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Abstract

The aim of this paper is to show an existence theorem for a kinetic model of
coagulation-fragmentation with initial data satisfying the natural physical bounds,
and assumptions of �nite number of particles and �nite Lp-norm. We use the no-
tion of renormalized solutions introduced dy DiPerna and Lions in [3], because of the
lack of a priori estimates. The proof is based on weak-compactness methods in L1,
allowed by Lp-norms propagation.

1 Introduction

Coalescence and fragmentation are general phenomena which appear in dynamics
of particles, in various �elds (polymers chemistry, raindrops formation, aerosols, ...).
We can describe them at di�erent scales, which lead to di�erent mathematical points
of view. First, we can study the dynamics at the microscopic level, with a system of N
particles which undergo successives mergers/break ups in a random way. We refer to
the survey [1] for this stochastic approach. Another way to describe coalescence and
fragmentation is to consider the statistical properties of the system, introducing the
statistical distribution of particles f(t,m) of mass m > 0 at time t ≥ 0 and studying
its evolution in time. This approach is rather macroscopic. But we can put in an
intermediate level, by considering a density f which depends on more variables, like
position x or velocity v of particles, and this description is more precise. Here, we start
by discussing models with density, from the original (with f = f(t,m)) to the kinetic
one (with f = f(t, x,m, v)), which is the setting of this work.

Depending on the physical context, the mass variable is discrete (polymers forma-
tion) or continuous (raindrops formation). It leads to two sorts of mathematical models,
with m ∈ N? or m ∈ (0,+∞), but we focus on the continuous case. To understand the
relationship between discrete and continuous equations, see [16].
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1.1 The original model

The discrete equations of coagulation have been originally derived by Smoluchowski
in [21, 22], by studying the Brownian motion of colloidal particles. It had been extended
to the continuous setting by Müller [20], giving the following mathematical model,
called the Smoluchowski's equation of coagulation:

∂f

∂t
(t,m) = Q+

c (f, f)−Q−c (f, f), (t,m) ∈ (0,+∞)2. (1.1)

This equation describes the evolution of the statistical mass distribution in time. At
each time t > 0, the term Q+

c (f, f) represents the gain of particles of mass m created
by coalescence between smaller ones, by the reaction

{m?}+ {m−m?} → {m}.

The term Q−c (f, f) is the depletion of particles of mass m because of coagulation with
other ones, following the reaction

{m}+ {m?} → {m+m?}.

Namely, we have
Q+
c (f, f)(t,m) =

1

2

∫ m

0

A(m?,m−m?)f(t,m?)f(t,m−m?)dm?,

Q−c (f, f)(t,m) =

∫ +∞

0

A(m,m?)f(t,m)f(t,m?)dm?,

where A(m,m?) is the coe�cient of coagulation between two particles, which governs
the frequency of coagulations, according to the mass of clusters. In his original model,
Smoluchowski derived the following expression for A:

A(m,m?) =
(
m1/3 +m?1/3

)(
m−1/3 +m?−1/3

)
. (1.2)

In many cases, coalescence is not the only mechanism governing the dynamics of
particles, and other e�ects should be taken into account. A classical phenomenon
which also occurs is the fragmentation of particles in two (or more) clusters, resulting
from an internal dynamic (we do not deal here with fragmentation processes induced by
particles collisions). This binary fragmentation is modeled by linear additional reaction
terms in equation (1.1), namely


Q+
f (f)(t,m) =

∫ +∞

m

B(m′,m)f(t,m′)dm′,

Q−f (f)(t,m) =
1

2
f(t,m)B1(m), where B1(m

′) =

∫ m′

0

B(m′,m)dm.

The function B(m′,m) is the fragmentation kernel, it measures the frequency of the
break-up of a mass m′ in two clusters m and m′ −m, for m < m′. So, at each time t,
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the term Q+
f (f) is the gain of particles of mass m, resulting from the following reaction

of fragmentation:
{m′} → {m}+ {m′ −m},

whereas Q−f (f) stands for the loss of particles of mass m, because of a break-up into
two smaller pieces, by the following way:

{m} → {m?}+ {m−m?}, with m? < m.

Thus, the continuous coagulation-fragmentation equation writes

∂f

∂t
(t,m) = Q+

c (f, f)−Q−c (f, f) +Q+
f (f)−Q−f (f), (t,m) ∈ (0,+∞)2. (1.3)

In the 90's, many existence and uniqueness results have been proved about this problem,
see for instance [23, 24], or [13] for an approach by the semigroups of operators theory.
These results are true under various growth hypotheses on kernels A and B, but these
assumptions often allow unbounded kernels, which is important from a physical point
of view.

However, this coagulation-fragmentation model do not take the spatial distribution
of particles into account. This leads to �spatially inhomogeneous� mathematical mod-
els, where the density of particles f(t, x,m) depends also of a space variable x ∈ R3.

1.2 Spatially inhomogeneous models

A �rst example consists of di�usive models, corresponding to the situation where
particles follow a Brownian motion at the microscopic scale, with a positive and mass-
dependent coe�cient of di�usion d(m). From a physical point of view, it implies that
particles are su�ciently small to undergo the interaction with the medium, i.e the
shocks with the molecules of the �uid in which the particles evolve. In the statistical
description, a spatial-laplacian appears, giving the di�usive coagulation-fragmentation
equation:

∂f

∂t
(t, x,m)− d(m)∆xf(t, x,m) = Q+

c (f, f)−Q−c (f, f) +Q+
f (f)−Q−f (f),

(t, x,m) ∈ (0,+∞)× R3 × (0,+∞).

(1.4)

We refer to [15] for a global existence theorem for the discrete di�usive coagulation -
fragmentation equation in L1, and to [17] for the continuous one, improved in [19] (with
less restrictive conditions on the kernels), then in [2] (with uniqueness of the solution).

The second way to correct the spatially homogeneous problem is to assume that
the particles are transported with a deterministic velocity v. At the statistical level,
this adds a linear transport term v.∇xf to the equation (1.3). This velocity can be a
given velocity v = v(t, x,m) or the inner velocity of the particles. The �rst case has
been studied in [6], with an existence and uniqueness theorem, and furthermore the
continuous dependance on the initial data. Physically, it corresponds to the dynamics
of particles with rather low mass which follow a velocity drift depending only on the
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surrounding �uid. In the second case, particles are also identi�ed by their momen-
tum p ∈ R3 in addition to their mass m (with v = p/m): we have a kinetic model,
which is relevant to describe the dynamics of particles of varying size/mass according
to coagulation/fragmentation events, like in aerosols. At the microscopic scale, the co-
agulation/fragmentation processes become �multi-dimensional�, with mass-momentum
conservation at each merger/break up according to the following scheme:

Coagulation : {m}+ {m?} → {m′}
{p}+ {p?} → {p′}

Fragmentation : {m′} → {m}+ {m?}
{p′} → {p}+ {p?}

where m′ := m+m?, m > 0, m? > 0, and p′ := p+ p?.

Thus, in the statistical description, the density depends on time, position, mass and
momentum: f = f(t, x,m, p). But even if this kind of kinetic models provides a rather
good description of phenomena, it is harder to study, so there are less results than
for the di�usive ones. Moreover, it is di�cult to know the exact physical form of
the kernels. And �nally, the numerical aspects are a real problem on these models:
because of a high dimension (at least 7 plus time), it seems to be very di�cult, maybe
impossible, to compute the solutions on a long time.

Concerning the results, a global existence theorem for the sole coagulation has
been demonstrated in [7]. The proof is based on Lp-norms dissipation for any formal
solution, and on weak-compactness methods in L1. This result has been extended to
a more general class of coalescence operators in [12] (but under stronger restriction on
the initial data), with a very di�erent method of proof. For the sole fragmentation,
a di�culty is due to the blow-up of kinetic energy, which grows at each microscopic
event. Thus, it is reasonable to take the internal energy of particles into account, which
balances the gain of kinetic energy during a break up. With that modeling, the work
[11] provides global existence for a kinetic fragmentation model, with general growth
assumptions on the kernel B, by using correct entropies.

The aim of this work is to combine both of these analysis. We deal with assumptions
which are similar to [7], but a little bit more restrictive concerning the kernel A. The
obtaining of a priori estimates is strongly inspired from [7], with a big di�erence
however. The authors obtained re�ned estimates, including a dissipative quadratic term
thanks to which coagulation bilinear terms make sense, but which is unfortunately not
present here because of the balance problems between coagulation and fragmentation
operators. Thus, this lack of estimates does not allows us to de�ne well the reaction
term of coagulation with only the a priori bounds (speci�cally, we can not say that
the bilinear loss term Q−c (f, f) lies in L1

loc, as it is shown in subsection 3.2). That is
why we use the DiPerna-Lions theory of renormalized solutions, introduced in [3] to
show global existence for Boltzmann equation, which presents similar problems.

1.3 Description of the kinetic model and outline of the paper

Now, let us describe precisely the model we study. The parameters which describe
the state of a particle are denoted by

y := (m, p, e) ∈ Y := (0,+∞)× R3 × (0,+∞),
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m for the mass, p the impulsion, and e the internal energy. At the microscopic scale,
coalescence and fragmentation conserve total energy (kinetic energy + internal energy),
thus we can compute the internal energy of daughter(s) particle(s).

Coagulation : {e}+ {e?} → {e′}

We have
|p|2

2m
+ e+

|p?|2

2m?
+ e? =

|p+ p?|2

2(m+m?)
+ e′,

thus

e′ = e+ e? + E−(m,m?, p, p?), where E−(m,m?, p, p?) :=
|m?p−mp?|2

2mm?(m+m?)
≥ 0

(E− is the loss of kinetic energy resulting from the merger).

Fragmentation : {e′} → {e}+ {e?}

We have
|p′|2

2m′
+ e′ =

|p|2

2m
+ e+

|p′ − p|2

2(m′ −m)
+ e?,

thus

e? = e′ − e− E+(m′,m, p′, p), where E+(m′,m, p′, p) :=
|m′p−mp′|2

2mm′(m′ −m)
≥ 0

(E+ is the gain of kinetic energy resulting from the break up).

Remark 1.1 Let us point out the following symmetries:

E−(m?,m, p?, p) = E−(m,m?, p, p?) and E+(m′,m, p′, p) = E+(m′,m′−m, p′, p′−p),

and the relation: E−(m,m?, p, p?) = E+(m+m?,m, p+ p?, p), which is consistent with
the two phenomena's reciprocity.

We use the following notations:

• if y = (m, p, e), y? = (m?, p?, e?), then we denote

y′ := y + y? := (m+m?, p+ p?, e+ e? + E−(m,m?, p, p?)),

• if y = (m, p, e), y′ = (m′, p′, e′), with m < m′ and e < e′ − E+(m′,m, p′, p), then
we say that y < y′ and we denote

y? := y′ − y := (m′ −m, p′ − p, e′ − e− E+(m′,m, p′, p)).
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With this formalism, we naturally have (y′− y) + y = y′, but note carefully that y < y′

is not an order relation on Y .

Remark 1.2 For all y′ ∈ Y, {y ∈ Y, y < y′} ⊂ (0,m′)×B√
2m′e′+|p′|2 × (0, e′).

Denoting YR := (0, R)×BR × (0, R) ⊂ Y , we have

y < y′, y′ ∈ YR =⇒ y ∈ (0, R)×B√3R × (0, R) ⊂ Y2R. (1.5)

Finally, we point out that the map (m′,m, p′, p, e′, e) 7→ (m′,m?, p′, p?, e′, e?) is a dif-
feomorphism with C∞ regularity whithin the domain

{0 < m < m′, p, p′ ∈ R3, 0 < e < e′ − E+(m′,m, p′, p)} ⊂ Y 2

which preserves volume.

We denote by f(t, x,m, p, e) = f(t, x, y) the particles density, which is a nonnega-
tive function depending on time t ≥ 0, position x ∈ R3, and the mass-momentum-
energy variable y. To shorten the notations, we set for each t,x, f(y) = f(t, x, y), or
f = f(t, x, y), f ? = f(t, x, y?), and f ′ = f(t, x, y′). The complete model then reads:


∂tf +

p

m
.∇xf = Q+

c (f, f)−Q−c (f, f) +Q+
f (f)−Q−f (f), (ECF )

t ∈ (0,+∞), x ∈ R3, y = (m, p, e) ∈ Y,

with 
Q+
c (f, f)(y) =

1

2

∫
Y

A(y?, y − y?)f(y?)f(y − y?)1l{y?<y}dy?,

Q−c (f, f)(y) = f(y)Lf(y), Lf(y) :=

∫
Y

A(y, y?)f(y?)dy?,

and 
Q+
f (f)(y) =

∫
Y

B(y′, y)f(y′)1l{y′>y}dy
′,

Q−f (f)(y) =
1

2
B1(y)f(y), B1(y

′) :=

∫
Y

B(y′, y)1l{y<y′}dy.

Functions A et B are respectively the coagulation and fragmentation kernels. They
are nonnegative functions, independent of (t, x), which satisfy the natural properties
of symmetry:

∀(y, y?) ∈ Y 2, A(y, y?) = A(y?, y), (1.6)

∀(y, y′) ∈ Y 2, y < y′, B(y′, y) = B(y′, y?). (1.7)
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The kernel A(y, y?) represents the coalescence rate between two particles y and y?,
whereas B(y′, y) is the fragmentation rate for a particle y′ which breaks in two clusters
y and y?.

We assume that A ful�ls the following structure assumption:

∀(y, y?) ∈ Y 2, A(y, y?) ≤ A(y, y′) + A(y?, y′). (1.8)

Remark 1.3 We can insist on the fact that this assumption is more general than the
classical Galkin-Tupchiev monotonicity condition:

∀y < y?, A(y, y? − y) ≤ A(y, y?). (1.9)

In the �monodimensional� case, the Smoluchowski kernel given by (1.2) do not satisfy
(1.9) but satis�es (1.8), that's why the �rst existence result established in [17] under
Galkin-Tupchiev condition was extended in [19] to kernels which satisfy (1.8) only.

We also require that A and B have a mild growth:

∀R > 0,

∫
YR

A(y, y?)

|y?|
dy −→
|y?|→+∞

0, (1.10)

∀R > 0,

∫
YR

B(y′, y)

|y′|
1l{y<y′}dy −→

|y′|→+∞
0, (1.11)

and B is truncated as:

∃C0 > 1,


m′ > C0m

or

e′ +
|p′|2

2m′
> C0

(
e+
|p|2

2m

) =⇒ B(y′, y) = 0. (1.12)

Remark 1.4 The physical interpretation of this truncature assumption is to prevent
the creation of too small clusters compared to the mother particle. From a mathematical
point of view, it allows the total number of particles (the L1-norm of f) to be �nite at
each time t > 0.

We also need to have B1 locally bounded:

∀R > 0, B1 ∈ L∞(YR), (1.13)

as well as A:

∀R > 0, A ∈ L∞(Y 2
R). (1.14)

Remark 1.5 Unfortunately, these assumptions of growth and boundedness are more
restrictive, and in the monodimensional case, the Smoluchowski kernel (1.2) doesn't
satisfy them any more. The examples given in [7] for the sole coagulation, namely

A(m,m?, p, p?) = (mα +m?α)2

∣∣∣∣ pm − p?

m?

∣∣∣∣ , 0 ≤ α < 1/2,

7



(for the dynamics of liquid droplets carried by a gaseous phase) or

A(m,m?, p, p?) =

(
m+m?

mm?

)α ∣∣∣∣ pm − p?

m?

∣∣∣∣γ , 0 ≤ α ≤ 1, −3 < γ ≤ 0,

(for a stellar dynamics context) do not �t neither. Here, we need coalescence kernels
which are bounded when m,m? → 0. But it is di�cult to know the exact physical form
of the kernels A and B because of the complexity of this kinetic model. Nevertheless,
simple kernels given by A(m,m?) = mα +m?α with 0 < α < 1 �t.

Finally, we assume that A controls B in the following sense:

∃s > 1, ∃0 < δ <
1

6s− 5
< 1,

∀y′ ∈ Y,
∫
Y

B(y′, y)s

A(y, y′)s−1
1l{y<y′}dy ≤ 1 +m′ +

|p′|2

2m′
+ e′ +

1

2
B1(y

′)δ. (1.15)

Remark 1.6 This last assumption is more technical, but seems necessary to balance
the contributions of the interaction terms Qc(f, f) and Qf (f), which are di�cult to
compare because Qc(f, f) is quadratic whereas Qf (f) is linear.

The paper consists in the proof of the following theorem.

Theorem 1.1 Let A and B be kernels satisfying (1.6)− (1.8) and (1.10)− (1.15) and
let f 0 be a nonnegative initial data which satis�es

K(f 0) :=

∫∫
R3×Y

((
1 +m+

|p|2

2m
+ e+m|x|2

)
f 0(x, y) + f 0(x, y)s

)
dxdy <∞,

(1.16)
then for all T > 0, there exists f ∈ C([0, T ], L1(R3 × Y )) such that f(0) = f 0 and f is
a renormalized solution to (ECF ). Moreover,

a.e t ∈ (0, T ),

∫∫
R3×Y

(
1 +m+

|p|2

2m
+ e+m|x|2

)
f(t, x, y)dxdy ≤ KT , (1.17)

a.e t ∈ (0, T ),

∫∫
R3×Y

f(t, x, y)sdxdy ≤ KT , (1.18)

where the constant KT depends only on C0, T , K(f 0), s and δ (de�ned in (1.12) and
(1.15)).

Beyond existence problems, there are lots of others interesting subjects to explore. A
�rst one concerns the mass conservation of the solution f , which is still an open problem
for such kinetic models, even for the case of the sole coagulation. In the spatially
homogeneous case, it has been shown in [5] that total mass is preserved in time under
mild growth hypotheses on kernels. But we know that in case of strong coagulation
(typically the case of multiplicative kernels), a phenomenon of gelation occurs, which
force the total mass of the system to decay from a certain time Tg < +∞. Then,
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problems of convergence to an equilibrium have been already studied for the spatially
homogeneous equation [18], under a detailed balance condition between kernels A and
B. We can also mention existence of self-similar solutions [8, 9, 14], always for the
spatially homogeneous case.

In a �rst section, we will derive the a priori estimates from the equation, giving the
proper setting of the problem. Then, the proof of theorem is based on a well-known
stability principle which says that if we are able to pass to the limit in the equation (the
set of solutions is closed in a certain sense), then it would be easy to show the existence
of a solution, applying the stability result to a sequence of approached problems which
we can solve. So, the aim of the last section is to prove rigorously such a stability result
and in fact, we work in the context of renormalized solutions, because the reaction term
can not be de�ned as a distribution simply using the a priori estimates.

1.4 Di�erent notions of solutions

We discuss here on di�erent notions of solutions, recalling the DiPerna-Lions results.
We set Q(f, f) = Q+

c (f, f)−Q−c (f, f) +Q+
f (f)−Q−f (f).

De�nition 1.2 Let f be a nonnegative function, such that f ∈ L1
loc((0,+∞)×R3×Y ).

We say that f is a renormalized solution of (ECF) if

Q±c (f, f)

1 + f
∈ L1

loc((0,+∞)× R3 × Y ),
Q±f (f)

1 + f
∈ L1

loc((0,+∞)× R3 × Y ),

and if the function g := log(1 + f) satis�es the renormalized equation

∂tg +
p

m
.∇xg =

Q(f, f)

1 + f
(ECFR)

in D′((0,+∞)× R3 × Y ).

The renormalization makes passing to the limit impossible because of the quotients
in the reaction term, that is why we also need another notion of solution: the mild
solutions, which only require local integrability in time and provide Duhamel's integral
formulations to the problem in which we are able to pass to the limit.

De�nition 1.3 Let f be a nonnegative function, such that f ∈ L1
loc((0,+∞)×R3×Y ).

We say that f is a mild solution of (ECF) if for almost all (x, y) ∈ R3 × Y ,

∀T > 0, Q±c (f, f)](t, x, y) ∈ L1((0, T )), Q±f (f)](t, x, y) ∈ L1((0, T )),

and

∀0 < s < t <∞, f ](t, x, y)− f ](s, x, y) =

∫ t

s

Q(f, f)](σ, x, y)dσ, (1.19)

where h] denotes the restriction to the characteristic lines of the equation:

h](t, x,m, p, e) := h(t, x+ t
p

m
,m, p, e).

9



The following results are proved in [3]:

Lemma 1.4

(i) If Q±c (f, f) ∈ L1
loc((0,+∞)×R3×Y ) and Q±f (f) ∈ L1

loc((0,+∞)×R3×Y ), then
the following assertions are equivalent:

• f is a solution of (ECF ) in the sense of distributions.

• f is a renormalized solution of (ECF ).

• f is a mild solution of (ECF ).

(ii) If f is a renormalized solution of (ECF ), then for all function β ∈ C1([0,+∞))

such that |β′(u)| ≤ C

1 + u
, the composed function β(f) is a solution of

∂tβ(f) +
p

m
.∇xβ(f) = β′(f)Q(f, f).

in the sense of distributions (here, the right side lies in L1
loc((0,+∞)× R3 × Y )).

(iii) f is a renormalized solution of (ECF ) if and only if

f is a mild solution of (ECF ),
Q±c (f, f)

1 + f
∈ L1

loc((0,+∞) × R3 × Y ) and
Q±f (f)

1 + f
∈

L1
loc((0,+∞)× R3 × Y ).

2 A priori estimates

We consider the Cauchy problem{
(ECF )
f(0, x, y) = f 0(x, y).

(2.20)

We suppose in this section that (2.20) admit a su�ciently smooth solution f in order
to handle some formal quantities which are conserved or propagated by the equation
(ECF ). More precisely, we will show the propagation of Lq bounds for the solution
along time:

Proposition 2.1 If the initial data f 0 satis�es

K(f 0) :=

∫∫
R3×Y

((
1 +m+

|p|2

2m
+ e+m|x|2

)
f 0(x, y) + f 0(x, y)s

)
dxdy <∞,

(2.21)
then for all T > 0, any classical solution of the Cauchy problem (2.20) satis�es

sup
t∈[0,T ]

∫∫
R3×Y

((
1 +m+

|p|2

2m
+ e+m|x|2

)
f(t, x, y) + f(t, x, y)q

)
dxdy ≤ KT ,

(2.22)
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for all the exponents q ∈ ( 5/6 , s ], and also∫ T

0

∫
R3

(D1(f(t, x)) +D2(f(t, x))) dxdt ≤ KT , (2.23)

where

D1(f(t, x)) :=
1

2

∫∫
Y×Y

A(y, y?) sup(f, f ?) inf(f, f ?)sdy?dy ≥ 0, (2.24)

D2(f(t, x)) :=
s− δ

2

∫∫
Y×Y

B(y′, y)f(t, x, y′)s1l{y<y′}dy
′dy ≥ 0, (2.25)

and the constant KT depends only on C0, T , K(f 0), s and δ.

2.1 Basic physical estimates

We start with a fundamental formula, which gives the variation in time of some integral
quantities involving the solution f .

Lemma 2.2 Let H(u) be a function with C1 regularity on [0,+∞) and Φ(y) a real or
vectorial function. We have

d

dt

∫∫
R3×Y

Φ(y)H(f(t, x, y))dxdy

=
1

2

∫∫∫
R3×Y×Y

Aff ? (Φ′duH(f ′)− ΦduH(f)− Φ?duH(f ?)) dy?dydx

+
1

2

∫∫∫
R3×Y×Y

Bf ′ (ΦduH(f) + Φ?duH(f ?)− Φ′duH(f ′)) 1l{y<y′}dydy
′dx,

(2.26)

where duH =
dH

du
.

Proof: Using (ECF ), we have

d

dt

∫∫
R3×Y

Φ(y)H(f)dxdy =

∫∫
R3×Y

Φ(y) duH(f) ∂tfdydx

=

∫∫
R3×Y

Φ(y) duH(f)
(
Q+
c (f, f)−Q−c (f, f)

)
dydx

+

∫∫
R3×Y

Φ(y) duH(f)
(
Q+
f (f)−Q−f (f)

)
dydx

−
∫∫

R3×Y
divx(−Φ(y)H(f)

p

m
)dydx.
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The integral with divergence vanishes thanks to Stokes' formula. Whence

d

dt

∫∫
R3×Y

Φ(y)H(f)dxdy =

∫∫
R3×Y

Φ(y) duH(f)
(
Q+
c (f, f)−Q−c (f, f)

)
dydx

+

∫∫
R3×Y

Φ(y) duH(f)
(
Q+
f (f)−Q−f (f)

)
dydx.

Using Fubini's theorem (formally), we can write

d

dt

∫∫
R3×Y

Φ(y)H(f)dxdy

=
1

2

∫∫∫
R3×Y×Y

Φ(y) duH(f)A(y?, y − y?)f(y?)f(y − y?)1l{y?<y}dy?dydx

−
∫∫∫

R3×Y×Y
Φ(y) duH(f)A(y, y?)f(y)f(y?)dy?dydx

+

∫∫∫
R3×Y×Y

Φ(y) duH(f)B(y′, y)f(y′)1l{y′>y}dy
′dydx

− 1

2

∫∫
R3×Y

Φ(y′) duH(f ′)B1(y
′)f(y′)dy′dx.

If we change variables (y?, y − y?)→ (y?, y) in the �rst integral, we obtain

d

dt

∫∫
R3×Y

Φ(y)H(f)dxdy

=
1

2

∫∫∫
R3×Y×Y

Φ(y + y?) duH(f(y + y?))A(y?, y)f(y?)f(y)dy?dydx

−
∫∫∫

R3×Y×Y
Φ(y) duH(f)A(y, y?)f(y)f(y?)dy?dydx

+

∫∫∫
R3×Y×Y

Φ(y) duH(f)B(y′, y)f(y′)1l{y′>y}dy
′dydx

− 1

2

∫∫∫
R3×Y×Y

Φ(y′) duH(f ′)B(y′, y)f(y′)1l{y<y′}dydy
′dx.

The symmetry of A allows us to write
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∫∫∫
R3×Y×Y

Φ(y) duH(f)A(y, y?)f(y)f(y?)dy?dydx

=
1

2

∫∫∫
R3×Y×Y

Φ(y) duH(f)A(y, y?)f(y)f(y?)dy?dydx

+
1

2

∫∫∫
R3×Y×Y

Φ(y?) duH(f ?)A(y, y?)f(y)f(y?)dy?dydx,

using the change of variables (y, y?)→ (y?, y).
The same applies to B with (y′, y)→ (y′, y′ − y):∫∫∫

R3×Y×Y
Φ(y) duH(f)B(y′, y)f(y′)1l{y′>y}dy

′dydx

=
1

2

∫∫∫
R3×Y×Y

Φ(y) duH(f)B(y′, y)f(y′)1l{y′>y}dy
′dydx

+
1

2

∫∫∫
R3×Y×Y

Φ(y′ − y) duH(f(y′ − y))B(y′, y)f(y′)1l{y′>y}dy
′dydx.

�

Applying this lemma with H(u) = u, it gives

d

dt

∫∫
R3×Y

Φ(y)fdxdy =
1

2

∫∫∫
R3×Y×Y

Aff ? (Φ′ − Φ− Φ?) dy?dydx

+
1

2

∫∫∫
R3×Y×Y

Bf ′ (Φ + Φ? − Φ′) 1l{y<y′}dy
′dydx.

(2.27)
Choosing Φ(y) = m, we obtain mass conservation:

d

dt

∫∫
R3×Y

mf(t, x, y)dxdy = 0. (2.28)

With Φ(y) = p, we also get the momentum conservation:

d

dt

∫∫
R3×Y

pf(t, x, y)dxdy = 0. (2.29)

Then, choosing Φ(y) =
|p|2

2m
+ e, we recover the total energy conservation:

d

dt

∫∫
R3×Y

(
|p|2

2m
+ e

)
f(t, x, y)dxdy = 0. (2.30)

Moreover, we can control space momenta:
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Lemma 2.3 For all T > 0, there exists a constant CT > 0 that

∀t ∈ [0, T ],

∫∫
R3×Y

m|x|2f(t, x, y)dxdy ≤ CT . (2.31)

Proof: In view of the equation (ECF ) and the Stokes formula, we have

d

dt

∫∫
R3×Y

m|x|2fdxdy = −
∫∫

R3×Y
|x|2p.∇xfdxdy

= 2

∫∫
R3×Y

x.p f(t, x, y)dxdy

≤ 2

(∫∫
R3×Y

m|x|2fdxdy
)1/2(∫∫

R3×Y

|p|2

m
fdxdy

)1/2

,

and we conclude with (2.30) and Gronwall's lemma.

�

Finally, we can control the number of particles in �nite time:

Lemma 2.4 We set

N0 :=

∫∫
R3×Y

f 0(x, y)dxdy, M0 :=

∫∫
R3×Y

mf 0(x, y)dxdy,

E0 :=

∫∫
R3×Y

(
|p|2

2m
+ e

)
f 0(x, y)dxdy.

Then, there exists a constant C > 0 depending only on C0 that

∀T > 0, ∀t ∈ [0, T ],

∫∫
R3×Y

f(t, x, y)dxdy ≤ (N0 + CT (M0 + E0))e
CT +M0 + E0.

(2.32)

Proof: We use formula (2.27) with Φ(y) = 1l
{m≤1, e+

|p|2
2m
≤1}

. Since Φ is nonnegative and

subadditive in the sense of coalescence (ie Φ′ ≤ Φ + Φ?), we have

14



d

dt

∫∫
R3×Y

1l
{m≤1, e+

|p|2
2m
≤1}

fdydx ≤ 1

2

∫∫∫
R3×Y×Y

Bf ′ (Φ + Φ? − Φ′) 1l{y<y′}dydy
′dx

=

∫∫∫
R3×Y×Y

Bf ′
(

Φ− Φ′

2

)
1l{y<y′}dydy

′dx

≤
∫∫∫

R3×Y×Y
Bf ′Φ1l{y<y′}dydy

′dx

=

∫∫∫
R3×Y×Y

Bf ′1l
{y<y′, m≤1, e+

|p|2
2m
≤1}

dydy′dx.

In the last integral, if m′ > C0, then, since m ≤ 1, we have B(y′, y) = 0 according to

assumption (1.12). The same applies if e′ +
|p′|2

2m′
> C0. Thus,

d

dt

∫∫
R3×Y

f(t, x, y)1l
{m≤1, e+

|p|2
2m
≤1}

dydx

≤
∫∫

R3×Y

(∫
Y

B(y′, y)1l{y<y′}dy

)
f(t, x, y′)1l

{m′≤C0, e′+
|p′|2
2m′ ≤C0}

dy′dx

=

∫∫
R3×Y

B1(y
′)f(t, x, y′)1l

{m′≤C0, e′+
|p′|2
2m′ ≤C0}

dy′dx.

Denoting C := sup
y′∈Y2C0

B1(y
′), we obtain

d

dt

∫∫
R3×Y

f(t, x, y)1l
{m≤1, e+

|p|2
2m
≤1}

dydx

≤ C

∫∫
R3×Y

f(t, x, y)dydx

≤ C

(∫∫
R3×Y

f(t, x, y)1l
{m≤1, e+

|p|2
2m
≤1}

dydx+

∫∫
R3×Y

mf(t, x, y)dydx

+

∫∫
R3×Y

(
e+
|p|2

2m

)
f(t, x, y)dydx

)
.

Using (2.28) and (2.30), we have
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d

dt

∫∫
R3×Y

f(t, x, y)1l
{m≤1, e+

|p|2
2m
≤1}

dydx

≤ C

∫∫
R3×Y

f(t, x, y)1l
{m≤1, e+

|p|2
2m
≤1}

dydx+ C(M0 + E0).

We integrate this inequality in time. Then, Gronwall's lemma provides

∀T > 0, ∀t ∈ [0, T ],

∫∫
R3×Y

f(t, x, y)1l
{m≤1, e+

|p|2
2m
≤1}

dydx ≤ (N0+CT (M0+E0))e
CT .

We conclude noting that∫∫
R3×Y

f(t, x, y)dydx ≤
∫∫

R3×Y
f(t, x, y)1l

{m≤1, e+
|p|2
2m
≤1}

dydx

+

∫∫
R3×Y

(
m+ e+

|p|2

2m

)
f(t, x, y)dydx,

and using (2.28) and (2.30) again.

�

To summarize, if we set E(x, y) = 1 +m+
|p|2

2m
+ e+m|x|2, and if we suppose that the

initial data satis�es

K(f 0) :=

∫∫
R3×Y

E(x, y)f 0(x, y)dxdy < +∞,

then, for all T > 0, there exists a constant KT (depending on T , C0 and K(f 0)) such
that

sup
t∈[0,T ]

∫∫
R3×Y

E(x, y)f(t, x, y)dxdy ≤ KT . (2.33)

Remark 2.1 For γ > 5, we have∫∫
R3×Y

1

Eγ(x, y)
dxdy < +∞. (2.34)

It will be very useful to show that some Lq bounds of f (for 5/6 < q < 1 and q = s > 1)
also propagate in time.
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2.2 Lq bounds

Obtaining Lq bounds propagation is more technical, that is why we split the proof in
several lemmas.

Lemma 2.5 Let β ∈ ( 5/6 , 1 ). Then, for all T > 0, there exists a constant KT

(depending on T , C0 and K(f 0)) such that

sup
t∈[0,T ]

∫∫
R3×Y

fβ(t, x, y)dxdy ≤ KT . (2.35)

Proof: Writing∫∫
R3×Y

fβ(t, x, y)dxdy =

∫∫
R3×Y

fβ(t, x, y)
Eβ(x, y)

Eβ(x, y)
dxdy,

we use Young inequality

∀α > 1, ∀u ≥ 0, ∀v ≥ 0, uv ≤ uα

α
+
vα

?

α?
(2.36)

with u = fβ(t, x, y)Eβ(x, y), v =
1

Eβ(x, y)
, and α =

1

β
> 1,

and obtain∫∫
R3×Y

fβ(t, x, y)dxdy ≤ β

∫∫
R3×Y

E(x, y)f(t, x, y)dxdy

+ (1− β)

∫∫
R3×Y

1

E
β

1−β (x, y)
dxdy.

We conclude with (2.33) and (2.34).

�

Lemma 2.6 For any convex and nonnegative function H ∈ C1([0,+∞)) such that
H(0) = 0, and for all t > 0, we have∫∫

R3×Y
H(f(t, x, y))dxdy ≤

∫∫
R3×Y

H(f 0(x, y))dxdy

− 1

2

∫ t

0

∫∫∫
R3×Y×Y

A sup(f, f ?)H(inf(f, f ?))dy?dydxdτ

+

∫ t

0

∫∫∫
R3×Y×Y

A′H

(
B

A′

)
f ′1l{y<y′}dydy

′dxdτ

− 1

2

∫ t

0

∫∫∫
R3×Y×Y

Bf ′duH(f ′)1l{y<y′}dydy
′dxdτ,

(2.37)
where A = A(y, y?), A′ = A(y, y′), B = B(y′, y).
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Proof: The formula (2.26) yields

d

dt

∫∫
R3×Y

H(f)dxdy =

∫∫∫
R3×Y×Y

Aff ?
(
duH(f ′)

2
− duH(f)

)
dy?dydx

+

∫∫∫
R3×Y×Y

Bf ′
(
duH(f)− duH(f ′)

2

)
1l{y<y′}dydy

′dx.

(2.38)

Let us rewrite the term I1 :=

∫∫∫
R3×Y×Y

Aff ?duH(f ′)dy?dydx, by the following way:

I1 =

∫∫∫
R3×Y×Y

A inf(f, f ?) sup(f, f ?)duH(f ′)dy?dydx.

We use the Young inequality:

∀u > 0, ∀v > 0, uv ≤ H(u) +H?(v) (2.39)

with u = sup(f, f ?) and v = duH(f ′), where H? stands for the convex conjugate
function of H. A simple calculus shows that

H?(duH(u)) = uduH(u)−H(u),

and this quantity is nonnegative, by the assumptions on H. We denote

Θ(u) := H?(duH(u)) ≥ 0.

It leads to the inequality:

I1 ≤
∫∫∫

R3×Y×Y
A inf(f, f ?)H(sup(f, f ?))dy?dydx

+

∫∫∫
R3×Y×Y

A inf(f, f ?)Θ(f ′)dy?dydx.

We can dominate the second term of the right member using the hypothesis (1.8) by
the following way:
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∫∫∫
R3×Y×Y

A inf(f, f ?)Θ(f ′)dy?dydx

≤
∫∫∫

R3×Y×Y
(A(y, y + y?) + A(y?, y + y?)) inf(f, f ?)Θ(f ′)dy?dydx

≤
∫∫∫

R3×Y×Y
A(y, y + y?)fΘ(f ′)dy?dydx+

∫∫∫
R3×Y×Y

A(y?, y + y?)f ?Θ(f ′)dy?dydx

= 2

∫∫∫
R3×Y×Y

A(y?, y + y?)f(y?)Θ(f(y + y?))dy?dydx

= 2

∫∫∫
R3×Y×Y

A(y?, y)f(y?)Θ(f(y))1l{y?<y}dy
?dydx

(the last identity resulting from the change of variables (y?, y + y?)→ (y?, y)).

This yields

I1 ≤
∫∫∫

R3×Y×Y
A inf(f, f ?)H(sup(f, f ?))dy?dydx

+ 2

∫∫∫
R3×Y×Y

Af ?Θ(f)1l{y?<y}dy
?dydx.

Thus, we have the following control of the coagulation contribution in (2.38):

∫∫∫
R3×Y×Y

Aff ?
(
duH(f ′)

2
− duH(f)

)
dy?dydx

≤ 1

2

∫∫∫
R3×Y×Y

A inf(f, f ?)H(sup(f, f ?))dy?dydx

+

∫∫∫
R3×Y×Y

Af ?Θ(f)1l{y?<y}dy
?dydx−

∫∫∫
R3×Y×Y

Aff ?duH(f)dy?dydx.

Now, we can write the right member of this inequality by the following way:
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= − 1

2

∫∫∫
R3×Y×Y

A sup(f, f ?)H(inf(f, f ?))dy?dydx

+
1

2

∫∫∫
R3×Y×Y

AfH(f ?)dy?dydx+
1

2

∫∫∫
R3×Y×Y

Af ?H(f)dy?dydx

+

∫∫∫
R3×Y×Y

Af ?Θ(f)1l{y?<y}dy
?dydx−

∫∫∫
R3×Y×Y

Aff ?duH(f)dy?dydx

= − 1

2

∫∫∫
R3×Y×Y

A sup(f, f ?)H(inf(f, f ?))dy?dydx

+

∫∫∫
R3×Y×Y

Af ?Θ(f)1l{y?<y}dy
?dydx−

∫∫∫
R3×Y×Y

Af ?Θ(f)dy?dydx.

We deduce

∫∫∫
R3×Y×Y

Aff ?
(
duH(f ′)

2
− duH(f)

)
dy?dydx

≤ − 1

2

∫∫∫
R3×Y×Y

A sup(f, f ?)H(inf(f, f ?))dy?dydx

+

∫∫∫
R3×Y×Y

Af ?Θ(f)1l{y?<y}dy
?dydx−

∫∫∫
R3×Y×Y

Af ?Θ(f)dy?dydx.

(2.40)
Then, we can also control the fragmentation contribution:∫∫∫

R3×Y×Y
Bf ′duH(f)1l{y<y′}dydy

′dx−
∫∫∫

R3×Y×Y
Bf ′

duH(f ′)

2
1l{y<y′}dydy

′dx.

We rewrite the �rst term by the following way:

∫∫∫
R3×Y×Y

Bf ′duH(f)1l{y<y′}dydy
′dx =

∫∫∫
R3×Y×Y

B

A′
A′f ′duH(f)1l{y<y′}dydy

′dx

and we use (2.39) again, with u =
B

A′
and v = duH(f), whence
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∫∫∫
R3×Y×Y

Bf ′
(
duH(f)− duH(f ′)

2

)
1l{y<y′}dydy

′dx

≤
∫∫∫

R3×Y×Y
H

(
B

A′

)
A′f ′1l{y<y′}dydy

′dx+

∫∫∫
R3×Y×Y

A′f ′Θ(f)1l{y<y′}dydy
′dx

−
∫∫∫

R3×Y×Y
Bf ′

duH(f ′)

2
1l{y<y′}dydy

′dx.

(2.41)
Eventually, using (2.38), (2.40) and (2.41), we infer

d

dt

∫∫
R3×Y

H(f(t, x, y))dxdy ≤ − 1

2

∫∫∫
R3×Y×Y

A sup(f, f ?)H(inf(f, f ?))dy?dydx

−
∫∫∫

R3×(Y 2−({y<y?}∪{y?<y}))
Af ?Θ(f)dydy?dx

+

∫∫∫
R3×Y×Y

A′H

(
B

A′

)
f ′1l{y<y′}dydy

′dx

−
∫∫∫

R3×Y×Y
Bf ′

duH(f ′)

2
1l{y<y′}dydy

′dx.

(2.42)

�

Lemma 2.7 Forall T > 0, there exists a constant CT > 0 depending only on T , the
initial values N0,M0,E0 and the truncature parameter C0 such that for all t ∈ [0, T ],∫∫

R3×Y
f(t, x, y)sdxdy ≤

∫∫
R3×Y

f 0(x, y)sdxdy + CT

−1

2

∫ T

0

∫∫∫
R3×Y×Y

A sup(f, f ?) inf(f, f ?)sdy?dydxdτ

−
∣∣∣∣s− δ2

∣∣∣∣ ∫ T

0

∫∫∫
R3×Y×Y

B (f ′)
s
1l{y<y′}dy

′dydxdτ,

(2.43)
where s and δ are given by (1.15).
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Proof: We use the previous lemma with H(u) = us. We obtain∫∫
R3×Y

f(t, x, y)sdxdy ≤
∫∫

R3×Y
f 0(x, y)sdxdy

− 1

2

∫ t

0

∫∫∫
R3×Y×Y

A sup(f, f ?) inf(f, f ?)sdy?dydxdτ

+

∫ t

0

∫∫∫
R3×Y×Y

(
Bs

A′s−1

)
f ′1l{y<y′}dydy

′dxdτ

− s

2

∫ t

0

∫∫
R3×Y

B1(y
′)(f ′)sdy′dxdτ.

According to (1.15) and (2.33),∫ t

0

∫∫∫
R3×Y×Y

(
Bs

A′s−1

)
f ′1l{y<y′}dydy

′dxdτ

≤
∫ t

0

∫∫
R3×Y

(
1 +m′ +

|p′|2

2m′
+ e′

)
f ′dy′dxdτ +

1

2

∫ t

0

∫∫
R3×Y

B1(y
′)δf ′dy′dxdτ

≤ TKT +
1

2

∫ t

0

∫∫
R3×Y

B1(y
′)δf ′sδf ′1−sδdy′dxdτ.

We apply the Young inequality again with the exponent 1/δ > 1:

B1(y
′)δf ′sδf ′1−sδ ≤

(
B1(y

′)δf ′sδ
)1/δ

1/δ
+

(
f ′1−sδ

)(1/δ)?
(1/δ)?

= δB1(y
′)f ′s + (1− δ)f ′

1−sδ
1−δ .

Thus we deduce∫∫
R3×Y

f(t, x, y)sdxdy ≤
∫∫

R3×Y
f 0(x, y)sdxdy

− 1

2

∫ t

0

∫∫∫
R3×Y×Y

A sup(f, f ?) inf(f, f ?)sdy?dydxdτ

+ TKT +
1− δ

2

∫ t

0

∫∫
R3×Y

f ′
1−sδ
1−δ dy′dxdτ

+
δ − s

2

∫ t

0

∫∫
R3×Y

B1(y
′)(f ′)sdy′dxdτ.
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We can use (2.35) since
1− sδ
1− δ

∈ ( 5/6 , 1 ).∫∫
R3×Y

f(t, x, y)sdxdy ≤
∫∫

R3×Y
f 0(x, y)sdxdy + CT

− 1

2

∫ t

0

∫∫∫
R3×Y×Y

A sup(f, f ?) inf(f, f ?)sdy?dydxdτ

+
δ − s

2

∫ t

0

∫∫
R3×Y

B1(y
′)(f ′)sdy′dxdτ.

We conclude noting that δ <
1

6s− 5
< 1 < s.

�

3 A stability result

The proof of theorem 1.1 relies on a stability theorem, which claims that we can pass to
the limit in the equation (ECF ) in a certain sense, namely in an integral formulation.

De�nition 3.1 Let T > 0 and let f 0 be a nonnegative initial data which satis�es
(2.21). A weak solution of (2.20) is a nonnegative function f ∈ C([0, T ], L1(R3 × Y )),
verifying the estimates (2.22) and (2.23), satisfying (ECF ) in D′((0,+∞)×R3 × Y ),
and such that f(0) = f 0.

Now let us state the result we will prove in this section:

Theorem 3.2 Let (fn)n≥1 be a sequence of weak solutions of (2.20), with initial data
f 0
n, and such that

∀n ∈ N, fn ∈ W 1,1((0,+∞)× R3 × Y ), (3.44)

sup
n≥1

sup
t∈[0,T ]

∫∫
R3×Y

((
1 +m+

|p|2

2m
+ e+m|x|2

)
fn(t, x, y) + fn(t, x, y)q

)
dxdy ≤ KT ,

(3.45)
for all the exponents q ∈ ( 5/6 , s ], and also

sup
n≥1

∫ T

0

∫
R3

(D1(fn(t, x)) +D2(fn(t, x))) dxdt ≤ KT . (3.46)

(the a priori estimates hold uniformly in n).
Then, up to a subsequence, fn ⇀ f weakly in L1((0, T ) × R3

loc × Y ), where f is a
renormalized solution of (ECF). Furthermore, f ∈ C([0, T ], L1(R3 × Y )).
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3.1 Weak compactness of (fn)

Let 0 < T < ∞. The bounds on fn provides some weak compactness, and thus the
existence of a limit f after extraction.

Lemma 3.3 For all R > 0, the sequence (fn)n≥1 is weakly compact in L1((0, T ) ×
BR × Y ).

Proof: We set Φ(ξ) := ξs and Ψ (m, p, e) := m +
|p|2

2m
+ e. The function Φ is nonde-

creasing, nonnegative and Φ(ξ)/ξ −→
ξ→+∞

+∞, Ψ is nonnegative and Ψ(y) −→
|y|→+∞

+∞.

The estimate (3.45) gives

sup
n≥1

∫ T

0

∫
BR

∫
Y

((1 + Ψ(y)) fn + Φ (fn)) dtdxdy < +∞,

and we conclude by Dunford-Pettis theorem.

�

Thus, there exists a nonnegative function f such that for all R > 0, fn ⇀ f in
L1((0, T )×BR × Y ) for a subsequence (not relabeled). Moreover, we can show easily
(diagonal extraction) that the subsequence is not depending on R. Then we notice
that in fact, f ∈ L∞((0, T ), L1(R3 × Y )) and

a.e t ∈ (0, T ),

∫∫
R3×Y

(
1 +m+

|p|2

2m
+ e+m|x|2

)
f(t, x, y)dxdy ≤ KT . (3.47)

Moreover, since the function ξ 7→ |ξ|s is convex, we have

a.e t ∈ (0, T ),

∫∫
R3×Y

f(t, x, y)sdxdy ≤ KT . (3.48)

3.2 Weak compactness of the renormalized coalescence term

The bounds on fn are not enough to de�ne the term Q−c (fn, fn) as a distribution, unlike
the term Q+

c (fn, fn). In fact, since for all R, T > 0,∫ T

0

∫
BR

∫
YR

Q−c (fn, fn)dydxdt =

∫ T

0

∫
BR

∫
YR

∫
Y

A(y, y?)fn(y)fn(y?)dy?dydxdt,

we have a bound on the contribution corresponding to inf(fn, f
?
n) > 1 due to the

estimate (2.23). But the other contribution, where inf(fn, f
?
n) ≤ 1, requires strong

integrability assumptions on A to be �nite, which are not reasonable. So, it seems that
renormalization is necessary to obtain well-de�ned and weakly compact coalescence
terms.

Lemma 3.4 For all R > 0, the sequence (Q+
c (fn, fn))n≥1 is weakly compact in

L1((0, T )×BR × YR), where YR := (0, R)×BR × (0, R).
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Proof: Let E be a measurable subset of (0, T )×BR×YR. We set ϕ(t, x, y) := 1lE(t, x, y).
Performing the change of variables (y, y?)→ (y?, y − y?), we obtain

∫
YR

Q+
c (fn, fn)(y)ϕ(y)dy =

1

2

∫
YR

∫
Y

A(y?, y − y?)fn(y?)fn(y − y?)ϕ(y)1l{y?<y}dy
?dy

=
1

2

∫∫∫
0<m<R

p∈R3

0<e<R

∫∫∫
0<m?<R−m

p?∈B(−p,R)

0<e?<R−e−E−(m,m?,p,p?)

A(y, y?)fn(y)fn(y?)ϕ(y + y?)dy?dy.

In fact, we only integrate over p ∈ B2R because

|p|2

2m
≤ |p|

2

2m
+
|p?|2

2m?
=
|p+ p?|2

2(m+m?)
+ E−(m,m?, p, p?) ≤ R2

2(m+m?)
+R,

which yields

|p|2 ≤ R2 m

m+m?
+ 2mR ≤ 3R2

(and the same applies to p? because of the symmetry in the previous computation).
Thus we have∫

YR

Q+
c (fn, fn)(y)ϕ(y)dy =

1

2

∫∫∫
0<m<R

p∈B2R

0<e<R

∫∫∫
0<m?<R−m

p?∈B(−p,R)

0<e?<R−e−E−(m,m?,p,p?)

Afnf
?
nϕ
′dy?dy.

Using the inequality

Afnf
?
n ≤

1

M s−1
A sup(fn, f

?
n) inf(fn, f

?
n)s1l{inf(fn,f?n)>M} +MA sup(fn, f

?
n)1l{inf(fn,f?n)≤M},

(3.49)
we obtain

∫
YR

Q+
c (fn, fn)(y)ϕ(y)dy ≤ D1(fn(t, x))

M s−1
+
M

2

∫
Y2R

∫
Y2R

A sup(fn, f
?
n)ϕ′dy?dy

≤ D1(fn(t, x))

M s−1
+M

∫
Y2R

∫
Y2R

Afnϕ
′dy?dy

≤ D1(fn(t, x))

M s−1
+M‖A‖∞,Y 2

2R

∫
Y2R

∫
Y2R

fnϕ
′dy?dy.
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We �x ε > 0 and choose M such that 1/M s−1 ≤ ε.
So, we can write∫

YR

Q+
c (fn, fn)(y)ϕ(y)dy ≤ εD1(fn(t, x)) +M‖A‖∞,Y 2

2R

∫
Y2R

∫
Y2R

fnϕ
′dy?dy

≤ εD1(fn(t, x)) +M‖A‖∞,Y 2
2R

∫
Y

∫
Y

fnϕ
?dy?dy.

Eventually, in view of (3.45) and (3.46), we obtain∫ T

0

∫
BR

∫
YR

Q+
c (fn, fn)ϕ(t, x, y)dydxdt ≤ M‖A‖∞,Y 2

2R

∫ T

0

∫
BR

∫
Y

∫
Y

fnϕ
?dy?dydxdt

+ εKT .

We conclude by letting mes(E)→ 0 and using the weak compactness of (fn).

�

Corollary 3.5 For all R > 0, the sequence

(
Q+
c (fn, fn)

1 + fn

)
n≥1

is weakly compact in

L1((0, T )×BR × YR), where YR := (0, R)×BR × (0, R).

Proof: It's obvious by the previous lemma and Dunford-Pettis theorem since
Q+
c (fn, fn)

1 + fn
≤ Q+

c (fn, fn).

�

Lemma 3.6 For all R > 0, Lfn ⇀ Lf weakly in L1((0, T ) × BR × YR), where YR :=
(0, R)×BR × (0, R).

Proof: Let ϕ(t, x, y) ∈ L∞((0, T )×BR × YR). We have∫
YR

Lfn(y)ϕ(y)dy =

∫
YR

∫
Y

A(y, y?)fn(y?)ϕ(y)dy?dy.

We �x ε > 0 and, in view of the assumptions (1.6) and (1.10), we choose R? > 0 such
that

∀|y?| > R?,

∫
YR

A(y, y?)

|y?|
dy ≤ ε.

We can write∫ T

0

∫
BR

∫
YR

Lfn ϕdydxdt =

∫ T

0

∫
BR

∫
YR

∫
YR?

A(y, y?)fn(y?)ϕ(y)dy?dydxdt

+

∫ T

0

∫
BR

∫
YR

∫
Y−YR?

A(y, y?)fn(y?)ϕ(y)dy?dydxdt.
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First,∫ T

0

∫
BR

∫
YR

∫
YR?

Afn(y?)ϕ(y)dy?dydxdt −→
n

∫ T

0

∫
BR

∫
YR

∫
YR?

Af(y?)ϕ(y)dy?dydxdt.

Indeed, setting θ(t, x, y?) =

∫
YR

A(y, y?)ϕ(t, x, y)dy, we have

∫ T

0

∫
BR

∫
YR

∫
YR?

Afn(y?)ϕ(y)dy?dydxdt =

∫ T

0

∫
BR

∫
YR?

θ(t, x, y?)fn(t, x, y?)dy?dxdt

and we conclude by lemma 3.3, because the assumption (1.14) implies
θ ∈ L∞((0, T )×BR × YR?).
Moreover,∣∣∣∣∫ T

0

∫
BR

∫
YR

∫
Y−YR?

Afn(y?)ϕ(y)dy?dydxdt

∣∣∣∣ ≤ ε ‖ϕ‖∞
∫ T

0

∫
BR

∫
Y−YR?
|y?|fn(y?)dy?dxdt

≤ εT ‖ϕ‖∞KT ,

and the inequality (3.47) yields∣∣∣∣∫ T

0

∫
BR

∫
YR

∫
Y−YR?

Af(y?)ϕ(y)dy?dydxdt

∣∣∣∣ ≤ ε T ‖ϕ‖∞KT .

Finally, we infer∣∣∣∣∫ T

0

∫
BR

∫
YR

Lfn ϕdydxdt−
∫ T

0

∫
BR

∫
YR

Lf ϕdydxdt

∣∣∣∣ ≤ o(1)
n→+∞

+ C(T,R, ϕ)ε.

�

Corollary 3.7 For all R > 0, the sequence

(
Q−c (fn, fn)

1 + fn

)
n≥1

is weakly compact in

L1((0, T )×BR × YR), where YR := (0, R)×BR × (0, R).

Proof: It's obvious because
Q−c (fn, fn)

1 + fn
=

fn
1 + fn

Lfn ≤ Lfn.

�

3.3 Weak convergence of the fragmentation term

Since they are linear, the fragmentation terms easily pass to the limit, and we have the
following lemma.

Lemma 3.8 For all R > 0, we have
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(i) Q+
f (fn) ⇀ Q+

f (f) weakly in L1((0, T )×BR × YR),

(ii) Q−f (fn) ⇀ Q−f (f) weakly in L1((0, T )×BR × YR),

where YR := (0, R)×BR × (0, R).

Proof: The part (ii) results immediately from (1.13), and the proof of (i) is the same
as lemma 3.6.

�

3.4 Strong compactness of y-averages

Strong compactness is needed to pass to the limit in coalescence terms (because they
are quadratic), that's why we use the following averaging lemma, inspired by [7], [3],
and [4]:

Theorem 3.9 Let (gn) be a bounded sequence in L1((0, T )×R3×Y ) and weakly com-
pact in L1((0, T ) × BR × YR), for all R > 0. Let (Gn) be a bounded sequence in
L1((0, T )×BR × YR) for all R > 0. We assume that

∂tgn +
p

m
.∇xgn = Gn in D′((0,+∞)× R3 × Y ).

Then, for any function Ψ ∈ L∞(Y 2), with compact support, the sequence(∫
Y

gn(t, x, y)Ψ(y, y?)dy

)
n∈N

is strongly compact in L1((0, T )×BR × YR), for all R > 0.

This result can be improved:

Corollary 3.10 With the assumptions of theorem 3.9, we also have:
for all R > 0 and for any function Ψ ∈ L∞((0, T )×BR × Y 2

R), the sequence(∫
Y

gn(t, x, y)Ψ(t, x, y, y?)dy

)
n∈N

is strongly compact in L1((0, T )×BR × YR).

Proof: The case of separated variables is obvious. Then, we proceed by a density
argument as in [3].

�
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Corollary 3.11 With the assumptions of theorem 3.9, we also have: for all R > 0
and for any sequence (Ψn) bounded in L∞((0, T ) × BR × YR) which converges a.e to
Ψ ∈ L∞((0, T )×BR × YR), the sequence(∫

Y

gn(t, x, y)Ψn(t, x, y)dy

)
n∈N

is strongly compact in L1((0, T )×BR).

Proof: Let ε > 0. The sequence (gn) being weakly compact in L1((0, T ) × BR × YR),
there exists δ > 0 such that

∀E ∈ B((0, T )×BR × YR), |E| < δ, sup
n

∫∫∫
E

|gn|dtdxdy ≤ ε.

Then, by Egoro� theorem, there exists E0 ∈ B((0, T ) × BR × YR) such that |E0| < δ
and Ψn converge uniformly to Ψ on E1 := ((0, T )×BR × YR) \ E0. Whence

∥∥∥∥∫
YR

gnΨndy −
∫
YR

gnΨdy

∥∥∥∥
L1((0,T )×BR)

≤
∫ T

0

∫
BR

∫
YR

|gn||Ψn −Ψ|dydxdt

≤ 2C ε+ sup
E1

|Ψn −Ψ|
∫∫∫

E1

|gn|dydxdt

= 2C ε+ o(1)
n→+∞

.

We infer ∥∥∥∥∫
YR

gnΨndy −
∫
YR

gnΨdy

∥∥∥∥
L1((0,T )×BR)

n−→ 0.

The sequence

(∫
YR

gnΨdy

)
being compact in L1((0, T )×BR) in view of corollary 3.10,

the results follows.

�

Now, we are able to establish the strong compactness of the sequence of fn y-averages,
and also the (Lfn) one.

Lemma 3.12 For all R > 0, and for all function Ψ ∈ L∞(Y ) with compact support,∫
Y

fn(t, x, y)Ψ(y)dy
n−→
∫
Y

f(t, x, y)Ψ(y)dy in L1((0, T )×BR).
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Proof: Since it is not clear that
(
Q−c (fn, fn)

)
n
is bounded in L1((0, T )×BR × YR), we

can not directly apply theorem 3.9 to the sequence (fn). For ν > 0, we consider the

sequence gνn :=
1

ν
log(1 + νfn) and we set

Gν
n :=

Q+
c (fn, fn)

1 + νfn
− Q−c (fn, fn)

1 + νfn
+
Q+
f (fn)

1 + νfn
−
Q−f (fn)

1 + νfn
.

By the assumptions on (fn), we have

∂tg
ν
n +

p

m
.∇xg

ν
n = Gν

n in D′((0,+∞)× R3 × Y ). (3.50)

Since 0 ≤ gνn ≤ fn, the weak compactness of (fn) established in the lemma 3.3 implies
that (gνn) is also weakly compact. Similarly, the sequence (gνn) is bounded in L1((0, T )×
R3 × Y ). Then, by corollaries 3.5, 3.7 and lemma 3.8, (Gν

n) is bounded in L1((0, T )×
BR × YR). Therefore, theorem 3.9 applies to (gνn) for all ν > 0. In particular, for all
function Ψ ∈ L∞(Y ) with compact support and for all ν > 0, the sequence(∫

Y

gνn(t, x, y)Ψ(y)dy

)
n

is compact in L1((0, T )×BR), thus, by the uniqueness of weak

limit,

∫
Y

gνn(t, x, y)Ψ(y)dy
n−→
∫
Y

gν(t, x, y)Ψ(y)dy in L1((0, T )×BR), (3.51)

where gν is the weak limit of (gνn) (up to an extraction).
The result follows because

sup
n

sup
t∈[0,T ]

∫∫
R3×Y

|gνn − fn|dydx −→
ν→0

0, (3.52)

which implies the strong compactness in L1((0, T )×BR) of the sequence(∫
Y

fn(t, x, y)Ψ(y)dy

)
n

.

To show (3.52), we can use the inequality

∀M > 0, 0 ≤ u− 1

ν
log(1 + νu) =

νM

2
u1l{u≤M} + u1l{u>M}. (3.53)

Then we obtain, for all n and for all t ∈ [0, T ],∫∫
R3×Y

|gνn − fn|dydx ≤
νM

2

∫∫
R3×Y

fndydx+

∫∫
R3×Y

fn1l{fn>M}dydx

≤ νM

2
KT +

1

M s−1

∫∫
R3×Y

f sndydx ≤
(
νM

2
+

1

M s−1

)
KT .

We conclude by letting ν → 0, and M → +∞.
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Proposition 3.13 We set ρn(t, x) :=

∫
Y

fn(t, x, y)dy and ρ(t, x) :=

∫
Y

f(t, x, y)dy.

Then, up to a subsequence, we have, for all R > 0,

ρn −→ ρ in L1((0, T )×BR) and a.e. (3.54)

Proof: We have

ρn = ρMn + σMn , where ρMn :=

∫
YM

fn(t, x, y)dy.

By the preceding lemma, ρMn −→
n

ρM :=

∫
YM

f(t, x, y)dy in L1((0, T ) × BR) for all

M > 0, and

σMn :=

∫
Y−YM

fn(t, x, y)dy ≤ 1

M

∫
Y−YM

|y|fn(t, x, y)dy

≤ Cte

M

∫
Y

(
m+

|p|2

2m
+ e

)
fn(t, x, y)dy,

whence σMn −→
M→+∞

0 in L1((0, T )×BR), uniformly in n.

�

Lemma 3.14 For all R > 0, we have, up to a subsequence,

Lfn −→ Lf in L1((0, T )×BR × YR) and a.e. (3.55)

Proof: Applying the corollary 3.10 with Ψ(y, y?) = A(y, y?)1l{y∈YR}1l{y?∈YR?}, we infer

that the sequence

(∫
YR?

gνn(t, x, y?)A(y, y?)dy?
)
n

is compact in L1((0, T ) × BR × YR)

for all R? > 0. Using (3.52) again, we obtain, for all R? > 0, the compactness of(∫
YR?

fn(t, x, y?)A(y, y?)dy?
)
n

in L1((0, T )× BR × YR). We conclude similarly as for

the proof of lemma 3.6, establishing

lim
R?→+∞

sup
n

∥∥∥∥∫
YR?

Af ?ndy
? −

∫
Y

Af ?ndy
?

∥∥∥∥
L1((0,T )×BR×YR)

= 0,

and identifying the weak limits.

�
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3.5 Regularity in time of the limit f

In this subsection, we show the continuity in time of the limit f , which gives a sense
to the Cauchy data f(0) = f 0.

Proposition 3.15 In fact, we have f ∈ C([0, T ], L1(R3 × Y )).

Proof: We use the integral formulation. Each gνn is a distributional solution of the
renormalized equation, by (3.50), so a mild solution. Therefore we have, for a.e (x, y) ∈
R3 × Y, and for all t, t+ h ∈ [0, T ],

gν]n (t+ h, x, y)− gν]n (t, x, y) =

∫ t+h

t

Gν
n(σ, x, y)dσ,

thus

‖gν]n (t+ h)− gν]n (t)‖L1(BR×YR) ≤
∫∫

BR×YR

∫ t+h

t

|Gν
n(σ, x, y)| dσ.

Moreover, by the subsections 3.2 and 3.3, the sequence (Gν
n)n is weakly compact in

L1((0, T )×BR × YR), thus for all t ∈ [0, T ],

lim
h→0

sup
n
‖gν]n (t+ h)− gν]n (t)‖L1(BR×YR) = 0.

Therefore the sequence (gν]n ) is equicontinuous in C([0, T ], L1(BR × YR)). By the com-
pactness of [0, T ], this sequence is in fact uniformly equicontinuous, thus

lim
h→0

sup
n

sup
t∈[0,T ]

‖gν]n (t+ h)− gν]n (t)‖L1(BR×YR) = 0.

Then, (3.52) and the estimate (3.45) yield

lim
h→0

sup
n

sup
t∈[0,T ]

‖f ]n(t+ h)− f ]n(t)‖L1(R3×Y ) = 0.

Ascoli theorem entails that the sequence (f ]n) is compact in C([0, T ], L1(R3 × Y )).
The uniqueness of the limit in D′((0,+∞)×R3×Y ) yields f ] ∈ C([0, T ], L1(R3×Y )),
and so f ∈ C([0, T ], L1(R3 × Y )) by change of variables.

�

3.6 Passing to the limit in a new integral equation

Even if the renormalization provides weak compactness, a new problem appears: we
will not be able to pass to the weak limit in (ECFR), because of the non-linearity of
the factor fn/(1 + fn). That's why we need another formulation to our problem, which
avoids the renormalization. But, remember that the term Q−c (f, f) can not be de�ned
as a distribution, so we will use an integral equation which doesn't involve this term.
We proceed as in [10].
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We denote by T the linear transport operator

T = ∂t +
p

m
.∇x.

Let T−1 be the resolvant of transport operator, de�ned by: for g(t, x, y), we set u =
T−1g if u|t=0 = 0 and Tu = g. So, we have

T−1g(t, x,m, p, e) :=

∫ t

0

g(s, x− (t− s)p/m,m, p, e)ds.

T−1 satis�es the following properties:

(i) Forall R > 0, T−1
(
L1((0, T )×BR×YR)

)
⊂ C([0, T ], L1(BR×YR)) continuously

and weakly continuously.
(ii) T−1 is nonnegative (∀g ≥ 0, T−1g ≥ 0).

Forall F ∈ C([0, T ], L1(BR × YR)) such that TF ≥ 0, we set

T−1
F = e−FT−1eF .

This operator is well de�ned from L1((0, T )×BR × YR) to C([0, T ], L1(BR × YR)) and
has the same continuity properties as T−1.
Moreover, if (Fn) is a bounded sequence in C([0, T ], L1(BR × YR)) such that TFn ≥ 0,
if Fn(t, x, y) → F (t, x, y) for all t and a.e (x, y), and if gn ⇀ g weakly in L1((0, T ) ×
BR × YR), then

∀t ∈ [0, T ], T−1
Fn
gn(t) ⇀ T−1

F g(t) weakly in L1(BR × YR).

The operator T−1
F allows us to build an new formulation of our problem, which is better

because it only involves Q+
c (fn, fn), Q+

f (fn), Q−c (fn):

Lemma 3.16 f ∈ C([0, T ], L1(R3× Y )) is a mild solution of (ECF ) with initial data
f(0) = f 0 if and only if

f = e−Ff 0(x− tp/m, y) + T−1
F (Q+

c (f, f)) + T−1
F (Q+

f (f))− T−1
F (Q−c (f)), (3.56)

where F := T−1(Lf).

Proof: The result is deduced from the following fact: if f is a distributional solution
of (ECF ), then

T (eFf) = TFeFf + eFTf = eF (f Lf +Q+
c (f, f)−Q−c (f, f) +Q+

f (f)−Q−f (f))

= eF (Q+
c (f, f) +Q+

f (f)−Q−f (f)).

�
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Now, we can �nish the proof of theorem 3.2.

End of the proof of theorem 3.2: We will pass to the weak limit in the following equa-
tion, satis�ed by each (fn):

fn = e−Fnf 0
n(x− tp/m, y) + T−1

Fn
(Q+

c (fn, fn)) + T−1
Fn

(Q+
f (fn))− T−1

Fn
(Q−c (fn)), (3.57)

where Fn := T−1(Lfn).
Notice that in view of (3.55) and the continuity properties of T−1, the sequence (Fn) is
bounded in C([0, T ], L1(BR × YR)), and Fn(t, x, y)→ F (t, x, y) for all t and a.e (x, y).
Thus, we can pass to the weak limit in the terms T−1

Fn
(Q+

f (fn)) and T−1
Fn

(Q−c (fn)) thanks

to the lemma 3.8. The term e−Fnf 0
n(x − tp/m, y) can be treated with the continuity

in t = 0 (for the L1-norm) of each fn and f , established in the previous section.
Eventually, the last term T−1

Fn
(Q+

c (fn, fn)) also pass to the weak limit thanks to the
following lemma and proposition, which use the a.e convergence of the y-averages
obtained in the previous subsection.

Lemma 3.17 For all R > 0 and for all function ϕ ∈ L∞((0, T )×BR × YR), we have,
up to a subsequence,∫

Y
Q+
c (fn, fn)(t, x, y)ϕ(t, x, y)dy

1 + ρn(t, x)

n−→
∫
Y
Q+
c (f, f)(t, x, y)ϕ(t, x, y)dy

1 + ρ(t, x)

in L1((0, T )×BR) and a.e.

Proof: We have

∫
Y
Q+
c (fn, fn)ϕdy

1 + ρn
=

1

2

∫
Y

fn(t, x, y?)

(∫
Y

fn(t, x, y)A(y, y?)ϕ(t, x, y + y?)dy

1 + ρn(t, x)

)
dy?.

Now, we apply the corollary 3.10 with Ψ(t, x, y, y?) = A(y, y?)ϕ(t, x, y + y?)
(notice that Ψ ∈ L∞((0, T )×BR × Y 2

2R) thanks to (1.5)).

Therefore, the sequence

(∫
Y

gνn(t, x, y)A(y, y?)ϕ(t, x, y′)dy

)
n

is compact in

L1((0, T )×BR × YR), and we have

∫
Y

gνn(t, x, y)A(y, y?)ϕ(t, x, y′)dy
n−→
∫
Y

gν(t, x, y)A(y, y?)ϕ(t, x, y′)dy (3.58)

in L1((0, T )×BR × YR), for all ν > 0.

Using (3.52) again, we obtain, up to a subsequence, that

∫
Y

fn(t, x, y)A(y, y?)ϕ(t, x, y′)dy
n−→
∫
Y

f(t, x, y)A(y, y?)ϕ(t, x, y′)dy (3.59)
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in L1((0, T )×BR × YR) and a.e.

Up to another extraction, we infer, by (3.59) and (3.54),∫
Y

fn(t, x, y)A(y, y?)ϕ(t, x, y′)dy

1 + ρn(t, x)

n−→
∫
Y

f(t, x, y)A(y, y?)ϕ(t, x, y′)dy

1 + ρ(t, x)
(3.60)

a.e in (t, x, y) ∈ (0, T )×BR × YR.

Applying the corollary 3.11 with Ψn(t, x, y?) :=

∫
Y

fn(t, x, y)A(y, y?)ϕ(t, x, y′)dy

1 + ρn(t, x)
(which satis�es the required assumptions because ϕ is compact supported and A is
locally bounded), we obtain the compactness of the sequence(∫

Y

gνn(t, x, y?)Ψn(t, x, y?)dy?
)
n∈N

in L1((0, T ) × BR), and so, by (3.52), we deduce

that

(∫
Y

fn(t, x, y?)Ψn(t, x, y?)dy?
)
n∈N

is compact.

Finally, we conclude that∫
Y

fn(t, x, y?)Ψn(t, x, y?)dy?
n−→
∫
Y

f(t, x, y?)Ψ(t, x, y?)dy? in L1((0, T )×BR).

�

Proposition 3.18 Up to a subsequence, we have, for all R > 0,

Q+
c (fn, fn) ⇀ Q+

c (f, f) weakly in L1((0, T )×BR × YR).

Proof: We know by the lemma 3.4 that there exists Q(t, x, y) such that for all R > 0,

Q+
c (fn, fn) ⇀ Q weakly in L1((0, T )×BR × YR).

By (3.54) and a standard integration argument (we can refer to [17] for a proof), it
leads to

Q+
c (fn, fn)

1 + ρn
⇀

Q

1 + ρ
weakly in L1((0, T )×BR × YR).

Moreover, the previous lemma shows that

Q+
c (fn, fn)

1 + ρn
⇀

Q+
c (f, f)

1 + ρ
weakly in L1((0, T )×BR × YR).

We conclude identifying weak limits.

�

We have shown that f is a mild solution of (ECF ). Since Q+
c (fn, fn), Q+

f (fn) and

Q−f (fn) converge weakly to Q+
c (f, f), Q+

f (f) and Q−f (f) respectively, these three terms

lie in L1
loc, and a fortiori,

Q+
c (f, f)

1 + f
,
Q+
f (f)

1 + f
,
Q−f (f)

1 + f
∈ L1

loc((0,+∞)× R3 × Y ).
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The term
Q−c (f, f)

1 + f
is automatically in L1

loc because Lf ∈ L1((0, T )×BR × YR) for all

R > 0 and
Q−c (f, f)

1 + f
≤ Lf .

Thus, f is indeed a renormalized solution of (ECF ).

�
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