First, we need
two properties (2.1)-(2.2) to ensure consistence between the kinetic equation and the
non-local scalar conservation equation. Then, we expose the necessary properties to
obtain the existence of solutions for the kinetic equation according to the method used.
We will present two proof methods, each one requiring specific properties. For the first
existence result, we need (2.3). For the second existence result, we need (2.4)-(2.10).
This section ends with a formal proof that justifies the need for consistence properties.
Note that in the formal limit section, we also consider in the present situation the
formal limit as the kernel approaches the Dirac delta.

In section 3, we study the well-posedness of the kinetic equation with property
(2.3). In this framework, we can use a fixed point and the proof is relatively usual. We
get the following result.

Theorem 1.1 Let f° € LY(R**2). We consider a Mazwellian M satisfying (2.1) and
(2.3). Then, for any € > 0, there exists f. € L°°([0,T], L*(R*"2)) for any T > 0 solu-
tion of (1.4) with initial data f°. Furthermore this solution f. € L°°([0,T], L*(R*?))
is unique with the initial data.

This case is the easiest among the two that we study but most of the models won’t
verify (2.3) thus it requires the study of the second model.

This is why in section 4, we study the existence of a solution for the kinetic equation
with properties (2.4)-(2.10). We get the following result.

Theorem 1.2 Let F,G € C*(R,R?), n € CYRY,R) N L®(RY). Let f° € L'(R¥?) N
L*(R¥2) such that zf°, &0, vf0, a(v, &) f° € LY(RY2) and

/]Rd (//fo(x,v,f) dvd§)2 dr < +00.
R?

We consider a mazwellian M satisfying (2.1) and (2.4)-(2.10). Assume that there
exists a constant K > 0 such that

|Fi(2)] < K(|z| +|2]*)  forany z €R and anyi=1,...,d. (1.7)

Then, for any € > 0, there exists f. € L>=([0,T], L*(R*"2)) for any T > 0 solution of
(1.4) with initial data f°.

This proof needs Schauder’s theorem and is much more complex and requires solving
numerous technical difficulties.

Then, in section 5, we present a model which satisfies the properties for the first
theorem and in section 6, a model which satisfies the ones for the second theorem.

2 General framework for the kinetic model

This section defines the general framework and the properties that a kinetic model
must satisfy in order to be applied to the present study. Then, we present the formal
limit of the kinetic model to check that the limit equation is at least formally the scalar
non-local conservation equation.



2.1 Properties that a kinetic model has to satisfy to be applied
to our study

The first properties that a kinetic model has to satisfy are consistency type ones. They
will ensure that the formal limit is indeed the non-local equation.
Consistency properties:

We assume that, for any p : [0, +00[xR? — R, there exists M, : [0, +00[xR*™? — R
such that for a.e. (t,z),

///\/lp(t, 2,0, €) dédv = p(t, z) (2.1)
and
[ atw. My (t,2,0,€) dédv = F(p(t, 2))G((n * p) (¢, 2)) (2.2)

These two previous properties ensure the consistency between the kinetic and the non-
local scalar equation.

For the existence of a solution to the kinetic equation, according to the model, we
can consider two different lists of properties.

First set of properties to get an existence result:

We assume that for any py, p : [0, +00[xR? — R such that x + pi(¢, ), pa(t,x) €
LY(RY) a.e. t, we have for a.e. t,

/Rd 42 ‘Mpl (t’x’ U7£) B Mp2<t’x7 U7£)‘ dvd£ dx < K/Rd |p1 - p2’ (ta I) dz. (23)

Second set of properties to get an existence result:
We assume that there exists constants K, K3, K4, K5 > 0 and p = 1 or 2 such that,
for any p : [0, +00[xR? — R, we have for a.e. (¢,z),

J[ 1Mot 0. )l dgdv < Jot, )], (24

R2

// la;i(v, )M, (t, z,v, )| dédv < Ks|Fi(p(t,x))Gi((n*p)(t,x))|, foranyi=1,...,d,
R2

J 1Mt 2,0, 6) dedo < K (), (2.6)
R2
[ 1My(t.3, 0,0 dedv < Ksp(t, 2)), 7)
RQ



for any p : [0, +00[xR? — R such that x + p(t,z) € L?*(R?) a.e. t, we have for a.e.

(t.2).
1Mot v o)l dsav < Kalptt )| (1+ [[lotn)Pdy),  (28)

RQ

and also

if p, — p a.e. (t,2) €0, T[xR? and |p,| < |h| € L'(]0, T[xR?),
then M,, — M, a.e. (t,r,v,&) €]0, T[xR? x R? (2.9)

and
the term a(v, &) allows to apply an averaging lemma. (2.10)

Remark 2.1 Let’s explicit what we mean by averaging lemma. It is such a result that if
atgn + diVx((l(U, 5)971) = hy,

with (¢n)n and (hy)n bounded in L*(]0, T[xR?xR?) then p,, is compact in L (]0, T[xR?)

where o
pults) = [ w(E v)gut, .0, €) dédv
R2

with v € L*°(]0, T[xR? x R?). The function a(v,&) must satisfy a non degeneracy
condition to pretend getting this kind of result. We will come back to this item later in
the paper.

The first property allows us to apply contraction technics and the second list of
properties to apply Schauder’s result.

Remark 2.2 Notice that (2.1) and (2.4) imply

1Mt 2. 0,9)] dédv = [p(t, )]

R2

and if Ky =1, then (2.2) and (2.5) imply

// |ai(v7€>MP(t7$’ v, &) d§dv = |Fi(p(t,z))Gi((n* p)(t,x))|,  foranyi=1,...,d.

RQ

Remark 2.3 Notice also that if we have a bound like

Mot v.6) dgdo < Kslo(t.0)] [ 1p(t. )] dy,
RZ

then it implies (2.8).



Remark 2.4 Any additional property expected on the solution, as for example the posi-
tivity of the solution, must be reflected on the properties. Thus for the important case
where we want p > 0, we take the adapted properties:

/ M,(t, 2,0, €) dédv = p(t, ), (2.11)
R2

// (0, )M, (t, 2,0, €) dedv = F(p(t, z))G((n * p)(t, ) (2.12)

/Rd//IMpl(t,m,ﬁ) — M, (t,2,0,§)| dvd{ dx < K/Rd o1 — po| (t,2)dz (2.13)
RZ

for any p, p1, p2> 0 and with v — py(t, 1), p2(t,x) € LY(RY) a.e. t for the last property.

2.2 Formal limit

Consistency properties, that is to say (2.1) and (2.2) are related to the consistency
between kinetic and non-local equation by the following formal limit. Indeed we assume
that the limit f of (f.) exists when ¢ — 0. From

Mpa - fs =€ (atfs + diVx(&(U,f)fE)) )

we formally have when € — 0

M,=F
On the other hand, an integration with respect to (v, &) of (1.4) yields

) // £odedv + div, // €) /. dédv = 0,

//Mpatxvf)dgdv—pstx /fstxvf)dfdv

since

At the limit, we have

8, // fdedv + div, // €)f dédv = 0,

8, // M, dedv + div, // €)M, dedv = 0.,

and thus

/ M, (t,z,v,€) dédv = p(t, x)
R2



and

// (v,6) M, (t, 2,v,€) dédv = F(p)G(n * p).

Finally we get
Orp + diva (F(p)G(n * p)) = 0.

The finding of this formal limit has two goals: first to present what would be the
theoretical justification but also to point out that the kinetic solutions obtained can
be taken, at least formally, as an approximation at order one in & of the solutions
of the scalar conservation law model. Notice that non-local scalar conservation laws
can present dispersive effect for certain kernels as can be seen in the work [26], kernel
different from those considered here however. Indeed having therefore an approximated
equation which is more stable can be useful from a numerical point of view even if it is
only formal in this first step. Going further and considering entropic solutions in one
dimension is actually a challenging problem. In this spirit, let’s refer the papers [9]
and [10] which get one entropy in the case of some very special non-local conservation
laws with a kernel which is a kind of approximation of unity in order to be close to
the classical scalar case with local flux. Formally for our model in one dimension, if we
consider a sequence of kernels 7, € L>(R) and

(% )(t2) = [ mala = y)olt.) dy (2.14)
such that 7, * p — p, we have at the limit
Op + 0:(F(p)G(nu * p)) =0

and then, for every non negative regular test function F,

E'(p)0wp + E'(p)0:(F(p)G(p)) = E'(p)0:(F (p)(G(p) — G(nu * p)))
that is to say

O:E(p) + 0:(p) = E'(p)0:(F(p)(G(p) — G % p)))
where ¢'(p) = E'(p)F'(p)G'(p). Let ¢ be a test function. Then

I = [ E(p0.(F(p)(Glp) = Gl x p))pda
= /R E'(p)F(p) 0:(G(p) — G(nu * p))p dx + /R E'(p)F'(p)0zp (G(p) — G(n + p))p da.
In the case with F(p) = p and for the entropy E(p) = p?, we get
1= [ 2720.(G(p) = Gl x ) dr + [ 2000 (Glp) = Gl v p)p e
= / 2p° 9,(G(p) — G(nu * p)) sodx+/ 0:(p%) (G(p) — G p))p dz
= [ P*0u(Glp) = Glnax ppda + [ 0.(0(Glp) = Gl x ) d

B /p 9x(G(p) = Gy *P))Spdx—/RPQ(G(P)—G(m*p))axgpdx.



For a choice like n(z) = 1,<0e* and n,(2) = n(z/pn) /1, we get

L[+ gy
(N * p)(t, ) :u/ e p(t,y) dy

and 0,(n, * p) = (n, * p — p)/p which can be rephrased as

p =1y % p— 10y(1, * p).

In this case we have

/Rp2 0:(G(p) — G(n * p))p da

= /Rp2 0:(G(p) — G * p))p da

= /Rp2 (G'(p)0sp — G' (1 * p)Ou(n * p))ip dz

= /Rp2 G'(p)0wp p da — /Rp(m % p — U0y (1 % p) G' (N * )0 (N + p)ip d

= /Rp2 G'(p)up o d — /Rpm * p G (1% p) O (N * p)p d
+ /Rpu G' (1 % p)(Ou (1 % p))*p da

= /Rp2 G'(p)Orp p dx — /R(m #p — 10s (N * p)) (N * p) G' (1 % p) 0 (1 * p)p d
+ /Rpu G (1 % p) (D % p))*p dz

= /Rp2 G'(p)0up p dr — /R(m +0)2 G' (N % )0 (n * p)p do

+ /Rum % p G (% p) (0 (n, * p)) 2 dr + /Rpu G' (1 % p)(0:(n, * ) d.

If p> 0 and G’ <0, the last two terms are non positive and we get
/ p* Oa( G (1% p))p d
/Rp G'(p)Ouppdr — [R(m +p)° G (0, % p) 0w (1 % p)p da.
We set. H such that H'(z) = 22G'(z), then
/pa G(n, xp))pdr < /aH (pd:c—/aH L% p) @ dx
< — [ Hp)dsoda+ [ Hinxp)Ospd

< /R(H(m xp) — H(p)) Orpdx



and we get

1 = [ EoF(p)G(p) Gl p))pda

< [ (G p) = Glp) dupdr = [ p(Glp) = Gl % p)rsp .

Formally both terms of the right hand side goes to 0 when p — 0 and we get
| B (0)0.(F(p)(Glp) = Gl * p)))pda <0

for any non negative test function ¢. That is to say E'(p)0,(F (p)(G(p)—G(n.*p))) < 0,

thus
AE(p) + 0:0(p) <0

It should be noted that during the revision of the paper, two articles dealing with
situations with some links to these problems have appeared. One dealing with the well-
posedness of the nonlocal problem in an appropriate class of functions which allows
to perform the formal computation and a compactness result to perform the limit
when the kernel approches the Dirac delta: the case of the exponential kernel has
been completed in [13]. And for more general kernels the convergence to the entropy
solutions is obtained in [14]. It would be of course interesting to investigate if the
approach of the present paper produces more general results compared to the mentioned
works.

Now from the kinetic point of view with a fixed kernel 7, several tracks can be
followed. If we ask the maxwellian to satisfy an additional condition as

// o(t,,v,€) dedv = E(p),
then by an integration with respect to (v,§) of

M — Je
Oy (0, ) f + Da(e0, €)a(v,€) f.) = elw, €) v~ I

we get

8, // &) f. dédv + 0, // £)f. dedv = // Moe = 2 geqy. (2.15)

Then a condition like

// My(t,0,€) dgdv = F(p(t, 2)G((n % p)(t, )

and a non positive sign on the right hand side of (2.15) gives, formally when ¢ — 0,
since M, = f, the entropy inequality

HE(p) + diva(F(p)G(n * p)) < 0.

This is a general framework which would be the next step of the study in a forthcoming
work. We will have to specify which entropy we want to get for which conservation
law. In the present paper we focus on the existence of solutions in the most general
case so last, later, we’ll be able to consider more specific equation and entropy.

10



3 Well-posedness of the kinetic equation with the
first set of properties, namely (2.3)

We consider the case where we have a kinetic model satisfying the first of properties
and then prove Theorem 1.1. We also need the first property of consistency. Then, we
assume that (2.1) and (2.3) are satisfied and we prove that it allows to get existence
and unicity of a solution to the kinetic equation.

Proof of Theorem 1.1. Equation (1.4) is equivalent to the following integral repre-
sentation

fe(t,z,v,8) = e_t/afg(O,x—a(v,f)t,U,{)—i—i/Ot e(s_t)/ej\/lpg(s,x—a(v,f)(t—s),v,f) ds

with o
pelt.x) = [ Jo(t,9,5.€) déds.
R2

Let ¢ > 0 and T > 0. Denote by ® the application from L*([0,T], L}(R%*?)) to
L>=([0,T], L' (R¥*?)) which at f associates

(I)(f) (t? z,v, 5) = e—t/afO(x_a(v’ §)t7 v, g) +i /Ut e(s_t)/EM,0(s’ ZE—CL(U, 5) (t—S), v, 5) ds

where

p(t,x) = [[ £(ty.9.€) dédo.
R2
For f1, f» € L>=([0,T], L}(R%*?)), we note

pl(tax) ://fl(tay7v7€) dfdv and p2<t,$) ://f2<tay7/07§> dﬁdv
R? R2

We have
JJ] 12t ,0.8) = @(fo)(t. 3.0, )| dededo
Rd+2
< /// (5= t/é‘|/\/lp1 M, (s, 2 —a(v,€)(t — s),v,&) ds dzdédv
R d+2
< i/ot//Qe(S_t)/E (/Rd M, (s,2,v,§) —/\/lpl(s,x,v,fﬂdx) dédvds
< i/ (o= t)/g/ (//|./\/lp1 s, x,0,§) — pl(s,x,v,§)|d§dv) dxds

11



1

t
< f/ e(s_t)/g/ K|p1 — p2|(s, x) dzds
e Jo R¢
1 t
< K- [0 I 1fi(s.20,€) = fals,,0,€)| dudéduds
e Jo 2
1 t
< Kf/ e*=Y/% ds sup // |fi(s,2,0,€) — fals,2,0,€)| dedédv
€J0 s€[0,t] Ri+2
< K(l —e’t/6 sup // |fi(s,x,0,8) — fas, x,v,&)| dedédv.
s€[0,t] Ri+2
Thus
sup [l 1w 0.€) = (o)t 0,)] dadei
te[0,7 Rt
< K(1 —e_T/5 sup // \fi(t, 2,0, €) — folt, z,v,&)| dedédv.
te[OT
Taking
2K —1
T = ¢l ,
: n( oK ) >0
we have

( _TE/E>

and @ is a contraction on L>([0, T¢], L}(R+?)). Then we get the existence and unique-
ness of a solution in L>([0, 7], L*(R¥™?)) to (1.4) with initial data f° > 0. Since the
time 7. does not depend on f°, we can restart from the obtained solution at value 7.

and get a solution on [T;, 2T.] and so on. Finally we get existence and uniqueness of a
solution in X on any [0,7] with 7" > 0. O

We also have a variant for the important case where p > 0.

Proposition 3.1 Let f° € LY(R*2) such that f© > 0. We consider a Mazwellian M
satisfying (2.11) and (2.13). Then, for anye > 0, there exists f. € L>=([0,T], L*(R4*2))
for any T > 0 solution of (1.4) with initial data f° and such that f. > 0.

Proof. We adapt the previous proof by considering the space X of functions f in
L>([0,T¢], L*(R%*2)) such that f > 0. For f € X, we have ®(f) € X since then p > 0
and M, > 0. [J

4 Existence of a solution for the kinetic equation
with the second set of properties, namely (2.4)-
(2.10)

We consider the case where we have a kinetic model satisfying the second of properties
and then prove Theorem 1.2. We also need the first property of consistency. Then,

12



we assume that (2.1) and (2.4)-(2.10) are satisfied and we prove that it allows to get
existence of a solution to the kinetic equation.

Proof of Theorem 1.2. Let ¢ > 0 and 7" > 0. Denote by ® the application from
L>=([0,T], LY(R2)) to L>°([0,T], L*(R%?)) which at f associates

Bt ,0,6) = eV f 0 —alv, )t 0,)+ 2 [ IM (5,0 —alv,€)(t—5),0,€) ds

where

plt.x) = [[ £(t.9,5,€) dédo.
R2

Since f0 € LY(R42) N L2(R4*?) is such that 2 f°, &9, vf9 a(v, &) f° € LY(R42) and

2
/Rd (// fo(x,0,€) dvdﬁ) dx < 400,
R2

then there exists constants Cj,. .., C§, C§ > 0 such that
/// 10 (2, v, )| dvdede = C < +oo, (4.1)
Rd+2
/// |zi|| fO (2,0, &) | dvdédr = CF < +oo, foranyi=1,...,d, (4.2)
Rd+2
[ 1615, v.)  dvdgdz = € < +o0, (43)
Rd+2
I 10100, ) dvdgda = € < oo, (4.4)
Rd+2
/// | (z,v,€)|? dvdédr = C) < +o0. (4.5)
Rd+2
2
0 _ 6
/Rd (//f (2,0, ) dvdg) dz = C8 < +00 (4.6)
R2
and
// la; (v, )| f(x,v,&)| dvdédr = C§ < +oo, foranyi=1,...,d. (4.7)
Rd+2
We set
G=1+ sup |G(2)] < 400 (4.8)

2€B(0,]|nfl C5)

13



since G is continuous and B(0, ||n]|.C3) is compact. We also set

Ce
Rl = Cé, RG = Imax (Cg, KQJ%Q) s (49)
RQ = maX(Cg, €KKQQ(R1 + Rﬁ)), Rg = max(C’S’, KgRl(l + R6)) (410)

and
Ry = max(Cy, K4Rg), Rs = max(Cy, KsR;, K5Rg). (4.11)

We denote R = (Ry, Ry, R3, Ry, Rs, Rg) and Cpg the set of all f € L°°([0,T], L'(R*?))
such that for a.e. ¢ €]0,T7,

] 11t2,0.6) dvagdr < B, (1.12)
Rd+2
15150, 2,0,6)| dudeds < R (1 + D C foranyi—1,....d  (413)
Rd+2
[ €1t z.0.6) dvdgdz < Ry, (4.14)
Rd+2
[ 1l# 0.6 dudga < R, (4.15)
Rd+2
[ 172.0.0) P dvdgdz < R (4.16)
Rd+2

and

/Rd (// [tz v,8) dvdf) dr < Rs. (4.17)
R2

We denote also C, the set of all f € C([0,T], L'(R*?)) satisfying (4.12)-(4.17) with

8tf+divx(a(v,£)f)+if € C;R. (4.18)

The presentation of the proof is divided into seven parts.
Step 1. We prove that if f € Cg, then M, € Ck.

First, using (2.4), we have

// M, (t, 2, 0,)| dvdéde < /Rd\p(t,m)\dx

Rd+2

IN

/R/ |f(t, 2,0, €)| dédvda
",

Ry

IN

14



and, using (2.1),

/Rd (4/2./\/1;)(75,%1),@‘) dvd{) de < /Rd ot 7)2dz
e (// £t 2,0,0) dfdv)2 da

Rs.

IN

IN

Now, using (2.7), we get
// M, (L, z,0,)2 dvdede < / Ks|p(t, 2)Pdz.
R

Rd+2

If p=1, it gives
I Motz 0.0 dvdgaz < [ K [ 152,06 dedvda
R
R2

Rd+2
< KsR; < Rs.
Otherwise p = 2 and it gives

M, (t, xz,v,8)|? dvdédr < K flt,x,v,&) dldy zdx
JJ] Mtt.zv.) L, (// (t,2,0,€) )
R2

Rd+2
< Ks;Rs < Rs.
Now, using (2.4), we have, for any i = 1,...,d,

[ 1Mtz 0.0 dvdgie < [ falptto)lde

RA+2

< ///|xi||f(t,x,v,§)|dvd§dx

Rd+2
t
< R (1 + ) .
€

Furthermore, using (2.8), we have

] €Myt .0, ) dvdea

Rd+2

Tt (14 o) s

K [[f 1(t2,0,0)] dedvda (1+/Rd (//|f(t,y,v,§)|d§dv) dy)
o

Rd+2

IN

IN

K3Ri(1+ Rg)
Rs.

IAIA

15



Finally, using (2.6), we deduce

/// [v[|M,(t, 2, v, §)| dvdédr < /Rd Kip(t, 2)? do

Rd+2
2
< K4/Rd (//f(t,:p,v,f) d&h)) dr
R2
< KR
< R4.

Then we get that M, € Ch.

Step 2. We prove that if f € Cg, then ®(f) € Ck.
First, we have

// B(f)(t,z,v,6)| dvdeda

Rd+2

et W Te: ), 0, 6)| dvded

Rd+2

—l—i /Ot 5=t/ // M, (s, — a(v,&)(t —s),v,§)| dvdédz ds

Rd+2

e_t/a/// |22, v, )| dvdédx

Rd+2

1 st
+g/ e(s_t)/af/ M, (s,2,v,§)| dvdédz ds
0

Rd+2
1 rt
e FR, + f/ e"VER, ds
g Jo
S G_t/aRl + Rl(]_ — e_t/a) == Rl.

IN

IN

IN

Now notice that
O(f)(t,z,0,8) = ‘t/efo( —a(v,)t,v,§)

/e els=t)/e s
) [} Myl = alo €)(¢ = 5).0.6) T
0

then for a convex function H, we have
H(®(f)(t,x,0,6) < e H(f(x —a(v,6)t,0,8))
s—t)/e ds
—t/a
Ha= e ([ Myl = ol )0 - 9,0 e )

16



and by Jensen’s inequality, we get

H(®(f)(t,z,0,8) < e "H(f(x—a(v,E)t,v,8))

t s—t)/e s
HI= ) [ HOMy (o, ()0 90, 6)
< e FH(fw = a(v, )t v,€))
+i/o e(s_t)/EH(/\/lp(s,x—a(v,f)(t—s),v,f))ds
With H(z) = 22, it gives
(@(f)(t,z,0,8)* < e t/e(fo(ﬂﬁ—a( é)t v,§))°
o [etn —a(v,8)(t = 5).v,))*ds

and, using (2.7),

// O(f)(t,z,0,6)? dvded

Rd+2

ot/e /// 12z — a(v, E)t, v, &)* dvdéda

Rd+2

IN

4 / (s— t)/a// M, (s L) (t —s),v,8)* dvdéda ds

Rd+2

e t/s/// |z, v, )| dvdédx

Rd+2

]_ t
+g/ e<8*t>/€// M, (s, 2,0, )|? dvdeda ds
0

Rd+2

IA

IN

1 ft
e ECs + g/o e V/ER, ds
< 67t/5R5 -+ R5(1 — €7t/5) = R5.

Furthermore

//cb(f)(t,x,u,g) dvde

= e_t/g/ 2z — a(v,O)t, v, &) dvdé

,/ (s—1)/ //M &)t — s),v, &) dvde ds

17



then, by convexity,

(// O(f)(t, x,v,8) dvdg)

< el (// fa = a(v, &)t v,¢) dvdf)
R2

2
+i/o st/ (// M, (s, 2 —a(v,§)(t —s),v,§) dvdf) ds.
R2

Thus

/Rd (//Q(f)(t,x,v,f) dvdg) dr

< elle /Rd (// 2>z — a(v, )t v,€) dvd§)2 dx
R2
—l—i/ot els—t)/e /Rd (4Mp(s,x —a(v,&)(t —s),v,§) dvd§)2 dx ds
<

et/e /Rd (//fo(x,v,f) dvd{)Q dx
s,
+i/0t (5= A (4/ M,(s, 2,0, &) dvd§>2 dz ds

1 rt
< e*t/ECg + f/ e(sft)/ERG ds
e Jo
< e Y*Rg+ R¢(1 — e /%) = R,
Now, using (2.4) and (2.5), we have, for any i = 1,...,d,
] 1zlie(n @ 2, 0,)] dvdéda

Rd+2

e_t/a/// 23| | O (z — a(v, )t v, €)| dvdédx

Rd+2

+i /Ot pls—t)/e // |xi||Mp(8,:L‘ —a(v,€)(t — s),v,€)| dvdéda ds

Rd+2

IN

IN

e7lE // |z 4+ ai(v, Ot fO(z, v, )| dvdédx

Rd+2

18



t
+i/0 0% ] i+ (v, (0 — 9| My (s, .0, €)| dodeda ds

Rd+2

< ‘t/€(02+tC’“)
+2 / (5= t>/a/ ([l lp(s, )| + (t = 8) K| Fi(p(s, 2)Gi((n  p) (5, 2))|) da ds
—t/a(cg +tCy)

—i—i/ot pls—t)/e (/// 23| f (s, 2,0, &)|dvdédr + (t — s) Ky /Rd F,;(p(s,x))Gi((n*p)(s7x))dx) ds

Rd+2

IN

< (O +1CY) + 1 / etenre (Ro (142) 4 (6 = 9 [ IR (p(s,2)Gil(n % p)(5, )l ) ds.

Since
0% )(s.2)] < [l [ [p(s,9)] dy < [l

we note that
|G((n*p)(s,2))| <6,
then, with relation (1.7),

[ 119tz 0.6)| dvded

Rd+2

t
< V(G0 + 2 [ e (B (14 D) + (0= 9)IaG [ Kol 1)+ lofs, 2)P)d) ds

S) + (t — 8) Ky K(Ry + RG)Q) ds.

1 t
S €7t/a(Cg + th) -+ g/o 6(570/8 <R2 (1 + -

Now |
- / e/ + sB) ds = a — e + B + (Be — a)e™/*,

g Jo

R
then, with « = Ry + t Kb K(R1 + Rg)G and 3 = ?2 — Ky K(Ry + Rg)G, we get

[ i)z, 0.€)| dvda

Rd+2
tR
< eVE(C2 +tC8) + Ry + tKoK(Ry 4 Rg)G — Ry + e Ky K (Ry + Re)G + —2 —tKyK(Ry + Re)G
+(Ry — Ky, K(Ry + Rg)Ge — Ry — tKoK(Ry + Rg)G)e /¢

t
< e RO 4 tem(Cf — KoK (Ry + Re)G) + 52 + KoK (Ry + Re)G(1 —e7'7)

tR
< e TRy 4 te F(CY — Ko K(Ry + Re)G) + ?2 + Ry(1—e7%)
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tR
< R+ ?2 +te " (C8 — Ky K (Ry + Rg)G)

t
< RQ<1+>
g

since C§ — Ko K(Ry + Rg)G < 0.

Furthermore we have

I 19 @, 0.) dvdgda

Rd+2

e ] 1€l = atv, )t v.) | dvdgda

Rd+2

+i /Dt@(s—t)/é‘ // €| M, (5,2 — a(v,€)(t — s), v, €)| dvdéda ds

Rd+2

Ve I 1617 @, v.) dvdgda

Rd+2

1 t
- (s=t)/e
+8/0 e // €[ M, (s, 2,v,&)| dvdédx ds

Rd+2
1 t
e VECS + g/o eV Ry ds
< e YRy + R3(1 — e’t/e) = Rs.

IN

IA

IA

Finally we have

JI] wlies)ta.v,0)| dvdgdz

Rd+2
< e e ]| f°(z — a(v, &)t, v, &)| dvdédw
t
+i/0 .g(st)/e//+ 0| M (s, —a(v,&)(t — s),v, )| dvdédr ds
Rd+2
< = I ol (@, v, )| dvdgda
t
+i/o e(S—t)/ef//Jr [v|| M, (s, 2,0, )| dvdédx ds
Rd+2

1 ot

< e_t/EC’Oél + f/ e(s_t)/5R4 ds
e Jo

< G_t/6R4 + R4(1 — G_t/e) = R4.

Then we get that ®(f) € Ckg.
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Step 3. We prove that if f € Cg, then ®(f) € Ck.
By step 1 and step 2 and since ®(f) satisfies

0:8(f) + diva(alv, 2(1)) + 20(f) = 2, (4.19)

€
we get (4.18) for ®(f).

Step 4. We prove that ® is continuous on Ck.
Let g, g, € Cr such that g, — g in L>([0,T], L*(R%?)). Set

pn(t,x):/ gn(t,x,v,8)dédv  and p(t,:p):/ g(t,z,v,€&) dédv.

Since

/OT[/Rd —rl(tz) dfﬁdt</ // lgn — gl(t, 2, v,€) dedédv dt,

then p, — p in L'(]0,T[xR?) and there exists a subsequence p,(,) and a function h €
L]0, T[xR?) such that pymy — p and [pym)| < || ae. t,z. Thus M, =~ — M, a.e.
t,x,v,€ by (2.9). Furthermore, the sequence (M,_ ), is uniformly integrable thanks
to (4.16) and tight thanks to (4.13)-(4.15). Then by Vitali’s convergence theorem, we
get M — M, in L'(]0, T[xR**?). Now

Pep(n)

1 t
9(g50) — Bl)l(t,7,0,6) < = [0 My = My [ (5,0 = alv,€)(t — 5),v,6) ds
thus
I [2aw) (2. 0,€) = 2(o)(t,,0,€)| dudeav
Rd+2
< /// C=0EIM, 0 = Myl(s, 2 — a(v,€)(t — s),v,€) ds dedEdu
R d+2
1 t —t)/€e
< 2/0 4/26(8 )/ [R My, — M,|(s,2,0,€) do déduds.
We obtain
Sup, /d/ﬁ@ Gom)) (L, 7,0,€) — O(g )(t,x,v,f)\ drdédv
< E/o N Moy = Myl(s, 2,0, 6) da deduds
Rd+2
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and wo gt that ®(g,() — (g) in L2(0, 7], L (R%2)), or also in C([0, 7], L} (R%2)).
It is enough to get the continuity of ® on Chk.

Step 5. We prove the following properties on the sets Cr and Ch: they are convex
and not empty, the set Cg is compact for the weak topology of L'(]0, T[xR*?) and

the set Cj is closed in C([0,T], L' (R4+?)).
The sets Cr and Cj are clearly convex. Since foe CR, the set Cg is not empty.

Since fO € Cg, then ®(f°) € Cy by step 2. Thus the set C is not empty.
The uniform integrability comes from (4.16) and the tightness comes from (4.13)-

(4.15), then the set Cy is relatively compact for the weak topology of L(]0, T[x R*?2)
by Dunford-Pettis’ theorem.

Let us prove now that Cf is closed for the weak topology of L!(]0, T[xR%2).
Since Cp is convex, it is enough to prove that Cy is closed for the strong topology of
L*(J0, T[xR¥*2). Let g, € Cg such that g, — g in L'([0,T] x R4"2). After extraction
of a subsequence, we have g ) — g a.e. (¢,z,v,§) and gum)(t, ) = g(¢,-) in L'(R*2)
a.e. t. Since the sequence (gy(n))n satisfies (4.12)-(4.17) uniformly with respect to n,
applying Fatou’s lemma to each inequality, we get that g € Ck.

We prove similarly that C is closed in C ([0, T], L*(R?)).

Step 6. We prove that d(Cp) is relatively compact in C([0,T7, Ll(Rde)).
Let f, € ®(Cg) define a sequence in ®(Cg). Then there exists g, € Cr such that
fn=®(gn). Set

pn(t, x) ://gn(t,x,v,f) d&dv.
K2

Since Cr C Cg and since Cf is compact for the weak topology of L(]0, T[xR%+?),
there exists a subsequence gy(,) such that g,y — ¢ in weak L*([0,T] x R*"?). Thus
Po(ny — p In weak L([0, T x Rd) since the functions are in Cz where

p(t,x) = //g(t,x,v,{) dédv.
R?

Since gy(n) € Ch, then, by (4.18),
R(n) = €0tgip(m) + € diva(a(v, §)gom)) + gp(n) € Cr-

By (2.10), we get that py(,) is compact in L},.(]0, T[xR%), then for a subsequence
Poowiny — P in LY(]0, T[x K) for any compact K of R%. We deduce, since the functions
are in Cp, that puoym) — p in L'(J0, T[xR?).

Finally we apply the same argument as in step 4 to get that for a subsequence
D (gpoporn)) — ®(g) in C([0,T], L (R*2)). This is how we finalise step 6.

Step 7. We conclude by applying Schauder’s theorem in C([0,T ], LY{(R%2)) to
® : Op — Cg. There exists f € C([0,T], L*(R%*?)) such that ®(f) = f. This gives
a solution in [0,7] for any 7" > 0, and by extraction of a diagonal subsequence, we
obtain a solution in [0, 4o00[. O
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Remark 4.1 Notice that (1.7) is satisfied for example if F' € L and F(0) = 0 since
then, for anyi=1,...,d,

|Fi(2)| = |Fi(2) — Fi(0)] < [ l|oo2-

But we can also consider more general cases.

5 A model satisfying the first set of properties
Let’s explicit a model for which the properties (2.11)-(2.13) are satisfied and then for
which Theorem 1.1, and ever better here the variant with Proposition 3.1, can be

applied.
For the scalar non-local model, we assume that

1
F(0)=0 and n,-<L®R"R), (5.1)
Ui
that is to say that there exists a, 5 > 0 such that

a<n(z)<p, foranyzeR% (5.2)

Notice that the term 7 * p is well defined as soon as z +— p(t,z) € L'(R?) for a.e. t.
For the kinetic model, we take, for e =1,...,d,

a;i(v,&) = b;(v)c;(§)

with
bi(v) = F{(v), (&) = Gi(&) +£Gi(€) (5.3)

and
M(t,2,v,8) = Mz, pep)t.0) (0, §), (5.4)

where
Mpq(vag) - Ml(vap)MQ(gaQ)7 (5 5)
Mt ={ 0 Ll zh 59
_ [ YD i (- >0,

e ={ o ko geeo >0

Remember that o
plt.x) = [[ £(t.y,5,8) ddo.
R2

Notice that we write M, (¢, z, v, §) and not M, »(v, §) because here the term M, (t, x, v, &)

depends on the function p for any value at (¢, y) because of the term n*p. At the kinetic
level, we also have a non-local taking into account of the values of p.. This choice of
M, is the most natural because for the classical part, that is to say b(v), of the model

we consider the classical physical BGK model M (v, p) for scalar conservation law.
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5.1 Preliminary properties
First, notice the following properties :

Proposition 5.1 The functions My, and My satisfy

/ Ml(”ap) dv = Ps
R

[ M0, p) = M (o, )] dv = o= .
/RC’(U)Ml(v,p) dv = C(p) — C(0), VYC e CY(R,R),
/Rbi(v)Ml(v,p) dv = Fi(p), foranyi=1,...,d,

. Mal€ @) de = 10
(€O +EC'©)Ma(E q) d = C() 10, ¥C € C'(R,R),

/Rcz-(f)Mg(ﬁ, q)dé = Gi(q) 1y, foranyi=1,... d.

Proof. The five first properties come from classical computations. The penultimate
one comes from the following. For ¢ > 0, we have

! a1 ! o L ra /
L(c©rec@mmead = [1-©©+ecende = [[eo©) de
€09t = Cla)
and for ¢ < 0,

[ +EC M de = [ O +6C(€) d = Cla)
We deduce from this that
L elOM(€,0)d = [ (Gil€) + EGIUENMa (€, ) d = Ci@) 0. D

The most difficult property to deal with is :
Proposition 5.2 The function M satisfies

min(p, p)

= ¢ —q
max(q, q)

[ My(0,€) = M0, )| dédo = o — | +2
R2

for any p,p >0 and q,G > 0.
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Proof. We have
[ 1Ma0,6) = Mia(0.)] dédo = [ 130, ) Ma(€, @) = My (0, 5)Ma6, 3)|
R2 R?

For p>p>0and ¢ > g > 0, we get
/ [Myq(0,€) = Mpg(v,€)| dédv
N /0 /o | My (v, p)M>(E, q) — M (v, p)Ma(&, G)| dédv
A / |Mi (v, p) Ma(€, q) — Mi(v, ) Mo(€, )| dédv
+/ﬁ /qlMl(v,p)Mz(&q) — My (v, p)Ms(€, )| dédv

0—| dédv

i

q—q
= 2 7 +(p—p)

For p>p>0and qg> g >0, we get

] 1M50(0,6) = M3a(0,9)] dedo

= [ [ 1000, M ) — Mo p)ME, )] i
[ [ 1000 0006 0) — M (0. ) M (6. D) dco
[ [ 1096 0) - Mo, IS D) dio

+f ’ [ 10, p)Ma(6,0) = Mo, PILAE. D) e

a1 1‘
q

5.2 First set of properties satisfied and existence result

il 1
0—~'d§dv+0
0 q

P orall
_0‘
q |4

We are now able to get the following result on this model.

Proposition 5.3 Let F,G € CYR,R?), n € CYR4R) functions satisfying (5.1)-
(5.2). Let a(v,&) = b(v)c(§) be such that (5.3)-(5.7). Then the model satisfy (2.11)-
(2.13).
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Proof. First we have
[ Motz dear = [ M pta))dv [ Mae (nx p)(t2)) d
R2

= p(t, 2)Lup)yta)20 = p(L, )

since (n*p)(t,z) > 0 as soon as p(t,z) > 0 (remember that n > 0) and thus p(t,z) =0
a.e. if (n* p)(t,z) = 0 a.e. Thus we get (2.11). Now we have, for any i =1,...,d,

// b()e(OM,(tx.0.E) dedo = [ B@M(v,pelt.2) do [ (&) Mal€. (o) (t,) d

Ei(p(t,2))Gi((n % p)(t, 7)) Lpup(t )20
= Fi(p(t,2))Gi((n*p)(t,z))

since 1 * p(t,x) = 0 a.e. implies p(t,z) = 0 a.e. and F(0) = 0. Thus we get (2.12).
Finally we have

/ My (t,2,0,) = Myt ,0,6)| dédv

B //’ st ) 1) (0 €) = M) ) 00) (0, €) | dElw

min(py, p2)
= — t 2 t — t
=l () 42 () () s = 0% el

from proposition 5.2. As a consequence,

/Rd// M, (¢, 2,0,8) — M, (t,x,v,8)| dédv dx
2

min(py, p2)
< — t,r)d 2 t - t,x)d
< fulon-mleraose [ (LB )y g )

Since
e —nxp)to) < [ ne—y)lio = p)(E)] dy

9l [ 1601 = p2)(t. 1)l dy,

IN

then we have

/Rd [ Moslt.2,0,€) = My (t2,0,0)] dedvda
),

min(py, p2)
< —t,d2oo/—t,d t,2)d
< flon - ol eras s 2al [ o= ptelan [, (GO ) 0y e
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From

min(py, p2) _ p1+ p2 —|p1 — pol < p1+ P2
max(n * p1,n* p2)  NFpLENKk P2 [N xpL—nxpa] T MEpL 0k P2

and
nepi(ta) £t 2 [ n(@—y)p+p)(ty)dy = a | o+ p)(ty)dy.

we get

/ min(py, p2) o / p1+ p2 gr— L
Re max(n * p1,n* p2)  ~ JR a fga(pr + p2)(t,y) dy a

Therefore we obtain
2(|11|| 00
fo [ 00,00 = M0 oo < (14228 [y o 1.0) 0
R2

and (2.13). O

Finally, applying Proposition 3.1, which is a variant of Theorem 1.1, we obtain the
following result.

Theorem 5.4 Let fO € LYR*2) such that f© > 0. Let F,G € CY(R,RY), n €
CHR R) functions such that F(0) = 0, 77,% € L*(R%LR). Let a(v,&) = b(v)c(€)
such that (5.3)-(5.7). Then, for any € > 0, there exists f. € L*°([0,T], L*(R?)) for
any T > 0 solution of (1.4) with initial data f° and such that f. > 0.

6 A model satisfying the second set of properties
We present a model in one dimension, what is to say d = 1, for which Theorem 1.2 can

be applied.
We make the following assumptions on F, G and n:

F € C*(R,R), F(0) = 0 and F, F’ are strictly monotone functions, (6.1)

G € CYR,R),G, G are strictly increasing functions, G’ > 0, (6.2)
and such that there exists Xy < 0, Ky > 0 and v > 1 for which
KO / KO .
G(z)| < w and |G'(z)| < W if z < Xo, (6.3)
and
ne C'(R,R)NL*(R)N L*(R). (6.4)

The term 7 * p is well defined as soon as x — p(t,z) € L'(R) for a.e. t.
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For the kinetic model, we consider

a(0,€) = bu)'(€) (65)
where .
b(v) = F'(v), c¢(§) =2 ;G(f —2n—1) (6.6)
and ~ }
My(t,2,0,8) = Mp,a),mep)(t.0) (0, €), (6.7)
where ~
MP,(I(Uag) = MI(U7P>M3(£7Q>> (68)
My (v, p) = { Bgn(p) i EZ) - Z%Z i 8: (6.9)
Ms(&.q) = ;]1|sq|<1(€)- (6.10)

Remember that

plt.x) = [[ £(t.y,5,8) dédo.
R?2
Remark 6.1 Notice that c is well defined thanks to assumption (6.3) because

Ko
66~ 2m - D] € G

for2n —1> || — X,

and is C* on R since, for any set | — oo, a] with a > 0, we have, for any n > ng where
2ng +1 > q,
Ko

|G'(€ —2n—1)| < @nt1—a)e

if x € ]—00,al.

Then .
d)=2> G(—2n—-1) foranyz€R,
n=0
and c,c are strictly increasing functions and ¢ > 0.

Remark 6.2 We can also consider the case where G is a strictly decreasing function
with assumptions on 400 this time.

We need to apply averaging lemma, thus we have to prove the following non de-
generacy condition : for all R > 0, there is a constant C' = C(R) such that for z € R,
7 € R with 02 + 72 = 1, then

meas{(v,£) € R* s.t. |v], |¢| < R and |a(v,€)o — 7] < e} < Ce. (6.11)
We refer to [17], [8], [19], [7], [24], [21] and references within for averaging lemmas.
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6.1 Preliminary properties

Properties for M; are included in proposition 5.1. For M3, we have the following result.

Proposition 6.1 Let F,G € C'(R,R) such that (6.3) is satisfied. Then we have, for
any q € R,

Aﬂ@@nﬁﬁzL

[ @My q)ds = J(Clg+ 1)~ Cla— 1)), ¥C € CAR.R)

and
[ ©Ms(¢. ) d = Gla).
Proof. For the first property, we write
g+1

1 1 2
/R§][\£fq\<1(f> d§ = 2/(11 d§ = 5 =L

The second equality comes from the following:

fe©mead =3 [T e@ds = 3(Ca+ - - ).

-1

Then we get the third one since

clg+1)—clg—1) = 2§G(q+1—2n—1)—2§G(q—1—2n—1)
= QG_(q).[] )

Remark 6.3 Notice that we cannot apply contraction tools in this case since we have
the following equalities. First

[ ¥pa(0,6) = W50, )| dedo = [[ 1010, )M (&, 0) = Ma(o, D)M(E, )| déd.
R? R2

Forp>p>0andq>q>0, we get

I

1 1 6
- 2/()P/R Tg—1cecqi1(§) = Tgo1cecgr(§)] dédv + 2/;/Rllgl<g<qﬂ(§) dédv.

My g(v,€) = Mj 4(v, 6)| dédv

If g+ 2 < g, we have

// ‘Mpﬁq(v,g) - Mﬁ,q(v,f)‘ dédv =2p+ (p— p),
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if § < q+ 2, we have
I | ¥ta(0,€) = M350, 6)| dédv = pla = q) + (5= p).
R2

Then, by studying similar cases, we get
//‘ pq(v 5)’ dédv = 2min(p, pN)I[min(q,QHZSmaX(q,d)

+ min(p, ﬁ)’(j - q‘][0<max(q,(])<min(q,(j)+2 + ‘ﬁ - p‘

The term 2 min(p, ﬁ)][min(q@)_i_ggmax(q’q) does not allow a contraction study.

6.2 Second set of properties satisfied and existence result

We are now able to get the following result on this model.

Proposition 6.2 Let F,G,n: R — R, a: R?> = R satisfying (6.1)- (6.10). Then the
model of this section satisfies (2.1)-(2.2) and (2.4)-(2.9) and also (6.11) and (2.10)

Proof. First we have

//Mp(t,a:,v,s) dédv = /RMl(U,p(t,x))dv/RMg(f, (0% p)(t, ) dE = plt, ).

Thus we get (2.1). Now we have

// (0, )M, (t, 2, v,€) dedv = // M, (t, 2, v, €) dedu

B /Rb(v)Ml(v,f)(tx))d”/RC'(ﬁ)Ms(é’, (n*p)(t z))dE
= F(p(t,))G((n*p)(t,x))

and we obtain (2.2). Furthermore, we have
4 Myt 0. )l dgdo = [ (Mo, plt, )] do [ [Ma€. (nx p)(t,)| d

= \p(t,x)| < |p(t,l’)|,
that is to say (2.4) and

/ a0, Mt 2,0, €) dgdo =[] DI @I (v, p(t, ) IMs(E, (0 % p)(t,2))] delo

= [ @M, ot @) dv [ | ©IIMa(E, (nx p)(t, )| dE

= [ IF @I, pt )] do | [ ©MalE, (n % p)(t,) d€
< F(p(t2)G((0 % p) (1, 2)]
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thanks to the monotonicity properties of ¢ and F' and we have (2.5) with Ky = 1. Now
[t 2,0, €l dgdv = [ Mo, ot @)l dv | JEIMs (€, (05 p)(2,2)) de
JJ, R R
and since
] 14 ifg+1<0orqg—1>0,
we gt [ 1¢[My(€,q)d¢ < ¢* + 1 and
R

[t 2,00l dgdo < Jott )] ((n+ o)1) +1)

< Joteol (14 ([ ot - motenan) )

< Ip(t,x)|(1+/Rn(rc—y)2dy/R|p(t,y)l2dy)

< Jot.)l (1

< max (1 [ ()2 dy) Ip(t.o)] (1+ [ 1p(t.) dy)

that is to say (2.8) with K3 = max (1,/ n(y)* dy). For the following estimate, we
R

have

_|_
T
=
S

[\
U
<
I
>
=
<
T
U
<
N———

4/2 oll M (12,0, )] dédv = | [ol|M (v, plt. )l do [ Ma(g, (% p)(t,2)) d€
and
/Opvdv it p>0,
[ M (o, p(t,2))| dv = Pl oo
thus fg |v|| M (v, p(t, z))| dv = p(t, z)2/2 and !

// ’UHMp(t,x,v’gﬂ dedv = P(t,;;)z
R2

that is (2.6) with K, = 1/2. After this, we write
[Vt v R dsar = [ Mo, plt @) dv [ Ma(e, (s p)(t, ) de
K2 R R

= [ Mo, plt o) do [ M6 (e ) 2) e

1
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and we get (2.7) with K5 = 1/2 and p = 1. Assuming now that we have functions
satisfying p, — p a.e. (t,z) and |p,| < |h| € L'(R), then applying the theorem of
dominated convergence, we get that

(n* pn)(t, ) = /Rn(x —y)pa(t,y) dy — (n*p)(t,r) = /Rn(x —y)p(t,y)dy

since n € L. Then we get (2.9).
Let R > 0. We set

4 1
Kr=max (8 sup |F'(z)] sup |d(z ,) —.
f ( zE[—R7R]| )] ze[—R,R]| ()l V7] R

Let (0,7) € R? such that 02 + 72 = 1. Let ¢ € |0,1/2[. We want to consider set where
|F'(v)d(§)o + 7| < e. Notice that changing (o,7) by (—o, —7), we can assume that
o > 0. There exists § € |—n/2,7/2] such that ¢ = cosf and 7 = sinf. Since ¢ is
strictly increasing and strictly positive, we have

0<d(—R)<d(§) <d(R) forany¢e€|[-R,R].
We consider (v,€) € R? such that |v| < R and |£| < R satisfying
sinf —e < F'(v)d(§) cosf < sinf + e.

If cosf® = 0, then the set of (v,&) satisfying +1 — e < 0 < £1 + ¢ is empty since
0 < e < 1. We consider now the case cosf > 0. Then we have

sinf —¢e < Fl(v) < sinf +¢
(&) cosb ! (&) cosd

and since F’ is strictly monotone, we get
ing —e sinf + ¢
F/ —1 Sin F/ -1
(F7) (c’(g)cosﬁ <v<(F) (&) cosO
oy [ sinf+¢ n_q [ sinf —e
(F7) <c’(§)cos€> <v<{F) (c’({)cos@) '

Consider for example the strictly increasing case. First case: if 0 < 1/cosf < KgR,
then we get

or

meas{(v, &) € R? s.t. \v| €] < R and |a(v,&)o — 7| < e}
d(R) (F")~((sin0+€)/(c'(€) cos 0))
/ / dvde
—1((sinf—e)/(c/(§) cos 9))
(R) sinf + ¢ sinf — e
F/ —1 _ Fl —1 d
/g( R) <( ) (c’(f) cos@) (F7) (c’(ﬁ) cosG)) ¢

(R) inf —
< sup|(F) ‘/9 (sm&—i—a sin 6 6)(15

zeln cosf (&) cosh
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where Ip = [(—1 —e)KrR/d(R), (1 +¢)KgrR/d(—R)]. It leads to

meas{(v,£) € R? s.t. ]v| €| <R and |F’('U)c'(£)a - 7| <e}

g(R)
< 2:KpRsup |(F) V) (2)] /

z€lp —R) C

Second case: if 1/cosf > KrR, then we get

1 1
F'(v)d(&)o] < su F'(z su cd(z < =
FOd@a < s [FE s (6 s < g
and
1 3
|T|: 1—C0529> 1_@§Z

Thus |a(v,&)oc — 7| >3/4—1/8 > 1/2 > ¢ and
meas{(v,£) € R? s.t. |v],|¢| < R and |a(v,£)o — 7| < e} = 0.
Finally, we get

sup meas{(v,&) € R?s.t. |[v],|¢] < R and |a(v,€&)o — 7| < e} < Cgre

02+4712=1
where
g
Cr = 2KgrRsup |((F |/
z€IR 5
dmax (s s (PG s [6) ) e [ e
= 2max sup 2)| sup |c(2)],—= | sup z .
2€[—R,R) 2€[—R,R] V7 ) zein g(-R) (&)

It gives (6.11) and we get (2.10). O
Then applying Theorem 1.2 we settle the following result.
Theorem 6.3 Let f° € L'(R3) N L*(R3) such that zf°,&f° vfY a(v,&)f° € L'(R?)

and
2
/I{ ([/ f()(«r)U,é-) dvd{) dr < 4+00.
R2

Consider F,G,n : R — R satisfying (6.1)-(6.4) and assume that n € L*°(R) and that
there exists a constant K > 0 such that

|F(2)] §K(|z|+|z|2) for any z € R.

'(&) such that (6.6)-(6.10). Then, for any ¢ > 0, there ezists f. €
for any T > 0 solution of (1.4) with initial data fO

=~
~
5(‘3
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